首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper reports data on the evolutionary history of magmatism, its conditions, and sources in the process of the development of the Southern Mongolian Hercynides during the pre-accretion, continental-margin, and rifting stages within the time span from the Silurian to Early Permian. The Hercynian continental crust in the southern Mongolian segment of the Central Asian Foldbelt (CAFB) was determined to have grown in the environment of ensimatic island arcs, backarc basins, spreading centers, and oceanic islands or plateaus, with material coming from the depleted and, perhaps, also enriched mantle sources in the open ocean that surrounded the Siberian paleocontinent on the side of the Caledonian margin. This made it possible to recognize the Early-Middle Paleozoic epoch of juvenile crustal growth in CAFB and the corresponding isotopic crustal province with a total area of more than 200 thousand km2. The principal differences between the composition and structure of the blocks surrounding the Hercynian regions (Caledonides in the Gobi Altai and Grenwillides in the South Gobi microcontinent) testify that the southern margin of the Caledonian Siberian continent and the Grenvillides of the South Gobi microcontinent had different geological histories and were spatially separated. The structural complex of the Paleoasian ocean, including the terranes of the South Gobi microcontinent, were transformed into a continental block in the latest Devonian-earliest Carboniferous, in relation with accretion processes, folding, metamorphism, and tectonic delamination along the boundaries of structurally heterogeneous domains. The subsequent recycling of the crust by magmatic processes was related to the development of an active continental margin (ACM). The development of an ACM in the Hercynides resulted from and was a continuation of the motions of the continental and oceanic lithospheric plates, i.e., processes that brought about the Hercynian accretion. The evolution history of the ACM was subdivided into two stages: early (a continental-margin stage proper) and late (rifting stage). The rocks of the early stage were produced at 350–330 Ma and compose a differentiated basalt-andesite-rhyodacite complex and related massifs of the granodiorite-plagiogranite and banatite (diorite-monzonite-granodiorite) associations. During the rifting stage at 320–290 Ma, a bimodal basalt-comendite-trachyrhyolite association was formed, along with accompanying alkali granite massifs. In the southern Mongolian segment of the Hercynides, the rocks of the rifting stage compose two subparallel rift zones: Gobi-Tien Shan, which extends along the boundaries of the South Gobi microcontinent, and the Main Mongolian lineament, which marks the boundaries between the Hercynides and Caledonides in the CAFB. The rift structures are made up of alkali granitoids and normal-alkalinity granitoids, which are atypical of rift zones. Their genesis is thought to have been related to crustal anatexis, a process that was triggered by rift-related magmas at an unusual combination of rifting and ACM tectonic setting. The basic rocks of the rift associations have geochemical signatures atypical of continental rifting. They show Ta and Nb minima and K and Pb maxima, as is typical of rocks generated at convergent plate boundaries. Nevertheless, the broad variations in the concentrations and ratios of some major and incompatible trace elements and in the Sr, Nd, and O isotopic composition of the rift basaltoids allowed us to distinguish their high-and low-Ti varieties, which were produced with the participation of three mantle sources: depleted mantle similar to the source of basalts in midoceanic ridges, enriched mantle like the source of basalts in oceanic islands, and the mantle material of the metasomatized mantle wedge. The origin of andesites in the rift zones is explained by the contamination of mantle basaltoid melts with sialic (predominantly sedimentary) material of the continental crust or the assimilation of anatectic partial granite melts.  相似文献   

2.
In South Mongolia, the Hercynian structures of a linear collisional thrust-and-fold zone formed in the Carboniferous are bounded by the Caledonides of Central and North Mongolia on the north, being truncated on the south by the Indosinides of the Inner Mongolia. Tectonic sheets of the Caledonides-Hercynides junction zone confined to southern flank of the Mongolian-Gobi Altai are composed of high-gradient metamorphites of the South Altai metamorphic belt. The belt of these rocks traceable northwestward in China and eastern Kazakhstan delineates margin of the North Asian Caledonian paleocontinent. According to results of the previous geochronological study, the high- and low-gradient metamorphic rocks of the belt originated respectively 385 and 360–370 Ma ago. However, tectonic position of crystalline rock sequences, which have not been dated, remains unclear. Geochronological interval postulated for these rocks is very broad, ranging from the Early Precambrian to the Devonian. Dating results obtained in this work for detrital zircons from siliciclastic metasediments of the Bodonchin tectonic sheet of the belt show that their protoliths accumulated during the time span of 460–390 Ma (Late Ordovician-Early Devonian) on a passive continental margin. Transformation of the latter into active continental margin took place in the Early Devonian, when development of the Siberian subduction zone resulted in formation of the South Altai metamorphic belt at deep crustal levels of the Caledonian paleocontinent.  相似文献   

3.
The paper reports newly obtained geological, geochronological (U-Pb zircon method), Nd isotopic, and geochemical data on Middle and Late Paleozoic granitoids and metamorphic rocks from the southern slope of the Mongolian Altai and Gobi Altai and on granitoids from the Trans-Altai Gobi. Tectonically, the former rocks are hosted in the margin of a Caledonian paleocontinent, and the latter are localized among island-arc and oceanic complexes related to the development of the Hercynian Southern Mongolian Ocean. According to their geological setting, the intrusive complexes are subdivided into two major groups: (i) related to processes of regional metamorphism and (ii) separated from these processes. Geochemical data suggest that the source of most of the granitoids and metamorphic rocks contained island-arc rocks and their erosion products. Nd isotopic evidence indicates that practically all of the allochthonous granitoids, regardless of their composition, age, and structural setting, have positive ?Nd(T) values [i.e., belong to the ?(+) type] and could not be formed by the melting of metaterrigenous rocks widespread at the modern erosion level. These granitoids in both the Caledonian and the Hercynian structures have practically identical Late Riphean Nd model ages [TNd(DM) = 0.97–0.60 Ga], which become slightly younger in the granitoids of the Hercynides. The exception are ultrametamorphic subautochthonous ?(?) granites of the first group localized in the peripheral part of migmatite fields. The sources of these granitoids could be the host metaterrigenous rocks. The results obtained in the course of this research suggest, with regard for preexisting data on granitoids in the isotopic provinces in Central Asia, that the sources of the Paleozoic granitoids were the rocks of the “juvenile” Caledonian and Hercynian island-arc crust and of the older crust of cratonic blocks with a Early Precambrian and Late Riphean basement, respectively. The Late Riphean crustal material in Caledonian and Hercynian structures related to the development of the corresponding oceanic basins most probably consisted of clastic sediments or relatively small fragments of the Late Riphean crust. The occurrence of this crustal material in the sources of the granitoids can be explained by the involvement of sediments in subduction zones and the participation of these sediments and fragments of Late Riphean complexes in the accretionary-collision processes during the closure of the paleoceanic basins. Simultaneously, the subduction zones received juvenile material that could be later involved in the melting processes together with older rocks.  相似文献   

4.
华夏地块显生宙的变质作用期次和特征   总被引:12,自引:0,他引:12  
华夏地块主要存在四期变质作用。加里东期变质作用呈北东向展布于华夏的大部分地区,变质作用可达麻粒岩相,且麻粒岩断续分布平行于造山带,此期变质作用是在挤压造山构造背景下发生,很可能与扬子地块向冈瓦那大陆北缘聚合–碰撞,造成大陆边缘沉积物变形–变质有关。根据粤东梅县片麻岩和兴宁混合岩的LA–ICPMS锆石U–Pb定年以及邻区独居石U–Pb年代学的研究,海西的变质作用主要发生在260~280 Ma,年轻于欧洲典型的海西期造山时代。华夏地块的海西期变质作用分布局限,它们可能形成于拉张构造背景。印支期变质岩在华夏有较广泛的分布,西南端大容山—十万大山的印支期变质作用可达麻粒岩相,其他地区的变质作用具有中低压相系的特征,记录了造山后期伸展构造背景。LA–ICPMS锆石U–Pb定年指示华夏中部粤中地区的印支期变质作用发生在231~232 Ma。燕山期变质岩主要分布于东南沿海和台湾中央山脉,显示了双变质带的特点,表明与太平洋板块向东南沿海俯冲作用密切相关。从印支期到燕山期,变质带的方向发生了转变,说明影响华夏地块变质作用的构造域发生了改变。  相似文献   

5.
Tectonic Evolution of China and Its Control over Oil Basins   总被引:2,自引:0,他引:2  
This paper is a brief review of the tectonic frame and crustal evolution of China and their control over the oil basins. China is subdivided into three regions by the Hercynian Ertix-Almantai(EACZ) and Hegenshan (HGCZ) convergent zones in the north, and the Indusinian Muztagh-Maqen(MMCZ) and the Fengxiang-Shucheng (FSCZ) convergent zones in the south. The northern region represents the southern marginal tract of the Siberian platform. The middle region comprises the SinoKorea (SKP), Tarim (TAP) platforms and surrounding Paleozoic orogenic belts. The southern region includes the Yangtze platform (YZP), the Cathaysia (CTA) paleocontinent and the Caledonides between them in the eastern part, and the Qinghai-Tibet plateau composed of themassifs and Meso-and Cenozoic orogenic belts in the western part. The tectonic evolutions of China are described in three stages: Jinningian and pre-Jinningian, Caledonian to Indusinian, and post-Indosinian. Profound changes occurred at the end of Jinningian (ca. 830 Ma) and the Indusinian (ca. 210 Ma) tectonic epochs, which had exerted important influence on the formation of different types of basins. The oil basins distribute in four belts in China, the large superimposed basins ranging from Paleozoic to Cenozoic(Tarim and Junggar) in the western belt, the large superimposed basins ranging from Paleozoic to Mesozoic (Ordos and Sichuan) in the central belt, the extensional rift basins including the Cretaceous rift basins (Songliao) and the Cenozoic basin (Bohaiwan) in the eastern belt, and the Cenozoic marginal basins in the easternmost belt in offshore region. The tectonic control over the oil basins consists mainly in three aspects: the nature of the basin basement, the coupling processes of basin and orogen due to the plates interaction, and the mantle dynamics, notably the mantle upwelling resulting in crustal and lithuspheric thinning beneath the oil basins.  相似文献   

6.
吴根耀 《古地理学报》2014,16(6):907-925
古亚洲洋南支为复杂的多岛洋,可分为西、中、东3段,其演化具有共同点,如既向北消减又向南消减和晚古生代发生多期的消减,也有沟弧盆系发育特征和时代上的差异,反映了可能存在近北北东向的剪切转换带。二叠纪北东东—东西向的洋盆、北西向的剪切带和北北东向的额尔德尼达来海槽构成“三叉构造”,后者是西部隆起区与东部残留海盆区之间的分界。中段的中戈壁地区的洋壳向北消减,洋消失后在弧前地区形成温都尔希雷特残留海盆。中段的南戈壁地区的洋壳向南消减,形成洋内弧(佐伦弧)和大陆边缘弧(雅干—索果淖弧),洋消失后在在弧后地区分别出现南戈壁和拐子湖残留海盆;晚二叠世两地持续发育海盆,前者形成具巨大经济价值的海相煤田。南戈壁海盆一度东延连接内蒙东部(东段洋壳消失后残留)的哲斯海盆和吴家屯海盆,现东延被东曼达洛包岩浆弧所截。晚二叠世内蒙东部的哲斯海盆闭合,吴家屯海盆退化为2个陆相盆地。蒙古西南部在昌德曼地区形成2条窄长的槽地接受晚二叠世的海侵,堆积相应的煤层。  相似文献   

7.
华南加里东期金矿床分布广泛,既可产在华南加里东褶皱带内,也可发育在毗邻的江南隆起上。其共同特征是矿床产在加里东期构造变形带或变质带中,受深大断裂带及其分支构造所控制,成矿物质主要来自赋矿围岩。产在隆起上的矿床赋矿围岩时代较老,均为元古宙变质细碎悄岩类;矿物及元素组合比较简单,常见单金型。产于褶皱带中者其围岩除元古宙-寒武纪变质细碎屑岩外,还有火山岩、侵入岩及沉积岩,时代为元古宙--志留纪;矿物及元  相似文献   

8.
张之孟 《地球学报》1994,15(Z1):14-31
中国北方的中朝克拉通与南方的扬子克拉通无论在基底年代及盖层发育程度、沉积环境及古生物群上都有差异。它们是两个构造发育史不同的大陆。这两个古大陆之间的大洋究竟有多宽?是何时关闭的?合并时的构造运动强烈程度?在挽近地质历史时期有无相类似的情况?这些问题一直是中外地质学家所关注,并在不同程度上讨论过的问题。近年来的地质工作,提供了一些可据以回答上述问题的成果,但全面可靠地回答上述全部问题还有待今后的努力。笔者在过去的文章(1-3)曾讨论一些有关问题。本文,拟就近期国内外的研究成果,发表一些评论,并提出作者的看法  相似文献   

9.
区域变质作用与中国大陆地壳的形成与演化   总被引:8,自引:4,他引:4  
在编制1∶500万中国变质地质图的基础上,本文总结了中国主要变质带的演化以及各变质带与中国大陆地壳形成演化之间的内在联系。虽然在华北和华南克拉通都有古太古代到中太古代的变质年代记录,但是由于后期改造其变质作用的特点及与区域构造背景的联系已难以追索。新太古代末-古元古代初期的变质作用在华北克拉通表现最明显,这期变质作用紧随大规模的TTG岩浆作用,普遍具有逆时针的P-T演化轨迹,反映了地幔柱主导的岩浆-变质事件特点。古元古代晚期的变质事件在华北、华南、塔里木克拉通都有强烈反映。这期变质作用以形成具有顺时针P-T演化轨迹的高压麻粒岩为特点,与形成Columbia超大陆的一些造山带的特点类似,但是这三个不同克拉通在与Columbia聚合的时间和空间方位上存在差异。华南克拉通是相对年轻的克拉通,是沿新元古代江南造山带扬子和华夏地块拼合的产物。新元古代江南造山带的火山岩形成时代和变质作用程度从北东向南西迁移,反映了造山过程逐渐迁移和剪刀式闭合的特点。形成华南克拉通后,在其东南缘又先后经历了加里东期和印支期的变质改造,并且由北西向南东变质带从加里东期转变为印支期,但是这两期变质作用的构造背景尚不很清楚。中国南北大陆的聚合首先从西昆仑-阿尔金-北祁连-北秦岭-桐柏开始,所反映的变质作用是早古生代的蓝片岩相和榴辉岩相变质岩相伴产出,表明经历了从洋壳俯冲到陆陆碰撞的演化过程。中国东部的南北大陆到印支期才最终汇聚,相应的变质作用以南部出现高压蓝片岩相、北部出现超高压的榴辉岩相变质带为特点,表明南方大陆向北方大陆的俯冲。超高压带内普遍含有柯石英,意味着大规模的陆壳深俯冲。华北克拉通和塔里木克拉通以北的中亚造山带内存在多条从早古生代到晚古生代的变质带和多条蓝片岩相变质带,表明这是一个由多阶段、多条变质带组成的造山区。但是其变质作用的空间和时间演化还有待进一步深入。青藏高原变质带具有北老南新的空间分布特点,最北部的印支期龙木错-双湖-澜沧江变质带反映了原特提斯和古特提斯洋的碰撞拼合过程,北部的燕山期班公湖-怒江变质带和中部的喜马拉雅早期雅鲁藏布江变质带反映了新特提斯洋的两次碰撞拼合过程,南部喜马拉雅晚期的高喜马拉雅变质带反映了印度板块向北俯冲导致的高原快速隆升过程。  相似文献   

10.
On the Geotectonics of Southern China   总被引:10,自引:0,他引:10  
The tectonic nature of southern China has changed again and again in the Phanerozoic. In the Caledoniancycle, there existed three tectonic units——the Yangtze paraplatform, Indosinian-South China Sea paraplatformand Caledonian South China fold belt, of which the last unit is not a collisional orogenic belt but ascissor-shaped aulacogen-type geosyncline opening towards Yunnan and Vietnam. In the Indosinian cycle,South China belonged to the Tethyan tectonic domain, and no abyssal oceanic basin existed there. Since theLate Triassic, especially in the Yanshanian orogenic stage, it became a component part of the peri-Pacificcontinental-margin activation belt of eastern Asia. No Alpinc-type orogenic belt occurs in the interior of thecontinent of southern China.  相似文献   

11.
塔里木盆地断裂构造分期差异活动及其变形机理   总被引:9,自引:3,他引:6  
本文的目的是探讨塔里木盆地断裂构造分期差异活动过程及其变形机理.在地震剖面解释、钻井资料和地质资料综合分析的基础上,通过编制塔里木盆地不同时期断裂系统图,提出控制塔里木盆地断裂构造形成和演化主要构造活动期次为:加里东早期、加里东中期、加里东晚期-海西早期、海西晚期、印支期、燕山期和喜马拉雅期.加里东早期断裂活动受伸展环境制约,沿先存基底断裂带形成张性正断层.加里东中期、加里东晚期-海西早期断裂活动以逆冲作用为主,在塔东、塔中、塘古巴斯、巴楚和麦盖提地区最为发育.海西晚期断裂活动也是以逆冲作用为特征,并从早期断裂强烈活动的塔中、塘古巴斯、玛东等地区,迁移到塔北隆起和东部地区.印支、燕山和喜马拉雅期,前陆地区断裂构造发育,形成叠瓦冲断带、褶皱-冲断带、双重构造、盐相关构造等;但在盆内稳定区,断裂构造不发育,活动性弱.古生代断裂构造发育分布的控制机理,主要与区域大地构造环境的变化和构造转换、先存基底断裂带、大型区域性不整合、滑脱带等要素密切相关.区域大地构造环境的变化和构造转换主要受控于塔里木周缘洋盆的伸展裂解、俯冲消减和洋盆闭合的时限和强度.先存基底断裂带或基底构造软弱带往往控制着后期断裂的发育位置和展布方向.大型区域性不整合和滑脱带控制着断裂构造的发育和分布层位.中、新生代断裂构造发育分布的控制机理,与区域大地构造环境及其构造转换、区域构造位置有关.中、新生代塔里木断裂构造主要分为三种环境,即前陆构造环境、盆内稳定区构造环境和隆升剥蚀区构造环境.盆内稳定区断裂构造不发育,活动性较弱.中、新生代断裂构造主体发育在前陆构造环境中,主要受控于周缘造山带强烈隆升、挤压冲断、走滑-逆冲或逆冲-走滑作用,同时与喜马拉雅晚期盆-山耦合作用及滑脱层的发育有关.  相似文献   

12.
Granitoids and metamorphic rocks of the Baidarik basement block of the Dzabkhan microcontinent are studied in terms of geology, geochronology (U-Pb dating of zircon microfractions and individual grains) and Nd isotopic-geochemical systematics. As is established, the formation history of metamorphic belt (disthene-sillimanite facies) in junction zone of the Baidarik block and Bayankhongor zone of the Late Riphean (~665 Ma) ophiolite association characterizes development of the Vendian (~560–570 Ma) active continental margin. The high-P metamorphic rocks of that time span evidence formation of structures with the Earth’s crust of considerable thickness. In Central Asia, events of the Vendian low-gradient metamorphism are established also in the Tuva-Mongolian massif, Kan block of the East Sayan Mountains, and South Chuya inlier of the Caledonides in the Altai Mountains. Based on these data, it is possible to distinguish the Late Baikalian stage in development of the Early Caledonian superterrane of Central Asia, which antedated the subsequent evolution of this structure during the Late Cambrian-Ordovician. The high-gradient metamorphism that affected most intensively the southeastern part of the Baidarik block can be correlated with the Early Paleozoic (525–540 Ma) evolution of active continental margin and associated development of the Vendian oceanic basins and island arcs of the Ozernaya zone.  相似文献   

13.
The continental block of the Earth’s crust was separated in the Paleozoic into two unequal parts: (i) huge supercontinent Gondwana located at high latitudes of the Southern Hemisphere and (ii) several small continents (Laurentia, Baltica, Siberia, Kazakhstan, South Chinese block, and North Chinese blocks) located at low latitudes south and north of the equator. Morphology of the Paleozoic seas between these blocks was subjected to changes (expansion and contraction) with time. Their closure was provoked by several orogenic (Taconian, Caledonian, Acadian, and Hercynian) phases. At present, relicts of these ancient orogenic structures extend as belts along the boundaries of many petroliferous basins and record the position of past seas. One of the oldest oil-and-gas deposition belts, which appeared in southern Iapetus in the Precambrian/Phanerozoic, was confined to a passive margin of Gondwana. In the Early Paleozoic, small blocks of the continental crust (Avalonia, Armorica, Perunica, Iberica, and others) were successively detached from the passive margin. This process was accompanied by the opening of a new deep basin (Rheic Sea or Paleotethys). The Uralian and Central Asian paleoseas were formed approximately at the same time. Many petroliferous basins existing now were located in the Paleozoic at the margins of these paleoseas.  相似文献   

14.
The history of the Vendian–Early Paleozoic formation of protoliths of continental crust in the Gorny Altai segment of the Central Asian fold belt is considered, and their composition, isotopic characteristics, and formation mechanisms are estimated. We have established two stages of crust-forming processes in Gorny Altai: Early and Late Caledonian, with the different structures of formed geoblocks and nature and compositions of crustal protoliths. At the Early Caledonian stage, fragments of oceanic lithosphere of basic composition (MORB, OIT, OIB) (TNd(DM-2st) = 0.65–1.1 Ga) formed, as well as island arcs with andesite-basaltic and andesitic protoliths with low contents of incompatible elements (TNd(DM-2st) = 0.7–0.9 Ga). At the Late Caledonian stage, the redistribution of the substance of these blocks and the external supply of material led to the formation of heterogeneous crust of turbidite basins with an oceanic basement and andesite-dacitic upper-crustal protoliths (TNd(DM-2st) varies from 0.8–0.9 Ga in the framing of the volcanic arc of Altaids to 1.4–1.6 Ga at the boundary of the Altai–Mongolian microcontinent).  相似文献   

15.
中国三叠纪大陆成矿体系是指在三叠纪(250~205 Ma)时期发生于大陆环境(包括大陆边缘)的成矿作用及其成矿地质要素构成的整体。分布在阿尔泰、北山、华北地块北缘和南缘、辽吉、鄂尔多斯、西南三江、羌塘、上扬子、湘鄂赣、云开-雷琼等矿集区的10多个主要矿床成矿系列(亚系列)可大致构筑起中国三叠纪的大陆成矿体系。相对于燕山期而言,印支期的成矿作用较弱,即使是印支运动强烈的西南三江-松潘甘孜地区已知三叠纪矿产资源尚少,找矿潜力仍然很大,而以往被认为形成于海西期的一些矿床(如阿尔泰的大喀拉苏、小喀拉苏等伟晶岩型稀有金属矿床)或被认为形成于燕山期的一些矿床(如辽吉裂谷带的小佟家堡子金矿和高家堡子银矿),经近年来同位素年代学的研究证明实际上形成于印支期,或者经历了印支旋回的成矿过程。在三叠纪的整个演化历程中,华北与华南两大块体拼合在一起,华北陆块南缘和北缘的拼合带及各类古构造再度活化,成为内生矿产的主要成矿带;华北的鄂尔多斯等大陆盆地及华南的山间小盆地为煤炭、油气、膏盐等沉积矿产的形成创造了条件;西南特提斯构造域的演化经历了从海洋到陆地的构造大变局,尤其是印支运动为中国中生代以来大陆格局的形成起到了重要作用,也为四川盆地等盆山格局的形成及其矿产资源的富集奠定了基础。因此,三叠纪成矿系统不仅可以为构造改造提供综合依据,也可以为成矿预测提供理依据。  相似文献   

16.
福建省古生代至中生代大地构造演化的格架   总被引:10,自引:0,他引:10  
边效曾  褚志贤 《福建地质》1993,12(4):280-291
松溪—长汀断裂带和福州—永定断裂带是控制福建古生代及以后大地构造演化的两条北东东向的断裂带。地质地球化学资料表明,前者是加里东期的地体碰撞带,沿线分布了构造混杂岩、变质超基性岩体、具有角闪岩相和中压矿物的变质岩以及同碰撞型花岗岩体,以后又发育为A型俯冲带;后者是发育于加里东构造层之上的海西期张裂带,在形成海西期的福州—永定海峡的同时,产生了石炭纪海底双模式火山岩及层控铁矿,印支期的碰撞活动使海峡封闭并发育A型俯冲作用。由此,北东东向的松溪—长汀断裂带和福州—永定断裂带可以将福建划分为三个古生代的构造地层地体:闽北地体、闽中地体和闽东南地体。通过对福建省古生代地体构造分析、古地磁测量及古地理重建,展现在我们眼前是:华南(其中包括福建)在古生代中期从冈瓦纳大陆分离出来后,横渡特提斯海,在古生代末至中生代初到达劳亚大陆,与中朝板块碰撞引起了福建地体间强烈的造山运动。  相似文献   

17.
任纪舜  朱俊宾  李崇  刘仁燕 《地球科学》2019,44(5):1476-1486
国内外一些学者认为秦岭是一个印支碰撞造山带.但迄今为止,秦岭尚未发现三叠纪或古生代延续到三叠纪的洋盆存在的任何痕迹.秦岭泥盆系-三叠系为滨、浅海相沉积,没有远洋沉积,更没有镁铁质和超镁铁质岩石及与之密切相关的放射虫硅质岩组成的蛇绿岩套.泥盆系与下伏地质体之间有一个清楚的区域性角度不整合.商丹断裂并不是印支期,而是加里东期的板块缝合带;其两侧,中朝板块南缘和扬子板块北缘均有十分清楚的加里东造山作用的记录.沉积于扬子板块北缘的中上泥盆统刘岭群的放射性铅同位素组成与北秦岭相近,碎屑锆石年龄谱系亦证明其物质主要来自中朝板块南缘的北秦岭造山带.所谓勉略印支缝合带中的勉略和三里岗蛇绿混杂岩中的镁铁质岩,同位素测年均为元古代之产物,后者又被南华系-震旦系沉积覆盖.所谓勉略缝合带,实为一区域性大断裂带.早古生代,其北侧属扬子板块北部被动边缘;南侧为扬子板块核心部分的扬子准地台(小克拉通).所以,秦岭的印支造山作用,并不是洋盆消失后的陆陆碰撞造山作用,而是海盆消失后的中朝与扬子2个小陆块间逆冲-叠覆造山作用.作为秦岭东延的大别山超高压变质带被认为是秦岭印支碰撞造山的重要证据之一,但大别山超高压变质岩是在造山作用过程中动态超高压条件下形成的,仅用简单的静岩压力来计算其形成深度,显然是不符合实际情况的.野外地质观察、构造地质学、变质岩石学、同位素地质学、地球化学、地球物理学以及物理实验等方面的实际资料和研究结果均说明超高压变质作用并不是在上地幔而是在地壳内进行的.南秦岭-大别山的地壳构造层次,上地壳自上而下依次为:未变质的沉积岩层、绿帘-蓝片岩层、高压变质岩层、超高压变质岩层;下地壳为未卷入超高压变质作用的麻粒岩相-高角闪岩相变质杂岩.含柯石英的超高压单位只是位于上地壳下部的厚约10~12km的席状构造岩片.初步认为上地壳这一从低压到高压再到超高压的构造系统,是印支造山期间,南秦岭-大别山的上地壳以下地壳顶部为主剪切滑动面,多层次剪切作用造成的.上地壳下部的超高压变质岩,则可能是强烈剪切引起的频繁地震的震源区瞬时超高压作用的结果.  相似文献   

18.
Abstract The Shangdan fault in the Qinling Orogenic Belt of China is an important boundary between the Caledonian North Qinling Fold Belt and the Hercynian South Qinling Fold Belt. In the Danfeng area, the fault zone strikes WNW–ESE and comprises four strongly deformed zones and three weakly deformed domains parallel to each other. The fault zone has a complex history of multiple deformation and each domain has a different tectonic style that was formed at different stages of the deformation.
The rocks exposed in the weakly deformed domains belong to the Qinling, Danfeng and Liuling Groups. In this paper, the mineral chemistry and mineral assemblages are used to infer the metamorphic conditions and the P–T paths of these units. The metamorphic units in and near the fault zone have different metamorphic conditions and histories that are correlated with the tectonic evolution of the fault zone. Caledonian–Hercynian uplift and southward thrusting of the Proterozoic Qinling Group, over the Danfeng and the Liuling Groups, produced the main metamorphic and tectonic features of the fault zone. Folding of both the Liuling Group and the thrust faults during the Hercynian–Indosinian was accompanied by northward thrusting.  相似文献   

19.
序言前陆盆地是由板块碰撞引起侧向挤压,进而形成冲断推覆体(thrust mass)加载于大陆边缘,使大陆地壳周缘前陆隆起(peripheral forebulge)形成的一种不对称盆地,它的一侧与发育周缘前陆隆起的克拉通大陆为邻,另一侧靠近冲断推覆体。靠近冲断推覆体侧的一端主要发育陆源碎屑沉积,而靠近克拉通大陆的一边则发育成为碳酸盐台地。由于碰撞后大陆岩石圈的持续俯冲,造成冲断推覆体跨过先前被动大陆边缘,进而向克拉通陆内迁移发展,致使碳酸盐台地最终全被陆源碎屑掩埋。最初,冲断推覆体位于海平面之下,随着冲断推覆体叠加而成山链,加载于大陆边缘薄的外部地壳之上,沿缝合线形成一个深而狭长的边缘海槽地,接受陆源泥和深海沉积物沉  相似文献   

20.
An attempt is made to characterize an assembly of Arctic tectonic units formed before the opening of the Arctic Ocean. This assembly comprises the epi-Grenville Arctida Craton (a fragment of Rodinia) and the marginal parts of the Precambrian Laurentia, Baltica, and Siberian cratons. The cratons are amalgamated by orogenic belts (trails of formerly closed oceans). These are the Late Neoproterozoic belts (Baikalides), Middle Paleozoic belts (Caledonides), Permo-Triassic belts (Hercynides), and Early Cretaceous belts (Late Kimmerides). Arctida encompasses an area from the Svalbard Archipelago in the west to North Alaska in the east. The Svalbard, Barents, Kara, and other cratons are often considered independent Precambrian minicratons, but actually they are constituents of Arctida subsequently broken down into several blocks. The Neoproterozoic orogenic belt extends as a discontinuous tract from the Barents-Ural-Novaya Zemlya region via the Taimyr Peninsula and shelf of the East Siberian Sea to North Alaska as an arcuate framework of Arctida, which separates it from the Baltica and Siberian cratons. The Caledonian orogenic belt consisting of the Scandian and Ellesmerian segments frames Arctida on the opposite side, separating it from the Laurentian Craton. The opposite position of the Baikalian and Caledonian orogenic belts in the Arctida framework makes it possible to judge about the time when the boundaries of this craton formed as a result of its detachment from Rodinia. The Hercynian orogenic belt in the Arctic Region comprises the Novozemel’sky (Novaya Zemlya) and Taimyr segments, which initially were an ending of the Ural Hercynides subsequenly separated by a strike-slip fault. The Mid-Cretaceous (Late Kimmerian) orogenic belt as an offset of Pacific is divergent. It was formed under the effect of the opened Canada Basin and accretion and collision at the Pacific margins. The undertaken typification of pre-Late Mesozoic tectonic units, for the time being debatable in some aspects, allows reconstruction of the oceanic basins that predated the formation of the Arctic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号