首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary In this study, the trends of annual and seasonal precipitation time series were examined on the basis of measurements of 22 surface stations in Greece for the period 1955–2001, and satellite data during the period 1980–2001. For this purpose, two statistical tests based on the least square method and one based on the Mann-Kendall test, which is also capable of detecting the starting year of possible climatic discontinuities or changes, are applied. Greece, in general, presents a clear significant downward trend in annual precipitation for the period 1955–2001, which is determined by the respective decreasing trend in winter precipitation. Both winter and annual series exhibit a downward trend with a starting year being 1984. Satellite-derived precipitation time series could be an alternative means for diagnosing the variability of precipitation in Greece and detecting trends provided that they have been adjusted by surface measurements in the wider area of interest. The relationship between precipitation variability in Greece and atmospheric circulation was also examined using correlation analysis with three circulation indices: the well-known North Atlantic Oscillation Index (NAOI), a Mediterranean Oscillation Index (MOI) and a new Mediterranean Circulation Index (MCI). NAOI is the index that presented the most interesting correlation with winter, summer and annual precipitation in Greece, whereas the MOI and MCI were found to explain a significant proportion of annual and summer precipitation variability, respectively. The observed downward trend in winter and annual precipitation in Greece is linked mainly to a rising trend in the hemispheric circulation modes of the NAO, which are connected with the Mediterranean Oscillation Index.  相似文献   

2.
A new North Atlantic Oscillation index and its variability   总被引:31,自引:4,他引:27  
A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and  相似文献   

3.
夏季北大西洋涛动与我国天气气候的关系   总被引:6,自引:2,他引:6  
王永波  施能 《气象科学》2001,21(3):271-278
利用1873-1995年北半球月平均海平面气压(SLP)资料,计算了夏季北大西洋涛动指数(NAOI)。通过NAOI与我国降水、气温和北半球球流5的相关计算以及强、弱小涛动年北半球环流异常的合成分析,发现,夏季强NAOI年,副高偏强,我国西南地区降水偏少,易出现一类和二类雨型;我国大部分地区气温明显偏高,此外,还研究了多时间尺度上,NAOI与东亚夏季风的关系,结果表明,夏季NAOI与东亚夏季风在年际、年代际、基本态尺度上都存在显著相关,强NAOI年,对应是强东亚夏季风特征,当NAOI处高(低)基本态时,夏季风处于高(低)基本态。  相似文献   

4.
EFFECTS OF INDIAN OCEAN SSTA WITH ENSO ON WINTER RAINFALL IN CHINA   总被引:2,自引:1,他引:1  
Based on Hadley Center monthly global SST, 1960-2009 NCEP/NCAR reanalysis data and observation rainfall data over 160 stations across China, the combined effect of Indian Ocean Dipole (IOD) and Pacific SSTA (ENSO) on winter rainfall in China and their different roles are investigated in the work. The study focuses on the differences among the winter precipitation pattern during the years with Indian Ocean Dipole (IOD) only, ENSO only, and IOD and ENSO concurrence. It is shown that although the occurrences of the sea surface temperature anomalies of IOD and ENSO are of a high degree of synergy, their impacts on the winter precipitation are not the same. In the year with positive phase of IOD, the winter rainfall will be more than normal in Southwest China (except western Yunnan), North China and Northeast China while it will be less in Yangtze River and Huaihe River Basins. The result is contrary during the year with negative phase of IOD. However, the impact of IOD positive phase on winter precipitation is more significant than that of the negative phase. When the IOD appears along with ENSO, the ENSO signal will enhance the influence of IOD on winter precipitation of Southwest China (except western Yunnan), Inner Mongolia and Northeast China. In addition, this paper makes a preliminary analysis of the circulation causes of the relationship between IOD and the winter rainfall in China.  相似文献   

5.
The history of early meteorological observations using instruments in the Czech Lands is described (the longest temperature series for Prague-Klementinum starts in 1775, precipitation series for Brno in 1803). Using the PRODIGE method, long-term monthly temperature and precipitation series from selected secular stations were homogenised (for 10 and 12 stations, respectively). All the seasonal and annual temperature series for the common period 1882–2010 show a significant positive linear trend with accelerated warming from the 1970s onwards. No significant linear trends were disclosed in the series of seasonal and annual precipitation totals. Correlation coefficients between the Czech series analysed decrease as distances between measuring stations increase. A sharper decrease of correlations for precipitation totals displays much weaker spatial relationships than those for mean temperatures. The highest correlations between all stations appeared in 1921–1950, the lowest in 1891–1920 (temperature) and 1981–2010 (precipitation). Wavelet analysis reveals that very distinct annual cycles as well as the slightly weaker semi-annual ones are better expressed for temperature series than for precipitation. Statistically significant cycles longer than 1?year are temporally unstable and sporadic for precipitation, while in the temperature series cycles of 7.4–7.7 and 17.9–18.4?years were recorded as significant by all stations in 1882–2010 (quasi-biennial cycle of 2.1–2.2?years for half the stations). Czech homogenous temperature series correlate best with those of the Northern Hemisphere for annual, spring and summer values (with significant correlation coefficients between 0.60 and 0.70), but this relation is temporally unstable. Circulation indices, such as the North Atlantic Oscillation Index (NAOI) and the Central European Zonal Index (CEZI), may explain the greater part of Czech temperature variability, especially from December to March and for the winter; however, this relationship is much weaker, or even random, for precipitation series. Further, relationships with the Southern Oscillation Index (SOI) are weak and random. Relatively weak coincidences exist between statistically significant cycles in the Czech series and those detected in NAOI, CEZI and SOI series.  相似文献   

6.
In this study the behaviour of the North Atlantic Oscillation (NAO) and its impact on the surface air temperature in Europe 1891-1990 is analysed using statistical time series analysis techniques. For this purpose, both the NAO index (NAOI) and the surface air temperature time series from 41 European stations are split up into typical variation components. Various measures of correlation indicate that the NAOI-temperature relationships are approximately linear and most pronounced in winter. The spatial correlation patterns show a correlation decrease from North West to South East (winter) exceeding correlation coefficients of 0.6 in the Scotland-South Norwegian area. In summer, these correlations are very weak, in spring and autumn stronger but smaller than in winter. These correlations change significantly in time indicating increasing correlations in Central and North Europe and decreasing correlations in the North West. Low-frequent episodic components represented by related polynomials of different order are very outstanding in both NAO and temperatures showing up in all seasons, except summer, relative maxima roughly 1900 and in recent times, relative minima in the beginning ( ca . 1870) and roughly 1960-1970. Periodogramm analysis reveals a dominant cycle of 7.5 years (NAOI and a majority of temperature time series) whereas in case of the polynomial component one may speculate about a 80-90 year cycle.  相似文献   

7.
ENSO对中国夏季降水可预测性变化的研究   总被引:16,自引:5,他引:16  
高辉  王永光 《气象学报》2007,65(1):131-137
众多研究表明,ENSO对东亚夏季风尤其是中国夏季降水存在很大影响,已成为中国夏季降水首要的预测因子。传统的预测模型认为,当前期ENSO为暖位相状态时,夏季中国主要雨带位置偏南,长江流域降水偏多;反之,当前期ENSO为冷位相状态时,夏季中国主要雨带位置偏北,长江流域降水偏少。基于1951—2003年中国160站月平均降水资料和同时段的NOAA ERSST海表温度资料,讨论了中国夏季降水和前冬Nino3区海温关系的年代际变化。分析结果显示,近20年来二者相关性已大大衰减。作为中国夏季降水的主要预测指标,ENSO的指示意义也相应减弱。在1951—1974年,依据前冬Nino3区SSTA预测夏季降水符号准确率在67%以上的站数有43站,但在1980—2003年,同样准确率的站数只有15站。在前一个研究时段,这43站呈区域性分布于东北地区、黄河和长江流域,但后一个研究时段内的15站分布分散,不利于区域性预测。相关分析结果表明,在20世纪70年代中期之前,当前冬赤道东太平洋海温偏高时,华北和江南南部的多数测站夏季降水偏多,淮河流域降水偏少,同时梅雨开始偏晚。反之,当前冬赤道东太平洋海温偏低时,华北和江南南部夏季降水易偏少,淮河流域降水则偏多,同时梅雨开始偏早。但在20世纪80年代之后,上述对应关系较难成立。因此,在汛期预测业务中参考ENSO的作用时必须充分考虑年代际背景的差异。  相似文献   

8.
1 INTRODUCTION The Asian monsoon and its anomalies play an important role in the global general circulation and climatic change. As an essential component of the monsoon system, the East Asian winter monsoon is not only the most vigorous across the globe …  相似文献   

9.
Winter Asia Jetstream and Seasonal Precipitation in East China   总被引:9,自引:0,他引:9  
WinterAsiaJetstreamandSeasonalPrecipitationinEastChina¥LitrngPingde(梁平德)andLiuAixia(刘爱霞)WinterAsiaJetstreamandSeasonalPrecipi?..  相似文献   

10.
石家庄市气候变化特征分析   总被引:4,自引:0,他引:4  
赵国石  郝立生 《气象科技》2007,35(6):797-802
利用石家庄市1951~2005年气温、降水资料,采用变率分析、趋势分析、小波变换和Mann-Kendall检验等方法对石家庄近55年的气候变化特征进行了分析。结果表明:①夏季、秋季气温变率小,冬季气温变化幅度最大;②年气温和四季气温线性上升趋势显著,春季、冬季升温最明显,近55年气候变暖主要是春季和冬季气温升高造成的。年降水量和四季降水量不存在线性变化趋势;③四季气温和年气温变化的周期性不明显,而降水量变化存在周期性;④石家庄四季气温和年气温在20世纪80年代末和90年初发生了明显的气候突变,而四季降水量和年降水量变化没有发生明显的气候突变。  相似文献   

11.
TRMM测雨雷达对1998年东亚降水季节性特征的研究   总被引:16,自引:0,他引:16  
利用热带测雨计划卫星上的测雨雷达得到的降水资料,对1998年东亚降水,特别是中国大陆东部、东海和南海的降水,进行了分析研究,并对比了热带降水研究结果。年统计结果表明,东亚地区层状云降水出现概率极高(比面积达83.7%),对流云降水的比面积仅占13.6%,然而两者对总降水量的贡献相当。结果还表明,暖对流云降水出现的比例和对总降水量的贡献很小。在季节尺度,对流云和层状云降水的比与两者的面积比成比例关系。除夏季外,测雨雷达降水量与GPCP降水量可比性好。研究结果还指出:在中纬度陆地和海洋上对流云和层状云的比降水量和比面积呈相反方向作季节性南北移动,这一活动与东亚季风变化一致;该地区降水的季节性变化还表现为降水垂直廓线的变化。除冬季外,南海地区降水垂直结构呈热带特征。CRAD分析表明,对流云降水的地面雨强变化大,尤其在陆地上,而层状云多表现为地面弱降水。  相似文献   

12.
The paper discusses long-term change in snowfall, rainfall and mixed precipitation viewed in conjunction with air temperature and North Atlantic Oscillation (NAO) in winter (December–February). In the study of contemporary climate change and its effect on the hydrological cycle it is useful to focus on winter precipitation forms. A 146-year secular observation series from Kraków, spanning the period 1863–2008, was used to extract data on the number of days with precipitation and on precipitation amount broken down by form. Statistically significant trends were found in total and mixed precipitation, but not in snowfall and rainfall. The climate warming effect has contributed to a material decrease in the snowfall to total winter precipitation ratio during the second half of the 20th c. The highest impact of air temperature was found in the wintertime variation in number of days with snowfall while the NAO had a significant influence on the frequency and amount of both rainfall and snowfall.  相似文献   

13.
近50年广东冬半年降水的变化及连旱成因   总被引:10,自引:1,他引:9  
利用EOF分析、小波分析、相关分析等方法,对广东近50年(1957—2006年)冬半年(当年10月—次年3月)降水的变化特征及其与太平洋海温场的关系进行了研究。结果表明,广东冬半年降水存在显著的准40年、准2年左右的变化周期,偏少阶段主要发生在1950年代末—1970年代初、1990年代末至今。冬半年发生连旱的频率远大于连涝的频率。广东冬半年降水与赤道中东太平洋的海温具有明显的正相关,与菲律宾以东的西北太平洋的海温具有明显的负相关。连续干旱年出现在Ni?o3.4区的海温为负、正异常年的频率分别为61.5%、38.5%。通过对冬半年异常连旱年Ni?o3.4区海温分别为正、负异常时的大气环流场进行合成分析,可知极涡偏弱,欧洲槽偏强,巴尔喀什湖附近的高压脊偏强,广东为一致的偏北风距平场控制,冷空气活跃,而亚洲大陆中低纬度西风带低压扰动不活跃,南支槽活动偏弱,是导致广东冬半年产生连续干旱的共同原因。  相似文献   

14.
吴统文  钱正安 《气象学报》2000,58(5):570-581
为了进一步分析青藏高原(下称高原)冬春积雪异常与中国东部地区夏季降水的关系,利用1957~1994年高原地区的实测雪深、1951~1994年6~8月中国东部地区226个均匀分布测站的实测月降水量,以及美国国家环境监测中心/国家大气研究中心(NCEP/NCAR)1958~1994年1~12月的再分析格点值资料,对比分析了高原冬、春季多、少雪年后期中国东部地区夏季(6~8月)降水分布和环流的平均特征,也分析了高原积雪影响的机理.分析结果表明:1) 平均来说,多雪年夏季长江及江南北部降水可偏多1~2成,华北和华南的降水则偏少1~3成;少雪年夏季江淮流域及湘、黔地区少雨,华北和华南多雨.2)高原冬、春积雪不仅影响了后期高原的热状况,而且影响了后期东亚大气环流的季节变化和南亚与东亚的夏季风环流.  相似文献   

15.
This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.  相似文献   

16.
基于乌鲁木齐区域数值预报业务系统,运用Ts和Bias评分方法,对2012年9月1日—2015年8月31日逐日2个起报时次的逐6 h累积降水量的年与季节预报性能进行检验,并从空间上分析了2015年全疆站点逐6 h累积降水量在4个预报时段的评分特征。结果表明:(1)2个起报时次的降水评分相差较小,00 UTC起报略优于12 UTC起报,2015年系统改进了白天大量级降水的空报现象。(2)系统对晴雨预报较为准确,Bias接近1,空报、漏报率很小;随着降水阈值的升高,Ts评分减小,Bias变幅增大,空、漏报率也随之增加。系统对强降水过程以漏报为主。(3)系统的降水预报能力存在季节差异,夏季Ts评分最高,秋季次之,冬季最小;随时间模式对四季降水预报能力均有提高,降低了冬季大量级降水的漏报率和夏季大量级降水的空报率。(4)在新疆地区,08—14 BT(Beijing Time)、14—20 BT、20—次日02 BT空报站点数多于漏报,14—20 BT空报率最高;在02—08 BT整体呈漏报。(5)各站点整体来看,白天Ts评分高于夜间,山区及邻近地区评分高于平原地区;西天山评分略优于东天山,夜间晴雨预报有天山北坡漏报、南坡空报的趋势。  相似文献   

17.
采用安徽省15站近60年来的降水资料,研究了季节和年雨日、降水量及雨强的气候变化特征.结果表明:1)空间分布上,雨日、降水量"南多北少",雨强中北部地区相当,皆小于南部地区;雨日数南北在冬春季相差较大,降水量夏季最多、冬季最少,雨强上南北在春季相差较大;雨日、降水量及雨强在年和季节上基本呈现显著正相关关系.2)时间演变上,雨日在减少,降水量、雨强在增多(大),且表现为两阶段的变化特征;小波分析显示约10 a的年代际周期变化,雨日上存在、降水量上在衰减、雨强上则不明显,约5 a、3 a的周期变化存在较多;雨日在春秋季减少明显,降水量春秋季减少,夏冬季增加但不明显,雨强尤以夏冬季增大明显;无论是年还是各季节的时间演变上,降水量与雨日、雨强均呈显著正相关,但雨日与雨强之间相关性则差些.  相似文献   

18.
The Global Precipitation Climatology Project (GPCP) monthly rainfall data and the rainfall records observed by 740 rain gauges in the mainland of China are used to analyze similarities and differences of the precipitation in China in the period from January 1980 to December 2000. Results expose significantly consistent rainfall distributions between the both data in multi-year mean, multi-year seasonal mean, and multi-year monthly mean. Departures of monthly rainfall for each dataset also show a high correlation with an over 0.8 correlation coefficient. Analysis indicates small differences of both datasets during autumn, winter, and spring, but relative large ones in summer. Generally, the GPCP has trend of overestimating the rainfall rate. Based on above good relationship of both datasets, the GPCP data are used to represent distributions and variations of precipitation in the Tibetan Plateau and Northwest China. Results indicate positive departures of precipitation in summer in the west part of Tibetan Plateau in the 1980s and negative departures after the 1980s. For the west part of Northwest China, analysis illustrates precipitation decreases a little, but no clear variation tendency.  相似文献   

19.
Short-termClimaticFluctuationsinNorthAtlanticOscillationandFrequencyofCyclonicDisturbancesoverNorthIndianOceanandNorthwestPac...  相似文献   

20.
Based on the NCEP/NCAR reanalysis data,China station precipitation data from 1960 to 2008,and aerosol optical depth (AOD) data in northern China from 1980 to 2004,this paper investigates the variability of winter snow/rainfall in northern China and the associated atmospheric circulation and aerosol distribution characteristics by using composite analysis.The results show that winter precipitation in northern China has been generally increasing since the 1960s.Among the winters of 1990-2008,the years with more rain/snow (MRSYs) are 1998,2003,and 2006,while the years with less rain/snow (LRSYs) are 2005,1997,and 2001.Composite analysis finds that the main differences of atmospheric circulation in East Asia between MRSYs and LRSYs are as follows.1) In MRSYs,strong low-level cold air over the northern polar region and Taymyr Peninsula migrates southward to northern China (Northwest,North,and Northeast China),establishing a channel favoring continuous southward transport of cold air.In LRSYs,however,this cold air channel does not exist.2) In MRSYs,the frontal zone and westerlies are over North China,and the low-level geopotential height field from eastern China to West Pacific exhibits an "east high,west low" pattern,which is conducive to easterly and southerly airflows moving northward along 110 E.In LRSYs,the 500-hPa prevailing westerly winds stay far away from China and the low-level southeasterlies move to higher latitudes,which are disadvantageous to the development of precipitation in northern China.3) In MRSYs,large-scale upward motions combined with local-scale updrafts develop into strong slanted climbing airflows,forming a vertical circulation that favors the generation of heavy snows in eastern China.In LRSYs,the vertical circulation moves eastward into the Pacific Ocean.Furthermore,the correlation analysis on AOD and winter precipitation during the period 1980-2004 in northern China reveals that AOD differs significantly between MRSYs and LRSYs and the annual variation of winter rain/snow is positively correlated to the annual variation of AOD with a correlation coefficient of 0.415 at the 0.001 significance level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号