首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effects of the invasive polychaete Marenzelleria spp. on sediment processes and meiobenthos with an emphasis on free-living nematodes of the Vistula Lagoon (southern Baltic Sea) were investigated in a laboratory microcosm experiment. Marenzelleria occupies an open niche and its deep burying behaviour and feeding strategy represent a new function in the study area. Halos of oxidized sediment along Marenzelleria burrow walls indicated oxygen penetration into the burrows but the polychaete had no significant effect on porewater nutrient concentrations. The results showed, however, the density dependent effects of Marenzelleria on ammonium transport. An enhanced ammonium efflux was recorded at high polychaete densities (2000 ind. m 2) but not at low polychaete densities (300 ind. m 2).There was no observable impact of the polychaete on total meiobenthic numbers. There was, therefore, no indication that Marenzelleria caused meiofauna mortality. On the contrary, the polychaete significantly affected vertical distribution of meiofauna facilitating the colonization of deeper sediment depths and thus extending the habitat to be used by meiobenthos. In addition, Marenzelleria had a positive impact on the survival of turbellarians.Nevertheless, there was no effect of Marenzelleria on nematode assemblage structure and diversity, indicating that neither the physical presence nor the biological activity of the worm affected the nematode community. This suggests either 1. the limited impact of Marenzelleria on nematodes, resulting from the creation of simple, narrow and un-branched burrows, 2. poor response of nematode community resulting from their low abundance and diversity in the study area, or 3. the overriding role of the harsh chemical environment typical of sediments of the Vistula Lagoon, masking the effect of the bioturbator.  相似文献   

2.
Biogenic bottom features, animal burrows and biological activities interact with the hydrodynamics of the sediment–water interface to produce altered patterns of sediment erosion, transport and deposition which have consequences for large-scale geomorphologic features. It has been suggested that depending on the hydrodynamic status of the habitat, the biological activity on the bottom may have a variety of effects. In some cases, different bioturbation activities by the same organism can result in different consequences. The burrowing crab Neohelice granulata is the most important bioturbator at SW Atlantic saltmarshes and tidal plains. Because of the great variety of habitats that this species may inhabit, it is possible to compare its bioturbation effects between zones dominated by different hydrodynamic conditions. Internal marsh microhabitats, tidal creeks bottoms and basins, and open mudflats were selected as contrasting zones for the comparison on a large saltmarsh at Bahía Blanca Estuary (Argentina). Crab burrows act as passive traps of sediment in all zones, because their entrances remain open during inundation periods at high tide. Mounds are generated when crabs remove sediments from the burrows to the surface and become distinctive features in all the zones. Two different mechanisms of sediment transport utilizing mounds as sediment sources were registered. In the first one, parts of fresh mound sediments were transported when exposed to water flow during flooding and ebbing tide, with higher mound erosion where currents were higher as compared to internal marsh habitats and open mudflats. In the second mechanism, mounds exposed to atmospheric influence during low tide became desiccated and cracked forming ellipsoidal blocks, which were then transported by currents in zones of intense water flow in the saltmarsh edge. Sedimentary dynamics varied between zones; crabs were promoting trapping of sediments in the internal saltmarsh (380 g m−2 day−1) and open mudflats (1.2 kg m−2 day−1), but were enhancing sediment removal in the saltmarsh edge (between 10 and 500 g m−2 day−1 in summer). The implication is that biologically mediated sedimentological changes could be different among microhabitats, potentially leading to contrasting geomorphologic effects within a particular ecosystem.  相似文献   

3.
Mangrove ecosystems are sites with high biodiversity of benthic fauna, and fiddler crabs (genus Uca) are common benthic fauna in mangroves. The North Sulawesi in Indonesia has a good condition of mangrove while the information of the fiddler crabs is still limited. Manual samplings were conducted in wet, dry and transient seasons at a mangrove in Kema, North Sulawesi to investigate the species composition, density and distribution pattern of fiddler crabs. A total of 168 individuals, subjected to eight species of genus Uca crabs were collected at the mangrove, with U. triangularis having the highest abundance and U. annulipes having the lowest abundance. The densities of fiddle crabs were 27.56 ind./m2, 32.89 ind./m2 and 14.22 ind./m2 at the seaward, middle and landward zones, respectively, and the density was higher in dry and wet seasons than in transient season.  相似文献   

4.
The effect of bioturbation on the erodability of natural and manipulated copper spiked sediments (3 μmol Cu g−1 dw) was investigated using sediments collected in the Tagus estuary and Nereis diversicolor (900 ind m−2). The input of particulate matter and Cu into the water column as a result of erosion was quantified in an annular flume at 7 shear velocities (1–13 cm s−1). The biogeochemical characteristics of the sediment were analysed in depth down to 8 cm. Cu contamination elicited lower levels of eroded matter and lower shear strength profiles. Eroded matter and sediment shear strength values were higher (up to 1.7 kg m−2) in the presence of N. diversicolor, whose effect was less pronounced under contamination. Sediment erodability was not only related to hydrodynamics but was highly affected by the biogeochemical characteristics and contamination of the sediments.  相似文献   

5.
We investigated the impact of sediment reworking fauna and hydrodynamics on mobilization and transport of organic matter and fine particles in marine sediments. Experiments were conducted in an annular flume using lugworms (Arenicola marina) as model organisms. The impact of lugworms on sediment characteristics and particle transport was followed through time in sediments experimentally enriched with fine particles (< 63 μm) and organic matter. Parallel experiments were run at low and high water current velocity (11 and 25 cm s 1) to evaluate the importance of sediment erosion at the sediment–water interface. There was no impact of fauna on sediment composition and particle transport at current velocity below the sediment erosion threshold. At current velocity above the erosion threshold, sediment reworking by lugworms resulted in dramatic particle transport (12 kg dry matter m 2) to an adjacent particle trap within 56 days. The transported matter was enriched 6–8 times in fine particles and organic matter when compared to the initial sediment. This study suggests that sediment reworking fauna is an important controlling factor for the particle composition of marine sediments. A. marina mediated sediment reworking greatly increases the sediment volume exposed to hydrodynamic forcing at the sediment–water interface, and through sediment resuspension control the content of fine particles and organic matter in the entire reworked sediment layer (> 20 cm depth).  相似文献   

6.
The distribution of the Manila clam Ruditapes philippinarum, which is often dominant in intertidal zones, is influenced by both environmental and biological conditions. However, there have been few comprehensive studies on the interactive effects of these two groups of factors. The present study examined the environmental and biological parameters determining the population dynamics of the clams that is a dominant component of the intertidal communities of Euhangri and Padori on the west coast of Korean peninsula. We collected R. philippinarum and other members of the macrobenthos (> 1 mm long) monthly from 0.25 m2 quadrats deployed in the intertidal zones at Euhangri, Taean, and Padori during the period from August 2013 to January 2015. Physicochemical parameters of the water and sediment were measured at the same time. Water temperature and salinity is high and low in the summer to winter, respectively. While mean grain size of the sediment was higher at Euhangri than at Padori, total mean density of R. philippinarum was higher at Euhangri (325 ind./ 0.25 m2 at Padori vs. 194 ind./0.25 m2 at Euhangri). Settled spat (< 10 mm in length) density was much higher at Euhangri than at Padori (132 vs. 12 individuals/0.25m2, respectively). R. philippinarum spats settled down on the sediment at Euhangri in October and grew continually until the following May, when they reached adult size. Spats that settled down at Padori between March and April were not able to reach the adult stage. As the density of the adult population increased, the condition index of individual clams decreased, but as the population density of the spat increased the body condition index increased. The chlorophyll a content of the sediments at Padori exceeded that at Euhangri and decreased as the population of R. philippinarum increased. The shapes of R. philippinarum shells at Euhangri were more prolate than those at Padori, and the condition index at Euhangri exceeded that at Padori, indicating better growth conditions at Euhangri. The condition index and density of R. philippinarum were affected by the amount of chlorophyll a in the water column and in the sediment. The recruitment success of spats was negatively influenced by spat density. We suggest that regulation of habitat conditions for R. philippinarum, including the food supply, will optimize production of these commercial clams.  相似文献   

7.
The species composition, density, biomass, and distribution of zooplankton of the northeastern Sakhalin shelf, Sea of Okhotsk (Chaivo, Pil’tunskii, and Morskoi regions) were studied in October 2014. Zooplankton was represented by 15 taxonomic groups, which were dominated by Copepoda (13 species). The average density and biomass was highest in the Chaivo region (14112 ± 4322 ind./m3, 395 ± 107 mg/m3) and in the Pil’tunskii region (16692 ± 10707 ind./m3, 346 ± 233 mg/m3); the abundance of detected taxonomic groups was minimal (8–12). The average density and biomass of zooplankton was up to 4304 ± 2441 ind./m3, 133 ± 77 mg/m3 in the Morskoi region and increased with depth; the abundance of taxa was maximum (15). Four species of copepods made up the majority of the density and biomass of zooplankton: Acartia hudsonica, Eurytemora herdmani, Pseudocalanus newmani, and Oithona similis. In the Chaivo region, species of the genera Acartia, Eurytemora, and Oithona dominated and subdominated; in Pil’tunskii region, species of the genera Acartia and Oithona dominated and subdominated; and in the Morskoi region, species of the genera Oithona, Pseudocalanus, and Acartia dominated and subdominated.  相似文献   

8.
Along the coastal areas of the Southwest Atlantic estuaries and embayments, phreatic water often circulates through very extended areas (up to several hundred meters perpendicular to the coast), dominated by dense assemblages of deep burrows of the crab Neohelice granulata (formerly Chasmagnathus granulatus). This crab inhabits the intertidal area, from mudflats to marshes vegetated by species of Spartina, Sarcocornia and Juncus, generating extensive burrowing beds where burrow density may reach up to 60 burrows m−2. Since the lower limit of the crab burrows is usually the water table, we investigated through field experiments the effect of N. granulata and their burrows on the chemical characteristics of this phreatic water. Water analysis from experimental (1) occupied burrows (with crabs), (2) unoccupied burrows (where crabs were excluded), and (3) sediment pore water show remarkable differences. Water oxygenation, and nitrate, ammonium and sulphate concentrations inside occupied burrows were higher than in the water inside unoccupied burrows or pore waters. Moreover, directed sampling of phreatic water entering and leaving the crab bed, shows that dissolved inorganic nitrogen concentration is enhanced as the water crosses the crab bed. These results may be ascribed to the fact that in the salt marsh the crabs spend most of their time within burrows, where presumably they store food (plants) and defecate. These activities generate an area of accumulation of excrements and nutrients in different decomposition states. The present work shows a novel way by which bioturbating organisms can affect nutrients exportation from salt marshes to the open waters.  相似文献   

9.
Variations in environmental factors can alter the species distribution pattern in intertidal rocky shores. The Persian Gulf (PG) and the Gulf of Oman (GO) vary substantially with respect to environmental and oceanographic conditions. The abundance and biodiversity of intertidal rocky gastropods in five locations across the northern PG and the GO were compared, and the environmental variables underlying the distribution pattern of these organisms were investigated. A total of 67 gastropod species were identified. The largest average density (294 ind./m2) and diversity (N = 43) for gastropods occurred in the Hotel Lipar station (LIP) located in Chabahar Bay in the GO. Clypeomorus bifasciata (107.43 ind./m2) followed by Cerithium caeruleum (94.67 ind./m2) were the most abundant species. Planaxis sulcatus and Siphonaria spp. occurred in all locations during both sampling occasions. Species richness and abundance of gastropods showed significant differences between LIP and remaining locations. A significant difference was found in assemblage structure across locations. In general, the species richness and density in the locations at GO were significantly larger than those locations in the PG, suggesting that the harsh environmental condition in the PG might be the forcing factor for this diminish. Distinct grouping was observed in both assemblage structure and species composition between locations in the PG and the GO. The spatial and temporal distribution patterns of gastropods assemblages were significantly correlated with variation in salinity and substrate rugosity.  相似文献   

10.
Benthic ecosystem engineering organisms attenuate hydrodynamic or biogeochemical stress to ameliorate living conditions. Bioturbating infauna, like the lugworm Arenicola marina, determine intertidal process dynamics by maintaining the sediment oxygenated and sandy. Maintaining the permeability of the surrounding sediment enables them to pump water through the interstitial spaces, greatly increasing the oxygen availability. In a field experiment, both lugworm presence and siltation regime were manipulated to investigate to what extent lugworms are able to cope with sedimentation of increasing mud percentage and how this would affect its ecosystem engineering. Fluorescent tracers were added to experimentally deposited mud to visualise bioturbation effects on fine sediment fractions. Lugworm densities were not affected by an increasing mud percentage in experimentally deposited sediment. Negative effects are expected to occur under deposition with significantly higher mud percentages. Surface chlorophyll a content was a function of experimental mud percentage, with no effect of lugworm bioturbation. Surface roughness and sediment permeability clearly increased by lugworm presence, whereas sediment erosion threshold was not significantly affected by lugworms. The general idea that A. marina removes fine sediment fractions from the bed could not be confirmed. Rather, the main ecosystem engineering effect of A. marina is hydraulic destabilisation of the sediment matrix.  相似文献   

11.
Ecosystem engineering by plants and animals significantly influences community structure and the physico-chemical characteristics of marine habitats. In this paper we document the contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the burrowing sandprawn Callianassa kraussi on physico-chemical characteristics, microflora, macrofaunal community structure and morphological attributes in the high shore intertidal sandflats of Langebaan Lagoon, a marine-dominated system on the west coast of South Africa. Comparisons were made at six sites in the lagoon within Spartina and Callianassa beds, and in a “bare zone” of sandflat between these two habitats that lacks both sandprawns and cordgrass. Sediments in Spartina habitats were consolidated by the root-shoot systems of the cordgrass, leading to low sediment penetrability, while sediments in beds of C. kraussi were more penetrable, primarily due to the destabilising effects of sandprawn bioturbation. Sediments in the “bare zone” had intermediate to low values of penetrability. Sediment organic content was lowest in bare zones and greatest in Spartina beds, while sediment chl-a levels were greatest on bare sand, but were progressively reduced in the Spartina and Callianassa beds. These differences among habitats induced by ecosystem engineering in turn affected the macrofauna. Community structure was different between all three habitats sampled, with species richness being surprisingly greater in Callianassa beds than either the bare zone or Spartina beds. In general, the binding of surface sediments by the root systems of Spartina favoured rigid-bodied, surface-dwelling and tube-building species, while the destabilising effect of bioturbation by C. kraussi favoured burrowing species. The contrasting effects of these ecosystem engineers suggest that they play important roles in increasing habitat heterogeneity. Importantly, the role of bioturbation by C. kraussi in enhancing macrofaunal richness was unexpected. By loosening sediments, reducing anoxia and enhancing organic content, C. kraussi may engineer these high shore habitats to ameliorate environmental stresses or increase food availability.  相似文献   

12.
Mero- and holoplanktonic organisms from 23 large taxa have been detected in the coastal waters of Morocco. Seven Cladocera species and 164 Copepoda species were identified. Copepod fauna mostly consisted of oceanic epipelagic widely tropical species, but the constant species group (frequency of occurrence over 50%) included neritic and neritic–oceanic widely tropical species. The neritic community that formed a biotopic association with coastal upwelling waters and the distant-neritic community associated with Canary Current waters were the two major communities detected. The former community was characterized by a high abundance and biomass (5700 ind./m3 and 260 mg/m3) and predominance of neritic species. The trophic structure was dominated by thin filter feeders, mixed-food consumers, and small grabbers; the species structure was dominated by Paracalanus indicus, Acartia clausi, and Oncaea curta; the indices of species diversity (3.07 bit/ind.) and evenness (0.63) were relatively low. The latter community was characterized by low abundance and biomass (1150 ind./m3 and 90 mg/m3); variable biotopic, trophic, and species structure; and higher Shannon indices (3.99 bit/ind.) and Pielou (0.75). Seasonal variation of the abundance of organisms was not detected in the communities. Anomalous mesozooplankton states were observed in summer 1998 and winter 1998–1999.  相似文献   

13.
根据2017年10月和2018年1、5、7月对雷州半岛沿岸海域浮游动物四个季度的调查数据,分析了浮游桡足类群落组成的季节变化及其影响因素.结果共鉴定出浮游桡足类80种,其中哲水蚤目55种,占总种类数的68.7%;剑水蚤目21种,占总种类数的26.2%;猛水蚤目3种,占总种类数的3.8%;鱼虱目1种,占总种类数的1.3%...  相似文献   

14.
Between November 2001 and March 2002 an Australian/Japanese collaborative study completed six passes of a transect line in the Seasonal-Ice Zone (south of 62°S) along 140°E. Zooplankton samples were collected with a NORPAC net on 22–28 November, and a Continuous Plankton Recorder on 10–15 January, 11–12 February, 19–22 February, 25–26 February, and 10–11 March. Zooplankton densities were lowest on 22–28 November (ave=61 individuals (ind) m−3), when almost the entire transect was covered by sea ice. By 10–15 January sea surface temperature had increased by ∼2 °C across the transect line, and the study area was ice-free. Total zooplankton abundance had increased to maximum levels for the season (ave=1301 ind m−3; max=1979 ind m−3), dominated by a “Peak Community” comprising Oithona similis, Ctenocalanus citer, Clausocalanus laticeps, foraminiferans, Limacina spp., appendicularians, Rhincalanus gigas and large calanoid copepodites (C1–3). Total densities declined on each subsequent transect, returning to an average of 169 ind m−3 on 10–11 March. The seasonal density decline was due to the decline in densities of “Peak Community” taxa, but coincided with the rise of Euphausia superba larvae into the surface waters, increased densities of Salpa thompsoni, and an increased contribution of C4 to adult stages to the populations of Calanoides acutus, Calanus propinquus and Calanus simillimus. The seasonal community succession appeared to be influenced by the low sea ice extent and southward projection of the ACC in this region. The relatively warm ACC waters, together with low krill biomass, favoured high densities of small grazers during the January/February bloom conditions. The persistence of relatively warm surface waters in March and the seasonal decrease in chlorophyll a biomass provided favorable conditions for salps, which were able to penetrate south of the Southern Boundary.  相似文献   

15.
为研究福建海岛水域软体动物多样性与分布,根据1990年2月至1992年1月对福建乡级以上海岛水域进行的大型底栖生物调查资料进行了深入分析.结果表明,福建海岛水域软体动物有82科97属345种,主要有蚶科(Arcidae)、贻贝科(Mytilidae)、蛤蜊科(Mactridae)、樱蛤科(Tellinidae),帘蛤科(Veneridae)、篮蛤科(Corbulidae)、角贝科(Dentaliidae)、玉螺科(Naticidae)、骨螺科(Muricidae)、蛾螺科(Buccinidae)、织纹螺科(Nassariidae)、衲螺科(Cancellariidae)、塔螺科(Turridae)、笋螺科(Terebridae)、小塔螺科(Pyramidellidae)等.在12个乡级以上海岛水域,福建中南部岛屿水域软体动物物种数较多,北部相对较少.平均生物量为8.81 g/m~2,栖息密度为36个/m~2.生物量厦门岛水域最高(33.18 g/m~2),南日岛最低(0.73 g/m~2);栖息密度江阴岛最高(188个/m~2),湄洲岛最低(4个/m~2).福建省海岛水域软体动物种数季节变化,夏季大于冬季大于秋季大于春季;数量季节变化,生物量以春季最高,冬季最低;栖息密度以春季最高,秋季最低.  相似文献   

16.
The objective of this study is to elucidate the burrow structure and to clarify the role of burrows in material cycle in the tidal flat. In our work, we focused on the dominant species in muddy tidal flat, crab Macrophthalmus japonicus.Burrow structure of Macrophthalmus japonicus was investigated on a Katsuura river tidal flat in Tokushima prefecture, Japan, using in situ resin casting. Sampling was conducted in August 2006, and a total of 48 burrow casts were obtained. Burrows consisted mainly of J-shaped structures (98%) while the rest belonged to U-shaped structures (2%). The maximum measured burrow volume was 120 cm3 and wall surface area was 224 cm2, while maximum burrow length and depth were 23.2 cm and 16.5 cm, respectively. Burrow volume and surface area were strongly correlated with carapace width of M. japonicus. Investigation of the individual number of M. japonicus in 13 quadrats (50 × 50 × 20 cm) was conducted using 2 mm sieve. The number of M. japonicus was 15–31 ind./m2. Using cohort analysis we estimated that surface area of burrows was 0.07–0.15 m2/m2.CO2 emission rate was measured at the surface sediment during the period from June to December 2008. Results varied from 13.8 ± 2.2 to 49.4 ± 3.2 mg CO2/m2/h, and organic carbon decomposition was 3.8 ± 0.6–13.5 ± 0.9 mg C/m2/h. This leads the increase of organic carbon decomposition by 1.1 times, because of the expansion of the tidal flat surface area by burrowing activity. Organic carbon decomposition in burrow walls therefore contributed to organic matter decomposition in the tidal flat. These results indicated that in situ activities of Macrophthalmus japonicus significantly influence the material cycle and it is important to consider the existence of burrow in order to understand the fluxes of materials and to evaluate the purification function of the tidal flat.  相似文献   

17.
The relationship between spatial patterns of macrobenthos community characteristics and environmental conditions(salinity, temperature, dissolved oxygen, organic matter content, sand, silt and clay) was investigated throughout the Gorgan Bay in June 2010. Principal components analysis(PCA) based on environmental data separated eastern and western stations. The maximum(4500 ind./m2) and minimum(411 ind./m2) densities were observed at Stas 1 and 6, respectively. Polychaeta was the major group and Streblospio gynobranchiata was dominant species in the bay. According to Distance Based Linear Models results, macrofaunal total density was correlated with silt percentage and salinity and these two factors explaining 64% of the variability while macrofaunal community structure just correlated with salinity(22% total variation). In general, western part of the bay showed the highest number of species and biodiversity while, the highest density was found at Sta. 1 and in the middle part of the bay. Furthermore, relationship between diversity indices and macrobenthic species with measured factors is also discussed. Our results confirm the effect of salinity as an important factor on distribution of macrobenthic fauna in south Caspian brackish waters.  相似文献   

18.
为研究缢蛏(Sinonovacula constricta)生物扰动在养殖废水生态处理系统中对沉积物不同垂直分层的各种磷形态迁移转化的影响,于2016年5—7月在养殖废水处理池的贝藻处理区采集不同缢蛏养殖密度下的实验围隔箱内的底泥,测定不同垂直方向上的磷形态、微生物活性(FDA)以及碱性磷酸酶活性(APA)。结果表明,在底栖动物缢蛏生物扰动作用下,改变了沉积物内部的微环境,促进了微生物的生长,增大了沉积物中总微生物活性以及碱性磷酸酶活性。而沉积物中有机磷(OP)含量显著减少(P0.05);非磷灰石态无机磷(NAIP)、磷灰石态无机磷(AP)和无机磷(IP)含量显著增加(P0.05),这表明在缢蛏的生物扰动下OP可能转变成为AP、NAIP等无机磷成分;总磷含量呈降低趋势。本试验结果表明,缢蛏生物扰动下对于养殖废水生态处理系统沉积物垂直方向上的磷赋存形态具有显著的影响,且高密度组的生物扰动作用对沉积物中磷形态迁移转化的影响强于低密度组。  相似文献   

19.
Large areas of the bottom sediments of the Baltic Sea are temporarily or permanently anoxic. These sediments are also an important sink for a variety of contaminants. Reoxygenation of bottom waters allows recolonisation by benthic infauna, which may have important implications for the fate of buried contaminants. This study used tracers to experimentally examine the role of bioturbation by benthic infauna in transporting sediment-associated contaminants in the Baltic Sea. Three different tracer methods were used in two experiments, using three key Baltic macrofaunal species: the amphipod crustacean Monoporeia affinis; the Baltic clam Macoma baltica; and the priapulid worm Halicryptus spinulosus. In the first experiment, a reoxygenation–recolonisation scenario was recreated in the laboratory, using hypoxic sediment cores collected in the field, to determine if there was remobilisation of buried 137Cs from the Chernobyl nuclear accident in 1986. The potential for the infauna to bury newly settled surface contamination was also investigated, using a fluorescent particle tracer. In the second experiment, artificially-created radiolabelled tracer layers (14C and 51Cr) were used to quantify both upward and downward movements of organic matter and sediment-associated contaminants by bioturbation.In both experiments there were clear visual differences between the sediment effects of the three species. Halicryptus spinulosus buried deepest into the sediment, creating a network of burrows, Monoporeia affinis burrowed actively in the upper few centimeters of the sediment, and Macoma baltica was quite stationary, but appeared to filter- and deposit feed at the sediment surface. Mixing depths in the hypoxic sediment varied from 4.0 ± 3.5 cm for M. baltica to 7.8 ± 2.1 cm for H. spinulosus. Biodiffusion rates (Db) were similar for all treatments but biotransport rates (r) were significantly different between treatments, mainly due to a high r value for H. spinulosus. In the experiment with radiolabelled tracer layers, 51Cr was transported more than 14C, and tracer originally at the surface transported more than tracer buried 4 cm below the surface. There was also transport of all tracers in treatments without added macrofauna. The most likely explanation is bioturbation by the meiofauna that were undoubtedly present in both experiments.Bioturbation by macrofauna both buries surface contaminants and remobilises those that are buried, but the effects are small and on a similar scale to transport caused by meiofauna. In addition, 137Cs profiles at the hypoxic site indicated that resuspension and redeposition of sediment by physical processes had occurred, and also showed that contaminants from the last 40 years were still present in the top 5–10 cm of the sediment, well within active mixing depths. At this site, as at many others in the Baltic, physical processes are likely to be far more important than biological processes in the redistribution of contaminants on a decadal timescale.  相似文献   

20.
Bioturbation, especially sediment reworking by the activities of macroinvertebrates, such as feeding and burrowing, is one of the major processes that affect the physical, chemical, and biological characteristics of marine sediments. Given the importance of sediment reworking, this study was designed to evaluate the sediment reworking rate of a polychaete, Perinereis aibuhitensis, which is dominant in the upper tidal flats on the west coast of Korea, based on quantification of pellet production during spring and fall surveys. The density of individuals was higher in fall than in spring, whereas, due to a difference in the proportion of adults between the two seasons, the morphometric dimensions of the worm and its pellets were significantly longer and heavier in the spring. Hourly pellet production per inhabitant and density were closely related, with pellet production gradually decreasing as density increased. Daily pellet production was much higher in spring than in fall, mostly due to an increase in daytime production. The sediment reworking rate of Perinereis was similar in the two seasons in which observations were made and depended on its density and the sediment reworking rate per individual. The overall sediment reworking rate of Perinereis was 31 mm yr?1 based on its density in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号