首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have shown that eel diadromy is facultative and that migratory divergences may appear during glass eel estuarine migration. The origin of the differences in migratory behaviour among glass eels remains unclear but initial evidence supports the role of individual energetic and thyroidal status. Even if starvation is usually associated with glass eel migration, feeding does seem to occur in some glass eels. The aim of the present study was to investigate feeding behaviour and glass eel growth in relation to the propensity to migrate. Feeding rate and weight gain were higher in fish having a high propensity to migrate (M+ fish) than in fish having a low propensity to migrate (M fish) in fed glass eels, whereas no clear difference in the variation in body weight was observed among unfed fish (controls). M fish initially had lower percent dry weight than M+ fish, which suggests a link between appetite, propensity to migrate, and energy content. We discuss the role played by endocrine signals on these processes. In fish, thyroid hormones contribute to the control of growth and development. In addition, they play a role in flatfish and leptocephalus metamorphosis and appear to be involved in smolt and glass eel migratory behaviour. As such, they represent a good candidate which would promote the propensity to migrate as well as digestive system development. Their role in the hormonal control of food intake however remains vague.  相似文献   

2.
This study measured the relative expression of the genes coding for Na+, K+-ATPase 1α(NAKA), voltage-dependent anion channel (VDAC), cytochrome c oxidase-1 (COX), and NADH dehydrogenase (NDH), in gills of six wild populations of a West African tilapia species, acclimatised to a range of seasonal (rainy or dry) salinities in coastal, estuarine and freshwater sites. Previous laboratory experiments have demonstrated that these genes, involved in active ion transport, oxidative phosphorylation, and intra-cellular ATP transport, are relatively over-expressed in gill tissues of this species acclimated to high salinity. Positive correlations between relative expression and ambient salinity were found for all genes in the wild populations (Spearman rank correlation, p < 0.05), although for some genes these were only significant in either the rainy season or dry season. Most significantly, however, relative expression was positively correlated amongst the four genes, indicating that they are functionally interrelated in adaptation of Sarotherodon melanotheron to salinity variations in its natural environment. In the rainy season, when salinity was unstable and ranged between zero and 37 psu across the sites, overall mean expression of the genes was higher than in the dry season, which may have reflected more variable particularly sudden fluctuations in salinity and poorer overall water quality. In the dry season, when the salinity is more stable but ranged between zero and 100 psu across the sites, NAKA, NDH and VDAC expression revealed U-shaped relationships with lowest relative expression at salinities approaching seawater, between 25 and 45 psu. Although it is not simple to establish direct relationship between gene expression levels and energy requirement for osmoregulation, these results may indicate that costs of adaptation to salinity are lowest in seawater, the natural environment of this species. While S. melanotheron can colonise environments with extremely high salinities, up to 100 psu, this was related to high relative expression for all genes studied, indicating that this imposes increased energy demand for osmotic homeostasis in gill tissues. This study is the first to demonstrate, in fish and in wild populations, that expression of NAKA, VDAC, NDH and COX are interrelated in gill tissues, and are involved in long-term acclimatisation to a salinity range between 0 and 100 psu.  相似文献   

3.
Isotopic patterns of biota across salinity gradients in man-made evaporative systems could assist in determining the use of these habitats by animals. Here we report δ13C, δ15N and δD measurements of a euryhaline fish, the Mediterranean toothcarp (Aphanius fasciatus), inhabiting a range of salinities in the Thyna saltworks near Sfax (Tunisia). The contribution of these salinity niches to egg formation of two typically piscivorous bird species breeding in the area and feeding within saltworks, Little Tern (Sternula albifrons) and Little Egret (Egretta garzetta), was inferred trough a triple-isotope (δ13C, δ15N and δD) Bayesian mixing model. Isotopic trends for fish δ15N and δD across the salinity gradient followed the equations: δ15N = e(1.1 + 47.68/Salinity) and δD = −175.74 + Salinity + Salinity2; whereas fish δ13C increased as salinity rose (δ13C = −10.83 + 0.02·Salinity), after a sudden drop in fish isotopic values for salinities >60 (Practical Salinity Scale) (average fish δ13C for salinities <60 = −5.92‰). Both bird species fed largely on low hypersalinity ponds (salinity = 43; average contribution = 37% and 22% for Little Egrets and Little Terns, respectively), although the use of intermediate hypersalinities (salinities 63 and 70) by Little Terns also occurred (16% and 21%, respectively). Isotopic patterns across salinity gradients allow the use of isotopic measurements to inform studies of habitat occupancy within evaporative systems and provide further insights into how wildlife communities interact with them.  相似文献   

4.
为了解盐度渐变对黄条鰤(Seriola aureovittata)渗透调节的影响,设置自然海水(对照组盐度为29),5,10,15,20,35六个盐度梯度,并对不同盐度下幼鱼鳃丝Na~+/K~+-ATP酶活力、离子浓度、渗透压进行了检测和分析。结果显示:在盐度5~35,黄条鰤尿、血清、血浆的渗透压均随盐度升高而升高,盐度为35时渗透压均为最高,其中尿的渗透压显著高于血清和血浆渗透压。在盐度从29下降的过程中,鳃丝Na~+/K~+-ATP酶活力、离子浓度、渗透压呈现相似的变化规律,都随着盐度的降低而呈现总体下降的趋势;盐度从29升高到35时,各检测指标中仅有尿和血浆的K~+含量无显著变化(P0.05),其余均显著升高(P0.05)。实验结果表明,黄条鰤生存和繁衍的自然海水盐度29是幼鱼存活的适宜盐度,在略低的盐度20~29均能较快适应,说明在盐度渐变过程中,黄条鰤幼鱼对外界盐度变化有较强的调节能力。  相似文献   

5.
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (δD, δ18O, 3H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of 222Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m−3 which were in opposite relationship with observed salinities. Time series measurements of 222Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m−3), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the 222Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase 222Rn concentration during lower sea level, and opposite, during high tides where the 222Rn activity concentration is smaller. The estimated SGD fluxes varied during 22–26 November between 8 and 40 cm d−1, with an average value of 21 cm d−1 (the unit is cm3/cm2 per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity, which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater–seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater), which claims for potential environmental concern with implications on the management of freshwater resources in the region.  相似文献   

6.
To assess the potential of stable isotope ratios as an indicator of fish migration within estuaries, stable isotope ratios in important zooplankton species were analyzed in relation to estuarine salinity gradients. Gut contents from migratory juveniles of the euryhaline marine fish Lateolabrax japonicus were examined along the Chikugo River estuary of the Ariake Sea, which has the most developed estuarine turbidity maximum (ETM) in Japan. Early juveniles in March and April preyed primarily on two copepod species; Sinocalanus sinensis at lower salinities and Acartia omorii at higher salinities. Late juveniles (standard length > 40 mm) at lower salinities preyed exclusively on the mysid Acanthomysis longirostris until July and complementarily on the decapod Acetes japonicus in August. These prey species were collected along the estuary during the spring–summer seasons of 2003 and 2004, and their carbon and nitrogen stable isotope ratios (δ13C and δ15N) were evaluated. The δ13C values of prey species were distinct from each other and were primarily depleted within and in close proximity to the ETM (salinity < 10); S. sinensis (−26.6‰) < Acanthomysis longirostris (−23.3‰) < Acartia omorii (−21.1‰) < Acetes japonicus (−18.5‰). The overall gradient of δ13C with salinity occurred for all prey species and showed minor temporal fluctuations, while it was not directly influenced by the δ13C values in particulate organic matter along the estuary. In contrast to δ13C, the δ15N values of prey species did not exhibit any clear relationship with salinity. The present study demonstrated that δ13C has the potential for application as a tracer of fish migration into lower salinity areas including the ETM.  相似文献   

7.
Self-diffusion coefficients of five major ions have been determined by a radioactive tracer method (capillary tube method) in seawater of salinity 34.86 at 25°C. Data are presented for Na+, Ca2+, Cl, SO42, and HCO3, which constitute about 95% by weight of sea salt. The influence of temperature and salinity on these coefficients has been studied for Na+ and Cl which are the major components of sea salt: self-diffusion coefficients of these two ions have been measured in seawater, at different temperatures for a salinity of 34.86 and at different salinities for a temperature of 25°C. Diffusion coefficients of the same ions have been determined at 25°C by using another radioactive tracer method (quasi-steady cell method). In this experiment, seawater ions were allowed to diffuse from natural seawater into dilute seawater. Data have been obtained at 25°C for Na+, Ca 2+, Cl, SO42− and HCO3, corresponding to different salinity gradients.  相似文献   

8.
The activity of NaCl in artificial seawater was measured potentiometrically with Na+- and Cl? -sensitive electrodes. The salinity of the solutions, examined at 25°C, ranged from 10–40‰ salinity. The change in the activity from 5–25°C was measured at 35‰ salinity.The molal mean activity coefficient of NaCl in 35‰ seawater at 25°C is 0.667. The relative partial molal enthalpy of NaCl in 35‰ seawater is ?130 ±50 cal mol?1. This value is in good agreement with the value measured in pure 0.72 M NaCl.The results were compared with activity coefficients predicted by a specific interaction model and by an ion association model. Good agreement was found in both cases.  相似文献   

9.
Contamination of acidic red soil in the coastal areas of Okinawa Islands is a serious environmental problem. This study was conducted to examine the effects of the salinity on pH and aluminum concentration when the acidic red soil interacts with seawater. Acidic red soil from Gushikawa recreation center was fractionated into bulk soil, coarse sand and silt + clay. Different weights of each fraction were equilibrated with seawater solutions. The pH and concentrations of Al3+, Na+, K+, Ca2+ and Mg2+ were then analyzed in the extracts. The results showed a decreasing trend of pH with increasing soil to solution ratio while the extracted Al3+ revealed an increasing trend. The lowest pH values were 3.85, 4.06, 4.41, 4.66 and their corresponding highest Al3+ concentrations were 2.50, 1.01, 0.062 and 0.036 mmolL−1 in the seawater extracts, one-tenth seawater extracts, one-hundredth seawater extracts and one-thousandth seawater solution extracts, respectively. Mostly, the concentrations of Na+, Ca2+, Mg2+ and especially K+ decreased with increasing soil weight in the high salinities but showed the opposite trend in the low salinity samples. Potassium concentration decreased by 39%, 53% and 40% in the seawater extracts, one-tenth and one-hundredth seawater extracts but increased by 200% in one-thousandth seawater extracts. The coincidence of the increase in Al3+ and H+ concentrations, and the decrease of Na+, K+, Ca2+ and Mg2+ concentrations in the solutions suggests ion exchange/adsorption, while the increased patterns, particularly at low salinity could be attributed to the dissolution of the species from the soils.  相似文献   

10.
Nitrification rates, as oxidation of 15N-labelled ammonium and loss of nitrite from N-Serve treated samples, were measured in Kochi backwaters during three seasons. Nitrification rates ranged from undetectable to 166 nmol N L−1 h−1 in the water column and up to 17 nmol N (g wet wt)−1 h−1 in sediments. Nitrification rates were higher in intermediate salinities than in either freshwater or seawater end. Within this salinity range, nitrification rates could be related to ammonium concentrations. As shown by the relation between ammonification and nitrification rates, it is also likely that nitrification is more regulated by renewal rates, rather than by in situ concentrations, of substrate. Among other environmental parameters, temperature and pH may have an influence on nitrification. Potential nitrification rates calculated from loss of nitrite from N-Serve treated, nitrite-enriched samples were about 800 nmol N L−1 h−1 in the water column and 40 nmol N (g wet wt)−1 h−1 in sediments. While these rates are in balance with those of biological ammonium production they may be inadequate to mitigate ammonium pollution in this estuary.  相似文献   

11.
In-situ measurements of benthic fluxes of oxygen and nutrients were made in the subtidal region of the Mandovi estuary during premonsoon and monsoon seasons to understand the role of sediment–water exchange processes in the estuarine ecosystem. The Mandovi estuary is a shallow, highly dynamic, macrotidal estuary which experiences marine condition in the premonsoon season and nearly fresh water condition in the monsoon season. The benthic flux of nutrients exhibited strong seasonality, being higher in the premonsoon compared to the monsoon season which explains the higher ecosystem productivity in the dry season in spite of negligible riverine nutrient input. NH4+ was the major form of released N comprising 70–100% of DIN flux. The benthic respiration rate varied from −98.91 to −35.13 mmol m−2 d−1, NH4+ flux from 5.15 to 0.836 mmol m−2 d−1, NO3 + NO2 from 0.06 to −1.06 mmol m−2 d−1, DIP from 0.12 to 0.23 mmol m−2 d−1 and SiO44− from 5.78 to 0.41 mmol m−2 d−1 between premonsoon to monsoon period. The estuarine sediment acted as a net source of DIN in the premonsoon season, but changed to a net sink in the monsoon season. Variation in salinity seemed to control NH4+ flux considerably. Macrofaunal activities, especially bioturbation, enhanced the fluxes 2–25 times. The estuarine sediment was observed to be a huge reservoir of NH4+, PO43− and SiO44− and acted as a net sink of combined N because of the high rate of benthic denitrification as it could remove 22% of riverine DIN influx thereby protecting the eco system from eutrophication and consequent degradation. The estuarine sediment was responsible for ∼30–50% of the total community respiration in the estuary. The benthic supply of DIN, PO43− and SiO44− can potentially meet 49%, 25% and 55% of algal N, P and Si demand, respectively, in the estuary. Based on these observations we hypothesize that it is mainly benthic NH4+ efflux that sustains high estuarine productivity in the NO3 depleted dry season.  相似文献   

12.
The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH4+-flux to the water and Ca-flux toward sediments increased (NH4+-flux: 5000–3000 μmol m−2 d−1 in seawater and 600/250 μmol m−2 d−1 in brackish water; Ca-flux: −40/−76 meq m−2 d−1 at S=37 and −13/−10 meq m−2 d−1 at S=10); however, later NH4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m−2 d−1), increased during the experiment at S=37 (from 30 mmol m−2 d−1 immediately after salinity increase to 60 mmol m−2 d−1 after 17 days).In brackish conditions, NH4+ and Ca2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH4+ production and a first-order reaction for Ca2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH4+.The mass balance for 17 days indicated a higher retention of NH4+ in porewater in the littoral station in seawater conditions (9.5 mmol m−2 at S=37 and 1.6 mmol m−2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m−2 at S=37; 35/23 mmol m−2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (−10/−1 meq m−2 at S=37; 50/90 meq m−2 at S=10) and was linked to a higher efflux of CO2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m−2). These results indicate that increased salinity in shallow coastal waters could play a major role in the global carbon cycle.  相似文献   

13.
The distribution of protein and carbohydrate concentrations of the particulate matter (size fraction: 0.45–160 μm) was studied, from 22 January 2003 to 02 December 2003, in three ponds of increasing salinity in the Sfax solar saltern (Tunisia). The coupling of N/P: DIN (DIN = NO2 + NO3 + NH4+) to DIP (DIP = PO43−) with P/C: protein/carbohydrates ratios along salinity gradient allowed the discrimination of three types of ecosystems. Pond A1 (mean salinity: 45.0 ± 5.4) having marine characteristics showed enhanced P/C ratios during a diatom bloom. N/P and P/C ratios were closely coupled throughout the sampling period, suggesting that the nutritional status is important in determining the seasonal change in the phytoplankton community in pond A1. In pond A16 (mean salinity: 78.7 ± 8.8), despite the high nitrate load, P/C ratios were overall lower than in pond A1. This may be explained by the fact that dinoflagellates, which were the most abundant phytoplankton in pond A16 might be strict heterotrophs and/or mixotrophs, and so they may have not contributed strongly to anabolic processes. Also, N/P and P/C ratios were uncoupled, suggesting that cells in pond A16 were stressed due to the increased salinity caused by water evaporation, and so cells synthesized reserve products such as carbohydrates. In pond M2 (mean salinity: 189.0 ± 13.8), P/C levels were higher than those recorded in either pond A1 or A16. N/P and P/C were more coupled than in pond A16. Species in the hypersaline pond seemed paradoxally less stressed than in pond A16, suggesting that salt-tolerant extremophile species overcome hypersaline constraints and react metabolically by synthesizing carbohydrates and proteins.  相似文献   

14.
Based on measurements of the 18O isotope composition of 247 samples collected over a 3-year period we have assessed the oxygen isotope composition of water masses in the North Sea. This is the first δ18O data set that covers the entire North Sea basin. The waters lie on a mixing line: δ18O (‰VSMOW) = −9.300 + 0.274(S) with North Atlantic sub-polar mode water (SPMW) and surface waters, and Baltic Sea water representing the saline and freshwater end members respectively. Patterns exhibited in surface and bottom water δ18O distributions are representative of the general circulation of the North Sea. Oxygen-18 enriched waters from the North Atlantic enter the North Sea between Scotland and Norway and to a lesser extent through the English Channel. In contrast, oxygen-18 depleted waters mainly inflow from the Baltic Sea, the rivers Rhine and Elbe, and to a lesser degree, the Norwegian Fjords and other river sources. Locally the δ18O–salinity relationship will be controlled by the isotopic composition of the freshwater inputs. However, the range of local freshwater compositions around the North Sea basin is too narrow to characterise the relative contributions of individual sources to the overall seawater composition. This dataset provides important information for a number of related disciplines including biogeochemical research and oceanographic studies.  相似文献   

15.
The effect of ionic interactions on the kinetics of disproportionation of HO2, and the oxidation of Fe(II) and Cu(I) has been examined. The interactions of O2 with Mg2+ and Ca2+ ions in seawater increases the lifetime by 3–5 times compared to water. The effect of OH on the oxidation of Fe(II) in water and seawater shows a second degree dependence from 5 to 45°C. The effect of salinity on the oxidation of Fe(II) was found to be independent of temperature, while the effect of temperature was found to be independent of salinity. The energy of activation for the overall rate constant was found to be 7 ± 0.5 kcal mol−1.The effect of pH, temperature, salinity and ionic composition on the oxidation of Cu(I) has also been examined. In NaCl solutions from 0.5 to 6 M, the log k for the oxidation was a linear function of pH (6–8) with a slope of 0.2 ± 0.05. The reaction was strongly dependent on the Cl concentration with variation of from 0.3 to 340 min from 0.5 to 6 M Cl. The rates of oxidation of Cu+ and CuCl0 responsible for these effects are dependent upon ionic strength. The energy of activation for the reaction was 8.5–9.9 kcal mol−1 from 0.5 to 6 M. Studies of the oxidation in various NaX salts (X = I, Br and Cl) give rates in the order Cl > Br > I as expected, due to complex formation of Cu+ with X.  相似文献   

16.
This study investigates the biogeochemical processes that control the benthic fluxes of dissolved nitrogen (N) species in Boknis Eck – a 28 m deep site in the Eckernförde Bay (southwestern Baltic Sea). Bottom water oxygen concentrations (O2−BW) fluctuate greatly over the year at Boknis Eck, being well-oxygenated in winter and experiencing severe bottom water hypoxia and even anoxia in late summer. The present communication addresses the winter situation (February 2010). Fluxes of ammonium (NH4+), nitrate (NO3) and nitrite (NO2) were simulated using a benthic model that accounted for transport and biogeochemical reactions and constrained with ex situ flux measurements and sediment geochemical analysis. The sediments were a net sink for NO3 (−0.35 mmol m−2 d−1 of NO3), of which 75% was ascribed to dissimilatory reduction of nitrate to ammonium (DNRA) by sulfide oxidizing bacteria, and 25% to NO3 reduction to NO2 by denitrifying microorganisms. NH4+ fluxes were high (1.74 mmol m−2 d−1 of NH4+), mainly due to the degradation of organic nitrogen, and directed out of the sediment. NO2 fluxes were negligible. The sediments in Boknis Eck are, therefore, a net source of dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+) during winter. This is in large part due to bioirrigation, which accounts for 76% of the benthic efflux of NH4+, thus reducing the capacity for nitrification of NH4+. The combined rate of fixed N loss by denitrification and anammox was estimated at 0.08 mmol m−2 d−1 of N2, which is at the lower end of previously reported values. A systematic sensitivity analysis revealed that denitrification and anammox respond strongly and positively to the concentration of NO3 in the bottom water (NO3BW). Higher O2−BW decreases DNRA and denitrification but stimulates both anammox and the contribution of anammox to total N2 production (%Ramx). A complete mechanistic explanation of these findings is provided. Our analysis indicates that nitrification is the geochemical driving force behind the observed correlation between %Ramx and water depth in the seminal study of Dalsgaard et al. (2005). Despite remaining uncertainties, the results provide a general mechanistic framework for interpreting the existing knowledge of N-turnover processes and fluxes in continental margin sediments, as well as predicting the types of environment where these reactions are expected to occur prominently.  相似文献   

17.
The annual total and organic mercury bioaccumulation pattern of Scrobicularia plana and Hediste diversicolor was assessed to evaluate the potential mercury transfer from contaminated sediments to estuarine food webs. S. plana was found to accumulate more total and organic mercury than H. diversicolor, up to 0.79 mg kg−1 and 0.15 mg kg−1 (wet weight) respectively, with a maximum annual uptake of 0.21 mg kg−1 y−1, while for methylmercury the annual accumulation was similar between species and never exceeded 0.045 mg kg−1 y−1. The higher organic mercury fraction in H. diversicolor is related to the omnivorous diet of this species. Both species increase methylmercury exposure by burrowing activities and uptake in anoxic, methylmercury rich sediment layers. Integration with the annual biological production of each species revealed mercury incorporation rates that reached 28 μg m−2 y−1, and to extract as much as 11.5 g Hg y−1 (of which 95% associated with S. plana) in the 0.4 km2 of the most contaminated area, that can be transferred to higher trophic levels. S. plana is therefore an essential vector in the mercury biomagnification processes, through uptake from contaminated sediments and, by predation, to transfer it to economically important and exploited estuarine species.  相似文献   

18.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

19.
为探讨低盐度急性胁迫对可口革囊星虫(Phascolosoma esculenta)的影响规律,研究可口革囊星虫对急性低盐度胁迫的响应机制,本试验先通过急性毒性试验确定可口革囊星虫96 h内对低盐度的耐受范围,再选取96 h最小死亡率盐度,研究该盐度急性胁迫下可口革囊星虫(平均体质量0.85±0.07 g)体质量、体壁含水量、Na~+/K~+-ATP酶活力以及酸碱磷酸酶活力在96 h内的动态变化。结果表明:在本试验盐度3.0~7.0范围内,可口革囊星虫24 h的最大死亡率盐度是3.0,可口革囊星虫96 h的最小死亡率盐度为7.0;可口革囊星虫死亡率随盐度降低逐渐升高,但相同盐度下随着时间延长,可口革囊星虫死亡率基本不变,可口革囊星虫96h内能耐受的最低盐度是7.0;在低盐度7.0胁迫下,可口革囊星虫体质量和体壁含水量在12 h内显著增大(P0.05),12 h后趋于平稳(P0.05);Na~+/K~+-ATP酶活力也在6 h内显著升高至最大值(P0.05),6 h至12h又显著降低(P0.05),此后稳定在高于对照组水平;酸性磷酸酶和碱性磷酸酶活力变化趋势与Na~+/K~+-ATP酶活力类似,均是先显著升高(P0.05)后显著降低(P0.05),最后稳定在高于对照组水平。以上研究表明,可口革囊星虫能够通过Na~+/K~+-ATP酶、酸碱磷酸酶等渗透和免疫相关的生理调节机制,迅速响应低盐度环境,其对低盐度有很强的适应力和耐受力。  相似文献   

20.
盐度胁迫对香港牡蛎部分生化指标的影响   总被引:1,自引:0,他引:1  
为探究盐度胁迫下香港牡蛎(Crassostrea hongkongensis)生化指标的变化规律,了解盐度适应过程中牡蛎的代谢机制,本研究以盐度0、8、16、32、40为胁迫盐度,以正常海水(盐度24)为对照,开展香港牡蛎对盐度胁迫的响应研究。结果显示,各实验盐度组糖原含量在盐度胁迫0~8 h内下降,且盐度胁迫幅度越大糖原含量降幅越大,胁迫8 h后则无明显的变化规律。腺苷酸激活的蛋白激酶(AMPK)、组蛋白/蛋白去乙酰化酶(SIRT1)和Na~+/K~+-ATP酶活力的变化规律相似:在0~8 h内,各实验组酶活力均急剧下降(SIRT1上升);8~48 h内,酶活力上升;48~120 h内,酶活力逐渐趋于平稳状态,总体表现为盐度越高,酶活力越强,并与胁迫前有明显差异,且盐度胁迫幅度越高,差异越明显。总抗氧化能力(T-AOC)总体表现出高盐胁迫下随时间的增加而升高,低盐胁迫下随时间的增加而降低,且盐度胁迫幅度越大,T-AOC活力的变化幅度越大。实验结果初步表明,香港牡蛎糖原含量与渗透压调节存在一定的关系,AMPK、SIRT1、Na~+/K~+-ATP酶活力及T-AOC均与渗透压调节密切相关,且在高盐胁迫下随时间的增加而升高,低盐胁迫下随时间的增加而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号