首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Petroleum hydrocarbon concentrations (PHC) of surface sediments along the Chennai coast, India, were measured by UV-Fluorescence (UVF) Spectroscopy and the results are expressed in terms of Chrysene equivalents. The concentration of PHC in sediment varies widely (from 1.88 ppm to 39.76 ppm) as compared to the baseline (1.88 ppm) with higher values obtained in the northern part of the study area. The highest magnetic susceptibility (96.8 × 10−8 m3kg−1) value was determined from the Chennai harbour area. The magnetic parameters show that the Chennai coastal sediments are dominated by ferrimagnetic minerals. The positive correlation (r2 = 0.86; p < 0.05) between petroleum hydrocarbon concentrations and magnetic susceptibility suggests that the magnetic minerals and petroleum hydrocarbons along the Chennai coast are derived from the same sources. Factor analysis shows that the magnetic concentration dependent parameters (χ, χARM and SIRM) covary with the petroleum hydrocarbon concentration, suggesting that large amounts of magnetic minerals originate from anthropogenic activities. It is evident that using magnetic measurements may be considered a simple, rapid, cheap and non-destructive method to determine petroleum hydrocarbon concentrations in coastal sediments. Furthermore, this technique may be applied to petroleum exploration studies. Magnetic susceptibility measurements in sediments have been proposed as complementary or alternative means of exploration and assessment of hydrocarbon reservoirs.  相似文献   

2.
Denitrification, anammox (Anx) and di-nitrogen fixation were examined in two mangrove ecosystems- the anthropogenically influenced Divar and the relatively pristine Tuvem. Stratified sampling at 2 cm increments from 0 to 10 cm depth revealed denitrification as the main process of N2 production in mangrove sediments. At Divar, denitrification was ∼3 times higher than at Tuvem with maximum activity of 224.51 ± 6.63 nmol N2 g−1 h−1 at 0–2 cm. Denitrifying genes (nosZ) numbered up to 2 × 107 copies g−1 sediment and belonged to uncultured microorganisms clustering within Proteobacteria. Anammox was more prominent at deeper depths (8–10 cm) mainly in Divar with highest activity of 101.15 ± 87.73 nmol N2 g−1 h−1 which was 5 times higher than at Tuvem. Di-nitrogen fixation was detected only at Tuvem with a maximum of 12.47 ± 8.36 nmol N2 g−1 h−1. Thus, in these estuarine habitats prone to high nutrient input, N2-fixation is minimal and denitrification rather than Anx serves as an important mechanism for counteracting N loading.  相似文献   

3.
Nitrification, fuelled by ammonium is the pivotal oxidative pathway to nitrogen cycling. In spite of its ecological significance, the factors regulating nitrification rates in the benthic realm remain poorly understood. The present study therefore examines some of the factors like ammonium, nitrite, nitrate, organic carbon, iron and manganese on down-core variability in benthic nitrification rates in two different mangrove ecosystems, one under the influence of ferromanganese ore mining (experiment) and the other relatively undisturbed (control). We hypothesize that besides organic carbon, iron could also influence the rate of nitrification. The study also contrasts the distributive pattern of autotrophic and heterotrophic nitrifiers in the two regions. The concentration of iron at the control site ranged from 1.1% to 15.1% while at the experimental site it ranged from 2.9% to 46%. The levels of organic carbon at control and experimental sites ranged from 0.02% to 6.9% and 0.1% to 6.5%, respectively. The nitrification rates at the control and experimental sites are comparable and ranged from 3.2 ± 1.2 to 18.4 ± 1.9 ng at-N g(sediment)−1 h−1 and 2.7 ± 1.5 to 18.2 ± 0.6 ng at-N g(sediment)−1 h−1, respectively. While the abundance of heterotrophic nitrifiers at both the sites ranged from 102–3 cells g−1 sediment, the autotrophic nitrifiers at the experimental site was higher by an order at 103 cells g−1 sediment reflecting the relatively higher refractile nature of organic carbon at the experimental site (Straus and Lamberti, 2000). Though organic carbon and nitrification rates are similar in both the sites, the underlying mechanisms governing the processes could be different. Our studies suggest that at the control site, heterotrophic nitrifiers govern nitrification rates (r = 0.28, p < 0.05, n = 64) using organic carbon (r = 0.32, p < 0.01, n = 64). At the experimental site, nitrification was governed more by autotrophic nitrifiers (r = 0.43, p < 0.001, n = 64) at the expense of iron (r = 0.47, p < 0.001, n = 64). Therefore at the experimental site with higher load of iron, autotrophic nitrification could be more important. It is therefore inferred that both the quality of organic carbon and quantity of iron govern nitrification rates in these mangrove swamps.  相似文献   

4.
The spatial and temporal abundances of limno-tolerant and halo-tolerant bacteria were investigated in the tide-dominated Mandovi estuary along the west coast of India. These investigations were carried out in relation to various environmental parameters on a monthly basis at three fixed stations for a year. On an annual basis, the estuary showed an average salinity of 28.2, 17.4, and 12.6 at the mouth, midstream and upstream region. Halo-tolerant retrievable count (HTRC) and limno-tolerant retrievable count (LTRC) of bacteria were in the order of 106 L−1. Among the environmental parameters, a strong negative relationship between salinity and nitrate (r = −0.806; p < 0.001) suggested that 64% of the variation could be due to fresh water influence in the estuary. The limno-tolerant retrievable count (LTRC) brought about 23% variations in nitrate concentration. This influence was maximum during the monsoon (r = 0.522; p < 0.05) especially in the surface waters (r = 0.624; p < 0.001) suggesting nitrate reduction by LTRC. Measurements of nitrate reducing activity (NRA) in whole-water samples along the salinity gradient in the estuary also revealed higher reduction rates at lower salinity upstream. This was further confirmed by culture experiments where the limno-tolerant bacteria showed higher NRA than halo-tolerant forms. It is therefore suggested that LTRC is more actively involved in the variation of nitrate that enters the Mandovi estuary particularly during the monsoon.  相似文献   

5.
Certain concentration of metal may influence survival in embryonic stages, reducing the birthrate and hatching emergence. This study aimed to evaluate concentration of metal in eggs and hatchlings of Dermochelys coriacea and correlate metal concentrations in eggs with hatching and emergence success. The samples were collected at Biological Reserve Station, ES, Brazil. At the nests' opening, unhatched eggs and stillborn hatchlings were collected to survey the successful hatching and emergence of D. coriacea. The eggs shell, egg content, and dead hatchlings metal concentrations were compared to hatching and emergence success. A positive correlation was found between the concentration of copper (Cu) in the hatchlings and the success of the emergence (r2 = .28, p < .05), and a moderate positive correlation between the concentrations of iron (Fe) and barium (Ba; r2 = .44, p < .05) and success hatching. The concentrations of metals in eggs and hatchlings of D. coriacea in the Espírito Santo are below the levels that could be considered harmful to the species. In summary, there is a positive correlation between metals levels and hatching and emergence success.  相似文献   

6.
This study shows results on litterfall dynamics and decay in mangrove stands of Avicennia germinans distributed along a latitudinal gradient (three forest sites) in the Gulf of California, in order to assess whether internal sources could support the observed mangrove ecosystem organic deficit in this arid tropic. Total mean annual litterfall production increased southward (712.6 ± 53.3, 1501.3 ± 145.1 and 1506.2 ± 280.5 g DW m−2 y−1, in the Yaqui, Mayo and Fuerte areas respectively), leaves being the main component of litter in all locations during the entire year, followed by fruits. The wet season (June–September) showed the highest litterfall rates through fruits. The temporal trend of litterfall production was significantly explained through mean air temperature (R2 = 68%) whilst total annual litter production in the entire region showed a statistically significant relationship with total soil phosphorus, salinity, total nitrogen, organic matter and tree height (R2 = 0.67). Throughout 117 days of the decomposition experiment, the litter lost 50% of its original dry weight in 5.8 days (average decay rate of 0.032 ± 0.04 g DW d−1) and there were not significant differences in the remaining mass after 6 days. The percentage of both C and P released from the litter correlated significantly with the ratio of tidal inundated days to total experiment days (R2 = 0.62, p = 0.03 and R2 = 0.67, p = 0.02, respectively); however, the frequency of tidal inundation only showed a significant increase in C release from Avicennia litter after 6 and above 48 days of decomposition. Whereas the total C content of litter bags decreased linearly over the decomposition to (% Total C = 5.52 − 0.46 days, R2 = 0.81, p = 0.0005), N content displayed an irregular pattern with a significant increase of decay between 48 and 76 days from the beginning of the experiment. The pattern for relative P content of litter revealed reductions of up to 99% of the original (%tot-P = −9.77 to 1.004 days, R2 = 0.72, p = 0.01) although most of the P reduction occurred between 17 and 34 days after the experiment started. Soil N and P contents, which exhibited significant differences in the course of the decomposition experiment, appeared to show significant differences between sampling sites, although they were not related to tidal influence, nor by leaf and nutrient leaching. In a global basis, C/N litter ratios decreased linearly (C/N = 32.86 − 0.1006 days, R2 = 0.62, p = 0.02), showing a strong and significant correlation with meteorological variables (R2 = 0.99, p = 0.01). C/P ratios of litter increased through an exponential function (C/P = 119.35e0.04day, R2 = 0.89, p < 0.001). Changes in the remaining percentage of litter mass during the experiment were significantly correlated with soil C/N ratio (R2 = 0.56, p = 0.03) as well as with the soil C/P ratio (R2 = 0.98, p < 0.001). Our results of litter decomposition dynamics in this mangrove support the fact of null net primary productivity of the arid mangrove wetlands: fast litter decomposition compensates the ecosystem organic deficit in order to sustain the mangrove productivity. Litter decomposition plays a key role in the ecosystem metabolism in mangroves of arid tropics.  相似文献   

7.
Fluxes of dissolved forms of iron and manganese across the sediment–water interface were studied in situ in the Gulf of Finland and the Vistula Lagoon (Baltic Sea), and in the Golubaya Bay (Black Sea) from 2001 to 2005. Fluxes were measured using chamber incubations, and sediment cores were collected and sliced to assess the porewater and solid phase metal distribution at different depths. Measured and calculated benthic fluxes of manganese and iron were directed out of sediment for all sites and were found to vary between 70–4450 and 5–1000 µmole m− 2 day− 1 for manganese and iron, respectively. The behavior of the studied metals at various redox conditions in the near-bottom water and in the sediment was the main focus in this study. Our results show the importance of bottom water redox conditions for iron fluxes. We measured no fluxes at oxic conditions, intermediate fluxes at anoxic conditions (up to 200 μmole m− 2 day− 1) and high fluxes at suboxic conditions (up to 1000 μmole m− 2 day− 1). Total dissolved iron fluxes were generally dominated by iron(II). Contribution of iron(III) to the total iron flux did not exceed 20%. Obtained fluxes of manganese at all studied regions showed a linear correlation (r2 = 0.97) to its concentration in the porewater of the top sediment layer (0–5 mm) and did not depend on dissolved oxygen concentrations of bottom water. Organically complexed iron and manganese were in most cases not involved in the benthic exchange processes.  相似文献   

8.
It has been shown that salt marshes may function as efficient sinks for contaminants, namely for mercury. At the rhizo-sediment Hg may be associated with Mn and Fe oxyhydroxides, precipitated as sulphides or incorporated into organic matter. However, to our knowledge, in situ studies have not focused on the related processes at a daily or tidal cycle scales. Thus, the present work aims to study the effect of a common salt marsh halophyte in temperate latitudes (Sarcocornia perennis) on dissolved Fe, Mn and Hg concentrations in the water column. The in situ approach was carried out at a mercury-contaminated salt marsh and at the adjacent non-vegetated area (distance ≤ 4 m), covering two consecutive tidal cycles in order to include the photosynthetic active period and the night processes. During high tide no daily or spatial effects were observed on the concentrations of Mn, Fe and Hg in the water column, due to the dilution effect of the incoming seawater. During low tide the concentrations of Mn, Fe and Hg were significantly higher in the overlaying water column of the salt marsh. At S. perennis mats the concentration of dissolved total Hg was significantly related with the concentration of Mn (r = 0.459, p = 0.028, n = 23), but not with that of Fe (r = 0.367, p = 0.085, n = 23) while no significant relations were found at the adjacent non-vegetated sediments.  相似文献   

9.
Moored sediment traps were deployed from January 2004 through December 2007 at depths of 550 and 800 m in San Pedro Basin (SPB), CA (33°33.0′N, 118°26.5′W). Additionally, floating sediment traps were deployed at 100 and 200 m for periods of 12-24 h during spring 2005, fall 2007, and spring 2008. Average annual fluxes of mass, particulate organic carbon (POC), ??13Corg, particulate organic nitrogen (PON), ??15N-PON, biogenic silica (bSiO2), calcium carbonate (CaCO3), and detrital material (non-biogenic) were coupled with climate records and used to examine sedimentation patterns, vertical flux variability, and organic matter sources to this coastal region. Annual average flux values were determined by binning data by month and averaging the monthly averages. The average annual fluxes to 550 m were 516±42 mg/m2 d for mass (sdom of the monthly averages, n=117), 3.18±0.26 mmol C/m2 d for POC (n=111), 0.70±0.05 mmol/m2 d for CaCO3 (n=110), 1.31±0.21 mmol/m2 d for bSiO2 (n=115), and 0.35±0.03 mmol/m2 d for PON (n=111). Fluxes to 800 and to 550 m were similar, within 10%. Annual average values of ??13Corg at 550 m were −21.8±0.2‰ (n=108), and ??15N averages were 8.9±0.2‰ (n=95). The timing of both high and low flux particle collection was synchronous between the two traps. Given the frequency of trap cup rotation (4-11 days), this argues for particle settling rates ≥83 m/d for both high and low flux periods. The moored traps were deployed over one of the wettest (2004-2005, 74.6 cm rainfall) and driest (2006-2007, 6.6 cm) rain years on record. There was poor correlation (Pearson's correlation coefficient, 95% confidence interval) of detrital mass flux with: Corg/N ratio (r=0.10, p=0.16); ??15N (r=−0.19, p=0.02); and rainfall (r=0.5, p=0.43), suggesting that runoff does not immediately cause increases in particle fluxes 15 km offshore. ??13Corg values suggest that most POC falling to the basin floor is marine derived. Coherence between satellite-derived chlorophyll a records from the trap location (±9 km2 resolution) and SST data indicates that productivity and export occurs within a few days of upwelling and both of these parameters are reasonable predictors of POC export, with a time lag of a few days to 2 weeks (with no time lag—SeaWiFS chlorophyll a and POC flux, r=0.25, p=0.0014; chlorophyll a and bSiO2 flux, r=0.28, p=0.0002).  相似文献   

10.
Recurrent coastal upwelling is recognized as one of the main factors promoting the exceptionally high productivity of the Humboldt Current System. Herein, we study time series data of gross primary production (2003-2006) and its fluctuation in relation to seasonal changes in the light and nutrient field of the Concepción upwelling ecosystem. Concurrent measurements of gross primary production, community respiration, bacterial secondary production, and sedimentation rates allowed a characterization of the main carbon fluxes and pathways in the study area. The integrated values of gross primary production were higher during the upwelling period (>1 g C m−2 d−1; October-April; that is, early spring to early austral fall). Seasonal changes in the system were also reflected in community respiration, organic matter sedimentation, and bacterial production rates, which varied along with the gross primary production. The significant correlation between gross primary production and community respiration (Spearman, r = 0.7; p < 0.05; n = 18) reflected an important degree of coupling between organic matter formation and its usage by the microplanktonic community during periods when gross primary production/community respiration were highly similar. Higher gross primary production values (>6 g C m−2 d−1) were consistently associated with maximum biomass levels of Skeletonema costatum and Thalassiosira subtilis. We observed a positive correlation between gross primary production and the sedimentation of intact diatom cells (Spearman, r = 0.5, p < 0.05, n = 17). Our data suggest that, in the Concepción upwelling ecosystem, bacteria utilize an important fraction of the gross primary production. If our interpretations are correct, they leave unanswered the question of how the system supports the extremely high fish biomass levels, therein pointing out the system’s limited capacity to buffer the evasion of CO2 following upwelling.  相似文献   

11.
To estimate the influence of mercury emitted from submarine fumaroles, the horizontal and vertical distribution of mercury in sediment of Kagoshima Bay was studied. The fumaroles are located in the northern bay head area, and the sediment samples had been taken from 52 points throughout the bay with a gravity core sampler. The core samples obtained were cut at a thickness of 1–2 cm and used for measurements. The total concentration of mercury in surface sediment in the northern and central areas of the bay was 51–679 μg kg− 1 (average 199 μg kg− 1, n = 22) and 23–100 μg kg− 1 (average 55 μg kg− 1, n = 30), respectively. The highest value was obtained in the vicinity of the fumaroles. The mercury concentration in sediment near the fumaroles varied with depth, which may reflect the variation in fumarolic activity. A successive extraction method was applied to the speciation of mercury in the sediment. The results showed that sediment taken in the vicinity of submarine fumaroles contained a higher percentage of mercury bound with organic matter.  相似文献   

12.
Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (<2 μm) by a demosponge (Callyspongia sp.), and carbon flux through this process, were examined for the first time in the oligotrophic coastal waters of southwestern Australia, where sponge abundance and biodiversity ranks among the highest in the world. Water sampling and flow rate measurements were conducted over five sampling occasions following the InEx method of Yahel et al. (2005), with heterotrophic bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type (p < 0.01). Overall filtration efficiency for Synechococcus (86.6 ± 6.3%; mean ± s.d.) was always significantly higher (p < 0.05) than for low DNA (LDNA) bacteria (40 ± 17.2%), except during winter 2007 (p = 0.14) when ambient Synechococcus concentrations were lowest. When compared to ambient abundances of the different food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time (p < 0.01), with lowest rates recorded during the winter (0.5 ± 0.4–0.6 ± 0.8 mg C m−2 d−1) and highest values recorded in summer (3.5 ± 1.9 mg C m−2 d−1). These flux estimates quantify the role of a demosponge species in the ultimate fate of prokaryotic picoplankton within the nearshore food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that optimise their nutritional intake.  相似文献   

13.
From January 2003 to December 2004 microphytobenthic primary production was estimated both from in situ (MPPs) and in the laboratory (MPPp) 14C-incubation of slurries collected in a coastal site of the Gulf of Trieste (northern Adriatic Sea). MPPs values varied from −7.54 ± 3.12 to 34.59 ± 7.66 mg C m−2 h−1 over the whole period. The lowest MPPs were observed in November 2003 and August 2004, while the highest MPPs in July 2003 and May 2004, in correspondence with high PAR at the bottom. Significant correlations between MPPs and the microphytobenthic biomass (BIOM) (r = 0.75, p < 0.001), between MPPs and PAR at the bottom (r = 0.54, p < 0.01) and between MPPs and OXY (r = 0.50, p < 0.05) were revealed. MPPp values were higher than MPPs ones in 15 out of 23 observations, with the highest MPPp recorded in July 2003. At 17 m depth a seasonal pattern of sampling months was revealed by the cluster analysis. The role of abiotic parameters in determining this seasonal pattern was highlighted by the PCA, with the first axis correlated with MPPs and PAR, and the second one with temperature. Applying the fuzzy sets it resulted that spring months showed a higher degree of membership with MPPs, summer months with temperature and autumn–winter months with OXY. The microphytobenthic community did not seem to be photosynthetically active throughout the study period. From August–September to December low or negative MPPs values were recorded. We infer that during these months a shift from the autotrophic to heterotrophic metabolism of the benthic microalgae occurred in correspondence with low PAR and/or high temperature at the bottom. Despite the progressive lowering of the trophy of the study area occurred during the last 20 years, we found higher primary production values than those estimated two decades earlier.  相似文献   

14.
Ninety-four stations were sampled in the Atlantic subtropical gyres during 10 cruises carried out between 1995 and 2001, mainly in boreal spring and autumn. Chlorophyll a (Chl-a) and primary production were measured during all cruises, and phytoplankton biomass was estimated in part of them. Picoplankton (<2 μm) represented >60% of total Chl-a concentration measured at the surface, and their contribution to this variable increased with depth. Phytoplankton carbon concentrations were higher in the upper metres of the water column, whereas Chl-a showed a deep maximum (DCM). At each station, the water column was divided into the upper mixed layer (ML) and the DCM layer (DCML). The boundary between the two layers was calculated as the depth where Chl-a concentration was 50% of the maximum Chl-a concentration. On average DCML extends from 67 to 126 m depth. Carbon to Chl-a (C:Chl-a) ratios were used to estimate phytoplankton carbon content from Chl-a in order to obtain a large phytoplankton carbon dataset. Total C:Chl-a ratios averaged (±s.e.) 103±7 (n=22) in the ML and 24±4 (n=12) in the DCML and were higher in larger cells than in picoplankton. Using these ratios and primary production measurements, we derived mean specific growth rates of 0.17±0.01 d−1 (n=173) in the ML and 0.20±0.01 d−1 (n=165) in the DCML although the differences were not significant (t-test, p>0.05). Our results suggest a moderate contribution of the DCML (43%) to both phytoplankton biomass and primary production in the Atlantic subtropical gyres.  相似文献   

15.
Size-fractionated bacterial production, abundance and α- and β- glucosidase enzyme activities were studied with respect to changes in hydrography, total suspended matter (TSM), chlorophyll a, particulate organic carbon and nitrogen ratio (POC:PON), 1.5 M NaCl-soluble and 10 mM EDTA-soluble carbohydrates (Sal-PCHO and CPCHO) and transparent exopolymeric particles (TEP) in the surface waters from July 1999–2000 at a shallow coastal station in Dona Paula Bay, west coast of India. The bulk of the total bacterial production and glucosidase activity were associated with particles (75% and >80%, respectively). Total bacterial production was linearly correlated to chlorophyll a (r = 0.513; p < 0.05) whereas enzyme activity was significantly correlated to TSM (α-glucosidase: r = 0.721 (p < 0.001); β-glucosidase: r = 0.596 (p < 0.01)). Both α-glucosidase (r = 0.514; p < 0.05) and β-glucosidase enzymes (r = 0.598; p < 0.01) appeared to be involved in the degradation of CPCHO and Sal-PCHO, respectively. Changes in α-glucosidase/β-glucosidase ratios highlighted the varying composition of particulate organic matter. The bacterial uptake of 14C-labeled bacterial extracellular carbohydrate measured over 11 days showed a strong linear correlation between 14C-uptake and bacterial production using tritiated thymidine. The turnover rate of 14C-labeled carbohydrate-C was 0.52 d−1, higher than the estimated annual mean potential carbohydrate carbon turnover rate of 0.33 ± 0.2 d−1. Our study suggests that carbohydrates derived from sediments may serve as an important alternative carbon source sustaining the bacterial carbon demand in the surface waters of Dona Paula Bay.  相似文献   

16.
Microbial plankton biomass, primary production (PP) and phytoplankton growth rates (μ) were estimated along the NW Iberian margin during an upwelling relaxation event. Although the interaction between wind forcing and coastline singularities caused high spatial variability in PP (0.4-8.4 g C m−2 d−1), two domains (coastal and oceanic) could be distinguished regarding microbial plankton biomass and μ. At the coastal domain, with higher influence of upwelling, diatoms showed an important contribution (27 ± 17%) to total autotrophic biomass (AB). Nonetheless, AB was dominated by autotrophic nanoflagellates (ANF) at both realms, accounting for 62 ± 16% and 89 ± 6% of the integrated AB at the coastal and oceanic domain respectively. AB and heterotrophic biomass (HB) were significantly higher at the oceanic than at the coastal domain, with both biomasses covarying according to HB:AB = 0.33. Whereas the low phytoplankton carbon to chlorophyll a ratio (Cph:chl a = 38 ± 3) and the high μ = 0.54 ± 0.09 d−1 registered at the coastal stations suggest that phytoplankton was not nutrient limited at this domain, the values (Cph:chl a = 157 ± 8; μ = 0.17 ± 0.02 d−1) recorded at the oceanic domain point to severe nutrient limitation. However, the high Fv/Fm fluorescence ratios (0.56 ± 0.09) measured at the sea surface in the oceanic domain suggest that nutrient limitation did not occur. To reconcile these two apparently opposite views, it is suggested the occurrence of mixotrophic nutrition of ANF, with heterotrophic nutrition supplying about 75% of carbon requirements.  相似文献   

17.
Lagrangian time series of dimethylsulfide (DMS) concentrations from a cyclonic and an anticyclonic eddy in the Sargasso Sea were used in conjunction with measured DMS loss rates and a model of vertical mixing to estimate gross DMS production in the upper 60 m during summer 2004. Loss terms included biological consumption, photolysis, and ventilation to the atmosphere. The time- and depth (0–60 m)-averaged gross DMS production was estimated to be 0.73±0.09 nM d−1 in the cyclonic eddy and 0.90±0.15 nM d−1 in the anticyclonic eddy, with respective DMS replacement times of 5±1 and 6±1 d. The higher estimated rate of gross production and lower measured loss rate constants in the anticyclonic eddy were equally responsible for this eddy's 50% higher DMS inventory (0–60 m). When normalized to chlorophyll and total dimethylsulfoniopropionate (DMSP), estimated gross production in the anticyclonic eddy was about twice that in the cyclonic eddy, consistent with the greater fraction of phytoplankton that were DMSP producers in the anticyclonic eddy. Higher rates of gross production were estimated below the mixed layer, contributing to the subsurface DMS maximum found in both eddies. In both eddies, gas exchange, microbial consumption, and photolysis were roughly equal DMS loss terms in the surface mixed layer (0.2–0.4 nM d−1). Vertical mixing was a substantial source of DMS to the surface mixed layer in both eddies (0.2–0.3 nM d−1) owing to the relatively high DMS concentrations below the mixed layer. Estimated net biological DMS production rates (gross production minus microbial consumption) in the mixed layer were substantially lower (by almost a factor of 3) than those estimated in a previous study of the Sargasso Sea, which may explain the relatively low mixed-layer DMS concentrations found here during July 2004 (3 nM) compared to previous summers (4–6 nM).  相似文献   

18.
《Marine Chemistry》2007,103(1-2):30-45
The chemistry of dissolved Fe(III) was studied in the Scheldt estuary (The Netherlands). Two discrete size fractions of the dissolved bulk (< 0.2 μm and < 1 kDa) were considered at three salinities (S = 26, 10 and 0.3).Within the upper estuary, where fresh river water meets seawater, the dissolved Fe concentration decreases steeply with increasing salinity, for the fraction < 0.2 μm from 536 nM at S = 0.3 to 104 nM at S = 10 and for the fraction < 1 kDa from 102 nM to 36 nM Fe. Further downstream, in the middle and lower estuary, this decrease in the Fe concentration continues, but is far less pronounced. For all samples, the traditionally recognised dissolved strong organic Fe-binding ligand concentrations are lower than the dissolved Fe concentrations.Characteristics of dissolved Fe-binding ligands were determined by observing kinetic interactions with adsorptive cathodic stripping voltammetry. From these kinetic experiments we concluded that apart from the well-known strong Fe-binding organic ligands (L, logK = 19–22) also weak Fe-binding ligands (P) existed with an α value (binding potential = K · [P]) varying between 1011.1 and 1011.9. The presence of this relatively weak ligand explained the high concentrations of labile Fe present in both size fractions in the estuary. This weak ligand can retard or prevent a direct precipitation after an extra input of Fe.The dissociation rate constants of the weak ligand varied between 0.5 × 10 4 and 4.3 × 10 4 s 1. The rate constants of the strong organic ligand varied between kd = 1.5 × 10 3–17 × 10 2 s 1 and kf = 2.2 × 108–2.7 × 109 M 1 s 1. The dissociation rate constant of freshly amorphous Fe-hydroxide was found to be between 4.3 × 10 4 and 3.7 × 10 3 s 1, more labile or equal to the values found by Rose and Waite [Rose, A.L., Waite, T.D., 2003a. Kinetics of hydrolysis and precipitation of ferric iron in seawater. Environ. Sci. Technol., 37, 3897–3903.] for freshly precipitated Fe in seawater.Kinetic rate constants of Fe with the ligand TAC (2-(2-Thiazolylazo)-p-cresol) were also determined. The formation rate constant of Fe(TAC)2 varied between 0.1 × 108 and 3.6 × 108 M 1 s 1, the dissociation rate constant between 0.2 × 10 5 and 17 × 10 5 s 1 for both S = 26 and S = 10. The conditional stability constant of Fe(TAC)2 (βFe(TAC)2′) varied between 22 and 23.4 for S = 10 and S = 26 more or less equal to that known from the literature (logβFe(TAC)2 = 22.4; [Croot, P.L., Johansson, M., 2000. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p-cresol (TAC). Electroanalysis, 12, 565–576.]). However, at S = 0.3 the logβFe(TAC)2′ was 25.3, three orders of magnitude higher. Apparently the application of TAC to samples of low salinity can only be done when the correct βFe(TAC)2′ is known.  相似文献   

19.
The stable carbon isotope composition of particulate organic carbon (δ13CPOC) and naturally occurring long-lived radionuclide 226Ra (T1/2=1600 a) were applied to study the variations of upper ocean (<100 m) carbon dynamics in response to sea ice melting in Prydz Bay, East Antarctica during austral summer 2006. Surface δ13CPOC values ranged from −27.4‰ to −19.0‰ and generally decreased from inner bay (south of 67°S) toward the Antarctic Divergence. Surface water 226Ra activity concentration ranged from 0.92 to 2.09 Bq/m3 (average 1.65±0.32 Bq/m3, n=20) and increased toward the Antarctic Divergence, probably reflecting the influence of 226Ra-depleted meltwater and upwelled 226Ra-replete deep water. The fraction of meltwater, fi, was estimated from 226Ra activity concentration and salinity using a three-component (along with Antarctic Summer Surface Water, and Prydz Bay Deep Water) mixing model. Although the fraction of meltwater is relatively minor (1.6–11.9%, average 4.1±2.7%, n=20) for the surface waters (sampled at ~6 m), a positive correlation between surface δ13CPOC and fi13CPOC=0.94×fi−28.44, n=20, r2=0.66, p<0.0001) was found, implying that sea ice melting may have contributed to elevated δ13CPOC values in the inner Prydz Bay compared to the open oceanic waters. This is the first time for a relationship between δ13CPOC and meltwater fraction to be reported in polar oceans to our knowledge. We propose that sea ice melting may have affected surface ocean δ13CPOC by enhancing water column stability and providing a more favorable light environment for phytoplankton photosynthesis, resulting in drawdown of seawater CO2 availability, likely reducing the magnitude of isotope fractionation during biological carbon fixation. Our results highlight the linkage of ice melting and δ13CPOC, providing insights into understanding the carbon cycling in the highly productive Antarctic waters.  相似文献   

20.
《Journal of Sea Research》2000,43(3-4):265-273
Concentrations of dimethylsulphoniopropionate (DMSP) were measured in seven pack ice cores from three sites in eastern Antarctica to determine their relation to algal pigments, nutrients (nitrate, silicate and phosphate) and bulk salinity. The algal groups haptophytes, dinoflagellates and diatoms were identified in surface, interior and bottom assemblages in the pack ice cores using the photosynthetic marker pigments 19′-hexanoyloxyfucoxanthin (HEX), peridinin (PER) and fucoxanthin (FUC), respectively. DMSP concentrations were significantly correlated (P<0.01, Pearson) with chlorophyll-a (r=0.58), HEX (r=0.75), PER (r=0.79) and FUC (r=0.63) concentrations. The pool of DMSP within the pack ice (mean 107 nM) was contributed mainly by interior and bottom algal assemblages (mean 94 and 268 nM, respectively), whilst the surface algal assemblages were minor contributors (mean 18 nM). DMSP production and/or accumulation appears to differ between surface, interior and bottom pack ice algal assemblages due to differences in biomass, class composition, and possibly the unique environmental conditions experienced by each assemblage. In pack ice, diatoms appear to be important producers of DMSP, due to their dominance of algal assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号