首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ferromanganese crusts from the Atlantic, Indian and Pacific Oceans record the Nd and Pb isotope compositions of the water masses from which they form as hydrogenous precipitates. The10Be/9Be-calibrated time series for crusts are compared to estimates based on Co-contents, from which the equatorial Pacific crusts studied are inferred to have recorded ca. 60 Ma of Pacific deep water history. Time series of ɛNd show that the oceans have maintained a strong provinciality in Nd isotopic composition, determined by terrigenous inputs, over periods of up to 60 Ma. Superimposed on the distinct basin-specific signatures are variations in Nd and Pb isotope time series which have been particularly marked over the last 5 Ma. It is shown that changes in erosional inputs, particularly associated with Himalayan uplift and the northern hemisphere glaciation have influenced Indian and Atlantic Ocean deep water isotopic compositions respectively. There is no evidence so far for an imprint of the final closure of the Panama Isthmus on the Pb and Nd isotopic composition in either Atlantic or Pacific deep water masses.  相似文献   

2.
Pb, Sr AND Nd-ISOTOPIC COMPOSITIONS OF PALEO AND NEO-TETHYAN OCEANIC CRUSTS IN THE EASTERN TETHYAN DOMAIN: IMPLICATION FOR THE INDIAN OCEAN-TYPE ISOTOPIC SIGNATURE  相似文献   

3.
New data on the Hf, Pb, and Nd isotopes of the mafic rocks of various ages from Kunashir Island were used to address the nature of the sub-arc mantle of the southern segment of the Kuril island arc. At least since Late Cenozoic, its isotopic characteristics have been the MORB-type mantle of the Indian Ocean. Its boundary with the mantle reservoir of the Pacific MORB-type coincided probably with the Kuril-Kamchatka Trench.  相似文献   

4.
内蒙古中部发育的三条蛇绿岩带是华北板块和西伯利亚板块之间的缝合带。本文系统研究了其中的温都尔庙和巴彦敖包-交其尔两个蛇绿岩带中变质玄武岩的元素和 Sr、Nd、Pb 同位素地球化学。苏右旗温都尔庙碱性玄武岩为轻稀土富集型;岩石具有板内和大陆裂谷区玄武岩的特征,可能代表了600Ma 左右,温都尔庙地区开始发育的新洋盆。采自苏左旗的巴彦敖包-交其尔玄武岩分为两类,一类呈现轻稀土富集型,呈洋岛玄武岩特征;另一类具有明显的 Nb、Ta 负异常,显示大洋岛弧玄武岩特征,洋岛玄武岩的存在表明古亚洲洋曾经发育洋盆,大洋岛弧玄武岩的存在表明古亚洲洋内部有大洋岩石圈之间的俯冲。将本文的古亚洲洋洋岛玄武岩与中国西南地区的特提斯洋岛玄武岩进行系统的元素和同位素地球化学特征对比表明,古亚洲洋的洋岛玄武岩显示高 U/Pb(HU)和北大西洋和太平洋省的特征,而特提斯洋岛玄武岩属于印度洋省。这些说明古亚洲洋地幔域与特提斯地幔域是两个独立的构造域,它们代表了长期演化的两个不同的地幔地球化学域。  相似文献   

5.
Rb, Sr, Sm, Nd, U, and Pb contents and Sr, Nd, and Pb isotopic composition were determined in tholeiite and subalkaline basalts (in both whole-rock samples and individual minerals) from the Franz Josef Land Archipelago. Isotopic data obtained for the Arctic basin are similar to those for islands from the Pacific, Atlantic, and Indian Oceans. The assimilation of crustal (sedimentary) rocks by primary depleted material makes isochron determination of basalt age difficult or impossible. The subalkaline basalts (basaltic andesites) were presumably formed by the metasomatic introduction of incompatible elements in tholeiitic basalts and, only partially, through crustal contamination and fractional crystallization.  相似文献   

6.
The DUPAL anomaly, a radiogenic isotope anomaly discovered in the Indian Ocean mantle, has been interpreted as due to a large-scale mantle heterogeneity. To provide new constraints on the DUPAL origin, we analyzed isotope ratios of Li, Sr, and Nd in fresh N-MORB glasses recovered from the Rodrigues Triple Junction in the Indian Ocean, and from the North Atlantic. The Li isotopic compositions of the Indian Ocean DUPAL N-MORBs were comparable to those of the North Atlantic non-DUPAL N-MORBs. The source of the DUPAL signature in Indian Ocean MORBs and the E-MORB-type enriched mantle source have quite different Li isotopic compositions. The 143Nd/144Nd values of both sources are significantly lower than those of the North Atlantic N-MORBs. The δ7Li values of most oceanic island basalts with similar low 143Nd/144Nd signatures are also higher than those of the North Atlantic N-MORBs, except for several Koolau lavas. The Li isotope results support the recent proposal that significant amounts of recycled lower continental crust might produce the radiogenic isotope signatures of the Indian Ocean DUPAL source.  相似文献   

7.
《Geochimica et cosmochimica acta》1999,63(11-12):1689-1708
We compare the time series of major element geochemical and Pb- and Nd-isotopic composition obtained for seven hydrogenous ferromanganese crusts from the Atlantic, Indian, and Pacific Oceans which cover the last 60 Myr.Average crust growth rates and age–depth relationships were determined directly for the last about 10 Myr using 10Be/9Be profiles. In the absence of other information these were extrapolated to the base of the crusts assuming constant growth rates and constant initial 10Be/9Be ratios due to the lack of additional information. Co contents have also been used previously to estimate growth rates in Co-rich Pacific and Atlantic seamount crusts (Puteanus and Halbach, 1988). A comparison of 10Be/9Be- and Co-based dating of three Co-rich crusts supports the validity of this approach and confirms the earlier chronologies derived from extrapolated 10Be/9Be-based growth rates back to 60 Ma. Our data show that the flux of Co into Co-poor crusts has been considerably lower. The relationship between growth rate and Co content for the Co-poor crusts developed from these data is in good agreement with a previous study of a wider range of marine deposits (Manheim, 1986). The results suggest that the Co content provides detailed information on the growth history of ferromanganese crusts, particularly prior to 10–12 Ma where the 10Be-based method is not applicable.The distributions of Pb and Nd isotopes in the deep oceans over the last 60 Myr are expected to be controlled by two main factors: (a) variations of oceanic mixing patterns and flow paths of water masses with distinct isotopic signatures related to major paleogeographic changes and (b) variability of supply rates or provenance of detrital material delivered to the ocean, linked to climate change (glaciations) or major tectonic uplift. The major element profiles of crusts in this study show neither systematic features which are common to crusts with similar isotope records nor do they generally show coherent relationships to the isotope records within a single crust. Consequently, any interpretation of time series of major element concentrations of a single crust in terms of paleoceanographic variations must be considered with caution. This is because local processes appear to have dominated over more basin-wide paleoceanographic effects. In this study Co is the only element which shows a relationship to Pb and Nd isotopes in Pacific crusts. A possible link to changes of Pacific deep water properties associated with an enhanced northward advection of Antarctic bottom water from about 14 Ma is consistent with the Pb but not with the Nd isotopic results. The self-consistent profiles of the Pb and Nd isotopes suggest that postdepositional diagenetic processes in hydrogenous crusts, including phosphatization events, have been insignificant for particle reactive elements such as Pb, Be, and Nd. Isotope time series of Pb and Nd show no systematic relationships with major element contents of the crusts, which supports their use as tracers of paleo-seawater isotopic composition.  相似文献   

8.
The mantle sources of Tethyan basalts and gabbros from Iran,Tibet, the eastern Himalayas, the seafloor off Australia, andpossibly Albania were isotopically similar to those of present-dayIndian Ocean ridges and hotspots. Alteration-resistant incompatibleelement compositions of many samples resemble those of ocean-ridgebasalts, although ocean-island-like compositions are also present.Indian-Ocean-type mantle was widespread beneath the Neotethysin the Jurassic and Early Cretaceous, and present beneath atleast parts of the Paleotethys as long ago as the Early Carboniferous.The mantle beneath the Indian Ocean today thus may be largely‘inherited’ Tethyan mantle. Although some of theTethyan rocks may have formed in intra-oceanic back-arcs orfore-arcs, contamination of the asthenosphere by material subductedshortly before magmatism cannot be a general explanation fortheir Indian-Ocean-ridge-like low-206Pb/204Pb signatures. Supplyof low-206Pb/204Pb material to the asthenosphere via plumesis not supported by either present-day Indian Ocean hotspotsor the ocean-island-like Tethyan rocks. Old continental lowercrust or lithospheric mantle, including accreted, little-dehydratedmarine sedimentary material, provides a potential low-206Pb/204Pbreservoir only if sufficient amounts of such material can beintroduced into the asthenosphere over time. Anciently subductedmarine sediment is a possible low-206Pb/204Pb source only ifthe large increase of U/Pb that occurs during subduction-relateddewatering is somehow avoided. Fluxing of low-U/Pb fluids directlyinto the asthenosphere during ancient dewatering and introductionof ancient pyroxenitic lower-crustal restite or basaltic lower-arccrust into the asthenosphere provide two other means of creatingTethyan–Indian Ocean mantle, but these mechanisms, too,have potentially significant problems. KEY WORDS: Indian Ocean; mantle geochemical domains; ophiolites; Tethyan Ocean  相似文献   

9.
A comparison of new and published geochemical characteristics of magmatism in the western and eastern Indian Ocean at the initial and recent stages of its evolution revealed several important differences between the mantle sources of basaltic melts from this ocean.
  1. The sources of basalts, from ancient rises and from flanks of the modern Central Indian Ridge within the western Indian Ocean contain an enriched component similar in composition to the source of the Réunion basalts (with radiogenic Pb and Sr and unradiogenic Nd), except for basalts from the Comores Islands, which exhibit a contribution from an enriched HIMU-like component.
  2. The modern rift lavas of spreading ridges display generally similar geochemical compositions. Several local isotopic anomalies are characterized by the presence of an EM2-like component. However, two anomalous areas with distinctly different enriched mantle sources were recognized in the westernmost part of the Southwestern Indian Ridge (SWIR). The enriched mantle source of the western SWIR tholeiites in the vicinity of the Bouvet Triple Junction has the isotopic ratios indicating a mixture of HIMU + EM2 in the source. The rift anomaly distinguished at 40° E displays the EM1 signature in the mantle source, which is characterized by relatively low 206Pb/204Pb (up to 17.0) and high 207Pb/204Pb, 208Pb/204Pb and 87Sr/86Sr. This source may be due to mixing with material from the continental lithosphere of the ancient continent Gondwana. The material from this source can be distinguished in magmas related to the Mesozoic plume activity in Antarctica, as well as in basalts from the eastern Indian Ocean rises, which were formed by the Kerguelen plume at 100–90 Ma.
  3. The geochemical heterogeneities identified in the ancient and present-day magmatic products from the western and eastern Indian Ocean are thought to reflect the geodynamic evolution of the region. In the eastern part of the ocean, the interaction of the evolving Kerguelen plume with the rift zones produced magmas with specific geochemical characteristics during the early opening of the ocean; such a dispersion of magma composition was not recognized in the western part of the ocean.
  相似文献   

10.
 New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacific, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafloor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacific Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower ɛNd(T) for a given ɛSr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Δ7/4 Pb (5.3–9.3) and D8/4 Pb (46.3–68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type (“normal”) mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Nd(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacific region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources. Received: 23 May 1995/Accepted: 12 October 1995  相似文献   

11.
Cenozoic lamprophyres (minettes, spessartites, kersantite) from the Western Alps, northern Italy, represent small volume, mafic melts with high Mg#s and high Ni and Cr contents. All the lamprophyres show light REE enrichment, high incompatible element contents, and Ta, Ti and Nb troughs on chondrite-normalized diagrams. Age-corrected 87Sr/86Sr isotopic ratios (assuming t = 30 Ma) are highly variable and range from 0.70590 to 0.71884; 143Nd/144Nd ratios range from 0.51203 to 0.51242. Pb isotopic ratios are: 206Pb/204Pb = 18.669–18.895, 207Pb/204Pb = 15.605–15.689 and 208Pb/204Pb = 38.224–39.134. 87Sr/86Sr ratios show a negative correlation with 143Nd/144Nd, and a positive correlation with K, Ba, and Rb as well as with Ti, Th, Ta, Nb and Zr abundances. The primitive nature of the lamprophyres, coupled with their enriched incompatible trace element and isotopic signatures, suggest derivation from a metasomatized upper mantle source. Linear arrays in isotope space and elemental data plots suggest mixing between two distinct end-members in the Italian mantle; an enriched end-member that is isotopically similar to pelagic sediments, and a significantly less enriched end-member that approaches Bulk Earth values. New isotopic data indicate that the mantle source(s) of the lamprophyres from the Western Alps contain a very high proportion of the enriched end-member. The geochemical signature of the enriched end-member is attributed to fluids or melts derived from pelagic sediments subducted during the closure of the Tethyan Ocean in the late Cretaceous to early Tertiary.  相似文献   

12.
The Lead, Neodymium and Strontium Isotopic Structure of Ocean Ridge Basalts   总被引:2,自引:5,他引:2  
Pb-, Nd- and Sr-isotope compositions and U, Pb, Sm, Nd, Rb andSr concentrations are reported for samples of basaltic glassand altered substrates from spreading centres in the Atlantic,Indian and Pacific Oceans. Correlations are shown to exist between208, 207, 206Pb/204Pb ratios, and 87Sr/86Sr and 143Nd/144Ndratios in basaltic glasses, but they are dominated by samplesfrom the Mid-Atlantic Ridge. Whereas basaltic glasses from EastPacific spreading centres exhibit smaller variability in Pb,Sr and Nd isotope compositions than Atlantic samples, seamountsamples from the E. Pacific have a similar range of Pb-isotopecompositions as Mid-Atlantic Ridge glasses. Contamination ofbasaltic magmas by altered oceanic crust or sediments is notconsidered to be of prime importance in determining the isotopicstructures of MORB glasses. It is proposed that the isotopicheterogeneity in the mantle beneath the Pacific and Atlanticis similar, but magma generation processes associated with fastspreading ridges of the East Pacific more effectively eradicateheterogeneities in the erupted basalts. Alteration of oceanic crust is further investigated with respectto the relative response of the U–Pb, Sm–Nd andRb–Sr systems, and the role of recycled oceanic crustin producing the mantle heterogeneities is evaluated.  相似文献   

13.
新生代古海洋Nd同位素演化及其古环境意义   总被引:2,自引:1,他引:2       下载免费PDF全文
本文对当前在新生代古海洋Nd同位素演化及其古环境意义研究方面的最新成果进行了简明的阐述,说明在巴拿马海峡于5-3Ma关闭前后,太平洋和大西洋洋流的变化与其海水Nd同位素的变化相对应。但同期的印度洋Nd同位素没有明显变化,其原因需要进一步研究。  相似文献   

14.
New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galápagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galápagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206Pb/204Pb and only slightly more radiogenic 207Pb/204Pb and 208Pb/204Pb isotope ratios than the basalts. Altered samples from the subducting Galápagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galápagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galápagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galápagos Hotspot ∼100 km beyond the morphological hotspot track.  相似文献   

15.
Based on geological and isotope geochemical data obtained during the past decade, the eastern Sikhote Alin volcanic belt can be considered as a polygenic structure with spatially superimposed magmatic complexes of different geodynamic stages. Only Late Cretaceous intermediate and silicic volcanics enriched in LILE and depleted in HFSE can be interpreted as typical subduction complexes. Cenozoic lavas of mainly basic composition were formed after the termination of active subduction under complex dynamic conditions of the rearrangement of eastern Eurasia owing to the collision with the Indian plate. The eruption of Eocene-Oligocene-early Miocene basalts corresponded to the transform continental margin environment, rupture of an ancient subducted slab, and upwelling of hot depleted oceanic asthenosphere of the Pacific MORB-type into the Asian subcontinental lithosphere with EMII-like isotopic characteristics. The late Miocene-Pliocene magmatic activity of the eastern Sikhote Alin showed an intraplate character, but the composition of erupted magmas was strongly affected by previous tectonomagmatic events: subduction of different ages and opening of the Sea of Japan Basin. The distinct EMI isotopic signature of low-potassium plateau basalts, which is not observed in the lavas of earlier stages of volcanic belt evolution, suggests that the continental asthenosphere contributed to magma formation, and the direction of mantle flows changed owing to the formation of a new subduction zone.  相似文献   

16.
The Tabar–Lihir–Tanga–Feni (TLTF) islands of Papua New Guinea mainly comprise high-K calc-alkaline and silica undersaturated alkaline rocks that have geochemical features typical for subduction-related magmatism. Numerous sedimentary, mafic, and ultramafic xenoliths recovered from Tubaf seamount, located on the flank of Lihir Island, provide a unique opportunity to study the elemental and isotopic composition of the crust and mantle wedge beneath the arc and to evaluate their relationships to the arc magmatism in the region. The sedimentary and mafic xenoliths show that the crust under the islands is composed of sedimentary sequences and oceanic crust with Pacific affinity. A majority of the ultramafic xenoliths contain features indicating wide spread metasomatism in the mantle wedge under the TLTF arc. Leaching experiments reveal that the metasomatized ultramafic xenoliths contain discrete labile phases that can account for up to 50% or more of elements such as Cu, Zn, Rb, U, Pb, and light REE (rare-earth elements), most likely introduced in the xenoliths via hydrous fluids released from a subducted slab. The leaching experiments demonstrated that the light REE enrichment pattern can be more or less removed from the metasomatized xenoliths and the residual phases exhibit REE patterns that range from flat to light REE depleted. Sr–Nd isotopic data for the ultramafic residues show a coupled behavior of increasing 87Sr/86Sr with decreasing 143Nd/144Nd ratios. The labile phases in the ultramafic xenoliths, represented by the leachates, show decoupling between Sr and Nd with distinctly more radiogenic 87Sr/86Sr than the residues. Both leachates and residues exhibit very wide range in their Pb isotopic compositions, indicating the involvement of three components in the mantle wedge under the TLTF islands. Two of the components can be identified as Pacific Oceanic mantle and Pacific sediments. Some of the ultramafic samples and clinopyroxene separates, however, exhibit relatively low 206Pb/204Pb at elevated 207Pb/204Pb suggesting that the third component is either Indian Ocean-type mantle or Australian subcontinental lithospheric mantle. Geochemical data from the ultramafic xenoliths indicate that although the mantle wedge in the area was extensively metasomatized, it did not significantly contribute to the isotopic and incompatible trace element compositions of TLTF lavas. Compared to the mantle samples, the TLTF lavas have very restricted Pb isotopic compositions that lie within the Pacific MORB range, indicating that magma compositions were dominated by melts released from a stalled subducted slab with Pacific MORB affinity. Interaction of slab melts with depleted peridotitic component in the mantle wedge, followed by crystal fractionation most likely generated the geochemical characteristics of the lavas in the area. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The Zedong ophiolite is the largest ophiolite massif east of Dazhuqu in the Yarlung Zangbo Suture Zone in the southern Tibetan Plateau. However, its age, geodynamic setting and relationship to the Xigaze ophiolite remain controversial. New zircon U–Pb ages, whole-rock geochemical and Nd–Pb isotopic data from ophiolitic units provide constraints on the geodynamic and tectonic evolution of the Zedong ophiolite. U–Pb zircon geochronology of dolerite lavas and late gabbro–diabase dikes yield weighted mean ages of 153.9 ± 2.5 Ma and 149.2 ± 5.1 Ma, respectively. Strong positive εNd(t) and positive Δ7/4Pb and Δ8/4Pb values indicate derivation from a highly depleted mantle source with an isotopic composition similar to that of the Indian MORB-type mantle. The geochemistry of ophiolitic lavas and early dikes are analogous to typical island arc tholeiites whereas late dikes are similar to boninites. The geochemistry of these rock types suggests multi-stage partial melting of the mantle and gradually enhanced subduction influences to the mantle source through time. Combined with the MORB-like 162.9 ± 2.8 Ma Luobusha ophiolitic lavas, we suggest that the Luobusha lavas, Zedong lavas and early dikes originated in an infant proto-arc setting whereas late dikes in the Zedong ophiolite originated in a forearc setting. Together, they represent a Neo-Tethyan subduction initiation sequence. The Late Jurassic intra-oceanic proto-arc to forearc setting of the Zedong ophiolite contrasts with the continental margin forearc setting for the Xigaze ophiolite, which suggests a laterally complex geodynamic setting for ophiolites along the Yarlung Zangbo Suture Zone.  相似文献   

18.
The major and trace element and Pb–Sr–Nd isotopic compositions of Quaternary mafic lavas from the northern Ryukyu arc provide insights into the nature of the mantle wedge and its tectonic evolution. Beneath the volcanic front in the northern part of the arc, the subducted slab of the Philippine Sea Plate bends sharply and steepens at a depth of ∼80 km. Lavas from the volcanic front have high abundances of large ion lithophile elements and light rare earth elements relative to the high field strength elements, consistent with the result of fluid enrichment processes related to dehydration of the subducting slab. New Pb isotopic data identify two distinct asthenospheric domains in the mantle wedge beneath the south Kyushu and northern Ryukyu arc, which, in a parallel with data from the Lau Basin, appear to reflect mantle with affinities to Indian and Pacific-type mid-ocean ridge basalt (MORB). Indian Ocean MORB-type mantle, contaminated with subducted Ryukyu sediments can account for the variation of lavas erupted on south Kyushu, and probably in the middle Okinawa Trough. In contrast, magmas of the northern Ryukyu volcanic front appear to be derived from sources of Pacific MORB-type mantle contaminated with a sedimentary component. Along-arc variation in the northern Ryukyus reflects increasing involvement of a sedimentary component to the south. Compositions of alkalic basalts from the south Kyushu back-arc resemble intraplate-type basalts erupted in NW Kyushu since ∼12 Ma. We propose that the bending of the subducted slab was either caused by or resulted in lateral migration of asthenospheric mantle, yielding Indian Ocean-type characteristics from a mantle upwelling zone beneath NW Kyushu and the East China Sea. This model also accounts for (1) extensional counter-clockwise crustal rotation (∼4–2 Ma), (2) voluminous andesite volcanism (∼2 Ma), and (3) the recent distinctive felsic magmatism in the south Kyushu region. Received: 30 November 1999 / Accepted: 20 July 2000  相似文献   

19.
The Jiang Tso ophiolite,situated in the middle segment of the Bangong- Nujiang Suture Zone,is a part of the easternmost Qieli Lake ophiolite subzone and is close to the south of Pung Lake ophiolite. The rock association of Jiang Tso ophiolite is relatively complete and is mainly composed of metamorphic peridotite,gabbro and diabase. Comparing with N-MORB,the ophiolite is high in Mg and low in Ti,K,Na,P,and is depleted in Nb,Ta,Hf,Th and enriched in Rb,Sr and Ba. Geochemical characteristics of the Jiang Tso ophiolite indicate it is of a supra-subduction zone type formed in the spreading ridge of back arc basin. The SHRIMP U-Pb dating of zircons from the gabbro yielded a weighted average age of 188.1±4.1 Ma(MSWD=1.4),indicating the Jiang Tso ophiolite was formed in the late stage of early Jurassic. The Sr,Nd isotopic compositions show that the Tethyan mantle domain is the depleted mantle(DM),with enriched mantle domain II(EM II). They have the same Sr,Nd isotopic composition with the India Ocean MORB type.  相似文献   

20.
新疆准噶尔北缘北塔山组火山岩年龄及岩石成因   总被引:9,自引:7,他引:2  
对准噶尔北缘北塔山组辉石玄武岩进行了LA-ICP-MS锆石U-Pb 年龄测定, 获得了玄武岩的喷发年龄380.5±2.2Ma,表明北塔山组火山岩形成于中泥盆世。该地层火山岩中辉石玄武岩和无斑玄武岩的SiO2含量为47.55%~52.97%、Al2O3的含量为8.44%~20.00%、TiO2为0.5%~1.2%,MgO含量为2.8%~15.35%、CaO为3.98%~14.83%、FeOT为9.46%~19.23%,具有亚碱性拉斑玄武岩的特征。其微量元素显示富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损Nb、Ta和Ti,Eu异常不明显。它们具有极低的初始87Sr/86Sr同位素比值(0.703835~0.704337)和高的εNd(381Ma)值(+6.84~+12.3,t=381Ma)的亏损地幔源区特征。结合区域地质背景,北塔山组火山岩形成于与俯冲作用相关的构造环境,是准噶尔古洋盆于泥盆世时发生的俯冲-消减所引发的岛弧岩浆作用的地质记录。岩浆源区为被流体或沉积物熔体交代改造的地幔楔和软流圈地幔,不同类型的岩石系不同成分的原始岩浆经不同演化过程的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号