首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There has been more attention to phytoplankton dynamics in nutrient-rich waters than in oligotrophic ones thus requiring the need to study the dynamics and responses in oligotrophic waters. Accordingly, phytoplankton community in Blanes Bay was overall dominated by Prymnesiophyceae, remarkably constant throughout the year (31 ± 13% Total chlorophyll a, Tchl a) and Bacillariophyta with a more episodic appearance (20 ± 23% Tchl a). Prasinophyceae and Synechococcus contribution became substantial in winter (Prasinophyceae = 30% Tchl a) and summer (Synechococcus = 35% Tchl a). Phytoplankton growth and grazing mortality rates for major groups were estimated by dilution experiments in combination with high pressure liquid chromatography and flow cytometry carried out monthly over two years. Growth rates of total phytoplankton (range = 0.30–1.91 d−1) were significantly higher in spring and summer (μ > 1.3 d−1) than in autumn and winter (μ ∼ 0.65 d−1) and showed a weak dependence on temperature but a significant positive correlation with day length. Microzooplankton grazing (range = 0.03–1.4 d−1) was closely coupled to phytoplankton growth. Grazing represented the main process for loss of phytoplankton, removing 60 ± 34% (±SD) of daily primary production and 70 ± 48% of Tchl a stock. Chla synthesis was highest during the Bacillarophyceae-dominated spring bloom (Chl asynt = 2.3 ± 1.6 μg Chl a L−1 d−1) and lowest during the following post-bloom conditions dominated by Prymnesiophyceae (Chl asynt = 0.23 ± 0.08 μg Chl a L−1 d−1). This variability was smoothed when expressed in carbon equivalents mainly due to the opposite dynamics of C:chl a (range = 11–135) and chl a concentration (range = 0.07–2.0 μg chl a L−1). Bacillariophyta and Synechococcus contribution to C fluxes was higher than to biomass because of their fast-growth rate. The opposite was true for Prymnesiophyceae.  相似文献   

2.
The relation between trophic regime and phytoplankton composition and function in oceanic systems is well accepted in oceanography. However, the relative dynamics and carbon cycling contributions of different phytoplankton groups across gradients of ocean richness are not fully understood. In this work we investigated phytoplankton dynamics along two transects from the NW African coastal upwelling to open-ocean waters of the north Atlantic subtropical gyre. We adopted a pigment-based approach to characterize community structure and to quantify group-specific growth and grazing rates and associated carbon fluxes. Changes in pigment cell concentration during the incubation experiments due to photoadaptation were corrected to obtain reliable rates. The oceanic region was dominated by Prochlorococcus (PRO) (45±7% of total chlorophyll a) while diatoms dominated in upwelling waters (40±37%). Phytoplankton grew faster (μ=0.78±0.26 d−1) and free of nutrient limitation (μ/μn=0.98±0.42) in the coastal upwelling region, with all groups growing at similar rates. In oceanic waters, the growth rate of bulk phytoplankton was lower (μ=0.52±0.16 d−1) and nutrient limited (μ/μn=0.68±0.19 d−1). Diatoms (0.80±0.39 d−1) and Synechococcus (SYN) (0.72±0.25 d−1) grew faster than Prymnesiophyceae (PRYMN) (0.62±0.26 d−1) and PRO (0.46±0.18 d−1). The growth rates of PRO and SYN were moderately nutrient limited (μ/μn=0.81 and 0.91, respectively), while the limitation for diatoms (μ/μn=0.71) and PRYMN (μ/μn=0.37) was more severe. Microzooplankton grazing rate was higher in upwelling (0.68±0.32 d−1) than in oceanic waters (0.37±0.19 d−1), but represented the main loss pathway for phytoplankton in both systems (m/μ=0.90±0.32 and 0.69±0.24, respectively). Carbon flux through phytoplankton, produced and grazed, increased from offshore to coastal (∼2 to ∼200 μg C L−1 d−1), with diatoms dominating the flux in the upwelling region (52%) while PRYMN (40%) and PRO (30%) dominated in the open ocean.  相似文献   

3.
Two microcosm experiments were carried out to simulate the effect of sporadic oil spills derived from tanker accidents on oceanic and coastal marine phytoplankton assemblages. Treatments were designed to reproduce the spill from the Prestige, which took place in Galician coastal waters (NW Iberia) in November 2002. Two different concentrations of the water soluble fraction of oil were used: low (8.6 ± 0.7 μg l−1 of chrysene equivalents) and high (23 ± 5 μg l−1 of chrysene equivalents l−1). Photosynthetic activity and chlorophyll a concentration decreased in both assemblages after 24–72 h of exposure to the two oil concentrations, even though the effect was more severe on the oceanic assemblage. These variables progressively recovered up to values close or higher than those in the controls, but the short-term negative effect of oil, which was generally stronger at the high concentration, also induced changes in the structure of the plankton community. While the biomass of nanoflagellates increased in both assemblages, oceanic picophytoplankton was drastically reduced by the addition of oil. Effects on diatoms were also observed, particularly in the coastal assemblage. The response of coastal diatoms to oil addition showed a clear dependence on size. Small diatoms (<20 μm) were apparently stimulated by oil, whereas diatoms >20 μm were only negatively affected by the high oil concentration. These differences, which could be partially due to indirect trophic interactions, might also be related to different sensitivity of species to PAHs. These results, in agreement with previous observations, additionally show that the negative effect of the water soluble fraction of oil on oceanic phytoplankton was stronger than on coastal phytoplankton.  相似文献   

4.
During a cruise of r/v ‘Oceania’ in May 2006, seven vertical dissolved organic carbon (DOC) concentration profiles were produced against a background of CTD, chlorophyll a (chl a) and phaeopigment concentration profiles. The results indicate distinct vertical and spatial DOC fluctuations, ranging from 248 ± 7 μmol C dm−3 at 70 m depth at the westernmost station G/06 to 398 ± 5 μmol C dm−3 at 5 m depth at station A/06 in the western Gulf of Gdańsk. DOC concentrations were the highest at 10 m depth, where phytoplankton activity was relatively intensive, as reflected by the active chl a concentration distribution. DOC concentrations decreased towards the sea bottom.  相似文献   

5.
Phytoplankton community structure is expected to shift to larger cells (e.g., diatoms) with monsoonal forcing in the Arabian Sea, but recent studies suggest that small primary producers remain active and important, even in areas strongly influenced by coastal upwelling. To better understand the role of smaller phytoplankton in such systems, we investigated growth and grazing rates of picophytoplankton populations and their contributions to phytoplankton community biomass and primary productivity during the 1995 Southwest Monsoon (August–September). Environmental conditions at six study stations varied broadly from open-ocean oligotrophic to coastal eutrophic, with mixed-layer nitrate and chlorophyll concentrations ranging from 0.01 to 11.5 μM NO3 and 0.16 to 1.5 μg Chl a. Picophytoplankton comprised up to 92% of phytoplankton carbon at the oceanic stations, 35% in the diatom-dominated coastal zone, and 26% in a declining Phaeocystis bloom. Concurrent in situ dilution and 14C-uptake experiments gave comparable ranges of community growth rates (0.53–1.05 d−1 and 0.44–1.17 d−1, to the 1% light level), but uncertainties in C:Chl a confounded agreement at individual stations. Microzooplankton grazing utilized 81% of community phytoplankton growth at the oligotrophic stations and 54% at high-nutrient coastal stations. Prochlorococcus (PRO) was present at two oligotrophic stations, where its maximum growth approached 1.4 d−1 (two doublings per day) and depth-integrated growth varied from 0.2 to 0.8 d−1. Synechococcus (SYN) growth ranged from 0.5 to 1.1 d−1 at offshore stations and 0.6 to 0.7 d−1 at coastal sites. Except for the most oligotrophic stations, growth rates of picoeukaryotic algae (PEUK) exceeded PRO and SYN, reaching 1.3 d−1 offshore and decreasing to 0.8 d−1 at the most coastal station. Microzooplankton grazing impact averaged 90, 70, and 86% of growth for PRO, SYN, and PEUK, respectively. Picoplankton as a group accounted for 64% of estimated gross carbon production for all stations, and 50% at high-nutrient, upwelling stations. Prokaryotes (PRO and SYN) contributed disproportionately to production relative to biomass at the most oligotrophic station, while PEUK were more important at the coastal stations. Even during intense monsoonal forcing in the Arabian Sea, picoeukaryotic algae appear to account for a large portion of primary production in the coastal upwelling regions, supporting an active community of protistan grazers and a high rate of carbon cycling in these areas.  相似文献   

6.
This study focuses on the comparison of oceanic and coastal cold-core eddies with inner-shelf and East Australian Current (EAC) waters at the time of the spring bloom (October 2008). The surface water was biologically characterised by the phytoplankton biomass, composition, photo-physiology, carbon fixation and by nutrient-enrichment experiments. Marked differences in phytoplankton biomass and composition were observed. Contrasted biomarker composition suggests that biomarkers could be used to track water masses in this area. Divinyl chlorophyll a, a biomarker for tropical Prochlorophytes, was found only in the EAC. Zeaxanthin a biomarker for Cyanophytes, was found only within the oceanic eddy and in the EAC, whereas chlorophyll b (Chlorophytes) was only present in the coastal eddy and at the front between the inner-shelf and EAC waters.This study showed that cold-core eddies can affect phytoplankton, biomass, biodiversity and productivity. Inside the oceanic eddy, greater phytoplankton biomass and a more complex phytoplankton community were observed relative to adjacent water masses (including the EAC). In fact, phytoplankton communities inside the oceanic eddy more closely resembled the community observed in the inner-shelf waters. At a light level close to half-saturation, phytoplankton carbon fixation (gC d−1) in the oceanic eddy was 13-times greater than at the frontal zone between the eddy and the EAC and 3-times greater than in the inner-shelf water. Nutrient-enrichment experiments demonstrated that nitrogen was the major macronutrient limiting phytoplankton growth in water masses associated with the oceanic eddy. Although the effective quantum yield values demonstrate healthy phytoplankton communities, the phytoplankton community bloomed and shifted in response to nitrogen enrichments inside the oceanic eddy and in the frontal zone between this eddy and the EAC. An effect of Si enrichment was only observed at the frontal zone between the eddy and the EAC. No response to nutrient enrichment was observed in the inner-shelf water where ambient NOx, Si and PO4 concentrations were up to 14, 4 and 3-times greater than in the EAC and oceanic eddy. Although results from the nutrient-enrichment experiments suggest that nutrients can affect biomass and the composition of the phytoplankton community, the comparison of all sites sampled showed no direct relationship between phytoplankton biomass, nutrients and the depth of the mixed layer. This is probably due to the different timeframe between the rapidly changing physical and chemical oceanography in the separation zone of the EAC.  相似文献   

7.
The photosynthetic properties of phytoplankton populations as related to physical–chemical variations on small temporal and spatial scales and to phytoplankton size structure and pigment spectra were investigated in the Northern Adriatic Sea off the Po River delta in late winter 1997. Large diatoms (fucoxanthin) dominated the phytoplankton in the coastal area whereas small phytoflagellates (mainly 19′-hexanoyloxyfucoxanthin, chlorophyll b, 19′-butanoyloxyfucoxanthin) occurred outside the front. The front was defined by the steep gradient in density in the surface layer separating low-salinity coastal waters from the offshore waters.Physical features of the area strongly influenced phytoplankton biomass distributions, composition and size structure. After high volumes of Po River discharge several gyres and meanders occurred in the area off the river delta in February. Decreasing river discharge and the subsequent disappearance of the gyres and the spreading dilution of the river plume was observed in March. The dynamic circulation of February resulted in high photosynthetic capacity of the abundant phytoplankton population (>3.40 mg m−3). In March, the slow circulation and an upper low-salinity water layer, segregated from the deeper layers, resulted in lack of renewal of this water mass. The huge phytoplankton biomass, up to 15.77 mg chl a m−3, became nutrient depleted and showed low photosynthetic capacity. In February, an exceptionally high PmaxB, 20.11 mg C (mg chl a)−1 h−1 was recorded in the Po River plume area and average PmaxB was three-fold in February as compared to the March recordings, 10.50 mg C (mg chl a)−1 h−1 and 3.22 mg C (mg chl a)−1 h−1, respectively.The extreme variability and values of phytoplankton biomass in the innermost plume area was not always reflected in primary production. Modeling of circulation patterns and water mass resilience in the area will help to predict phytoplankton response and biomass distributions. In the frontal area, despite a considerable variability in environmental conditions, our findings have shown that the phytoplankton assemblages will compensate for nutrient depression and hydrographic constraints, by means of size and taxonomic composition and, as a result, the variability in the photosynthetic capacity was much less pronounced than that observed for other parameters.  相似文献   

8.
Ninety-four stations were sampled in the Atlantic subtropical gyres during 10 cruises carried out between 1995 and 2001, mainly in boreal spring and autumn. Chlorophyll a (Chl-a) and primary production were measured during all cruises, and phytoplankton biomass was estimated in part of them. Picoplankton (<2 μm) represented >60% of total Chl-a concentration measured at the surface, and their contribution to this variable increased with depth. Phytoplankton carbon concentrations were higher in the upper metres of the water column, whereas Chl-a showed a deep maximum (DCM). At each station, the water column was divided into the upper mixed layer (ML) and the DCM layer (DCML). The boundary between the two layers was calculated as the depth where Chl-a concentration was 50% of the maximum Chl-a concentration. On average DCML extends from 67 to 126 m depth. Carbon to Chl-a (C:Chl-a) ratios were used to estimate phytoplankton carbon content from Chl-a in order to obtain a large phytoplankton carbon dataset. Total C:Chl-a ratios averaged (±s.e.) 103±7 (n=22) in the ML and 24±4 (n=12) in the DCML and were higher in larger cells than in picoplankton. Using these ratios and primary production measurements, we derived mean specific growth rates of 0.17±0.01 d−1 (n=173) in the ML and 0.20±0.01 d−1 (n=165) in the DCML although the differences were not significant (t-test, p>0.05). Our results suggest a moderate contribution of the DCML (43%) to both phytoplankton biomass and primary production in the Atlantic subtropical gyres.  相似文献   

9.
《Journal of Sea Research》2009,61(4):246-254
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m 2 d 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after ∼ 30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m 2 d 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

10.
Satellite image studies and recent in situ sampling have identified conspicuous phytoplankton blooms during spring and summer along the Patagonia shelf-break front. The magnitudes and spectral characteristics of light absorption by total particulate matter (phytoplankton and detritus) and colored dissolved organic matter (CDOM) have been determined by spectrophotometry in that region for spring 2006 and late summer 2007 seasons. In spring, phytoplankton absorption was the dominant optical component of light absorption (60–85%), and CDOM showed variable and important contributions in summer (10–90%). However, there was a lack of correlation between phytoplankton biomass (chlorophyll-a concentration or [chl a]) and the non-algal compartment in both periods. A statistically significant difference was found between the two periods with respect to the CDOM spectral shape parameter (Scdom), with means of 0.015 (spring) and 0.012 nm?1 (summer). Nonetheless, the mean Scdm values, which describe the slope of detritus plus CDOM spectra, did not differ between the periods (average of 0.013 nm?1). Phytoplankton absorption values in this work showed deviations from mean parameterizations in previous studies, with respect to [chl a], as well as between the two study periods. In spring, despite the microplankton dominance, high specific absorption values and large dispersion were found (a*ph(440)=0.04±0.03 m2 mg [chl a]?1), which could be attributed to an important influence of photo-protector accessory pigments. In summer, deviations from general trends, with values of a*ph(440) even higher (0.09±0.02 m2 mg [chl a]?1), were due to the dominance of small cell sizes and also to accessory pigments. These results highlight the difficulty in deriving robust relationships between chlorophyll concentration and phytoplankton absorption coefficients regardless of the season period. The validity of a size parameter (Sf) derived from the absorption spectra has been demonstrated and was shown to describe the size structure of phytoplankton populations, independently of pigment concentration, with mean values of 0.41 in spring and 0.72 in summer. Our results emphasize the need for specific parameterization for the study region and seasonal sampling approach in order to model the inherent optical properties from water reflectance signatures.  相似文献   

11.
Phytoplankton biomass and primary production were examined in their environmental context, for a semi-enclosed bay (Tokyo Bay, Japan) using data from monthly samples collected over a three-year period. Heavy precipitation and high surface temperatures in the late spring and summer gave rise to a highly-stratified water-column and stimulated a series of phytoplankton blooms, whereas during the winter, a weakly-stratified and deeply-mixed water-column led to a rapid decline in phytoplankton biomass under light-limited growth conditions. By incorporating pigment, photophysiological and optical data into a primary production model we show that daily, water-column primary production ranges from ∼160 mg C m−2 d−1 to 7600 mg C m−2 d−1. High water turbidity and deep vertical mixing, both separately and in concert, limit the light available for algal growth over much of the year. Annual primary production varied from 370 to 580 g C m−2 y−1. The relative influences of nutrient limitation and light limitation are assessed. A model is developed that describes this in an explicit manner using photophysiological parameters.  相似文献   

12.
Seasonal variations in diversity and biomass of diatoms, tintinnids, and dinoflagellates and the contribution of microplankton and faecal material to the vertical flux of particulates were investigated at one time series station T (station 18) between 2002 and 2005 and at a grid of stations during November 2004 in the coastal and oceanic area off Concepción (36°S), Chile. The variations were analysed in relation to water column temperature, dissolved oxygen, nutrient concentration, offshore Ekman transport, and chlorophyll-a concentration. Abundance was estimated as cell numbers per litre and biomass in terms of biovolume and carbon units.A sharp decrease with depth was observed in the abundance of both phytoplankton and microzooplankton during the whole annual cycle; over 70% of their abundance was concentrated in the upper 10 m of the water column. Also, a clear seasonality in microplankton distribution was observed at station T, with maxima for diatoms, tintinnids, and dinoflagellates every summer (centred on January) from 2002 to 2005.On the grid of stations, the maximum integrated (0-50 m) micro-phytoplankton abundances (>1 × 109 cells m−2) occurred at the coastal stations, an area directly influenced by upwelling. A similar spatial distribution was observed for the integrated (0-200 m) faecal carbon (with values up to 632 mg C m−2). Tintinnids were distributed in all the first 300 miles from the coast and dinoflagellates were more abundant in oceanic waters.At station T, the average POC export production (below 50 m depth) was 16.6% (SD = 17%; range 2-67%; n = 16). The biological-mediated fluxes of carbon between the upper productive layer and the sediments of the continental shelf off Concepción depend upon key groups of phytoplankton (Thalassiosira spp., Chaetoceros spp.) and zooplankton (euphausiids) through the export of either cells or faecal material, respectively.  相似文献   

13.
Chlorophyll a (chl a) concentrations and primary production by the 0.2–2, 2–18 and >18 μm phytoplankton size-fractions were estimated along a transect in the NW Indian Ocean extending from the coast of Oman to 8°N 68°E during the late SW monsoon and autumn intermonsoonal seasons in 1994. Primary production was estimated using the 14C technique with either in situ or simulated in situ incubations. During the late monsoon season, maximal chl a and production values were recorded in the coastal upwelling zone with values of 69 mg m-2 and 3800 mg C m-2 d-1, respectively. The maxima, which were distributed patchily in this region, were dominated by the >18 μm size-fraction. Over the remainder of the transect chl a concentrations and production averaged 30 mg m-2 and 1500 mg C m-2 d-1, respectively, with approximately equal contributions by the three size-fractions in the case of chl a at the majority of stations, but in general, with a maximum in production in the 0.2–2 μm fraction. Immediately following cessation of the SW monsoon wind, chl a and production values over the northern part of the transect decreased to values similar to those over the southern part of the transect at the time of the SW monsoon, with the contributions by the three size-fractions being approximately equal. During the following intermonsoonal season, both chl a concentrations and production across the section were dominated by the 0.2–2 μm size-fraction, with average chl a and production values of the order of 20 mg m-2 and 750 mg C m-2 d-1, respectively. Considerable variation in production values, however, was exhibited across the transect. A clearly defined subsurface chl a maximum was only recorded at the southernmost stations of the transect in oligotrophic waters: the feature did not develop universally across the transect during the intermonsoon.  相似文献   

14.
We examined bacterioplankton biomass and heterotrophic production (BHP) during summer stratification in the northwestern Mediterranean in four successive stratification seasons (June–July of 1993–1996). Values of phytoplankton biomass and primary production were determined simultaneously so that the data sets for autotrophic and heterotrophic microbial plankton could be compared. Three standard stations were set along a transect from Barcelona to the channel between Mallorca and Menorca, representing coastally influenced shelf waters, frontal waters over the slope front, and open sea waters. Conversion factors from 3H-leucine incorporation to BHP were empirically determined and varied between 0.29 and 3.25 kg C mol-1. Bacterial biomass values were among the lowest found in any marine environment. BHP values (between 0.02 and 2.5 μg C L-1 d-1) were larger than those of low nutrient low chlorophyll areas such as the Sargasso Sea and lower than those from high nutrient low chlorophyll areas such as the equatorial Pacific. Growth rates of bacterioplankton were highest at the slope front (0.20 d-1) and lowest at the open sea station (0.04 d-1). Phytoplankton growth rates were similar at the three stations (∼0.50 d-1). Integrated values of bacterioplankton biomass, BHP and bacterial growth rates did not show significant differences among years, but differences between the three stations were clearly significant. Phytoplankton biomass, primary production, and phytoplankton growth rates did not show significant differences either with year or with station. As a consequence the bacterioplankton to phytoplankton biomass (BB/BPHY) and production (BHP/PP) ratios varied from the coastal to the open sea stations. The BB/BPHY ratio was 0.98 at the coast and ∼0.70 at the other two stations. These ratios are similar to those found in other oligotrophic marine environments. The BHP/PP ratio was 0.83 at the coast, 0.36 at the slope and 0.09 at the open sea station. The last value is also similar to values found in other oligotrophic marine environments. Vertical distribution of these ratios was also examined.The comparison of microbial parameters at the three stations indicates a different kind of relationship between bacterioplankton and phytoplankton in oligotrophic open sea waters and in coastal, nutrient-richer waters. According to such parameters and to the values of the BB/BPHY and BHP/PP ratios, open waters in the northwestern Mediterranean (despite their relatively short distance from the shore) were intermediate between the extremely oligotrophic waters of the eastern Mediterranean or the Sargasso Sea and the more productive waters of the equatorial Pacific.  相似文献   

15.
The relationship between changes in lipid classes and phytoplankton composition and abundance in the northern Adriatic was studied during spring and summer 2008 at two stations with different nutrient levels, i.e. at the western mesotrophic and eastern oligotrophic areas. Changes in the phytoplankton community depended on temporal surface nutrient depletion and bottom accumulation; that is, microphytoplankton, mainly diatoms Pseudo-nitzschia sp., developed at nutrient richer surface layers of the mesotrophic area in spring and at deeper layers of the oligotrophic site in late summer. In other periods nanophytoplankton dominated. Dissolved organic carbon (DOC) and lipid content were comparable for the two stations, while particulate organic carbon (POC) was richer at the mesotrophic side. Total lipid concentrations varied in the range from 8.0 to 92.2 μg l−1 and from 16.9 to 76.9 μg l−1 in the dissolved and particulate fractions, respectively. DOC and POC contents were in the ranges from 0.77 to 1.58 mg l−1 and from 0.06 to 0.56 mg l−1, respectively. Lipid and organic carbon distribution did not follow phytoplankton progression, indicating decoupling between organic matter production and decomposition throughout the investigation period. The main sources of lipids were marine phytoplankton and bacteria. Low nutrient conditions caused increased biosynthesis of lipids. Also, increasing oligotrophy led to an increasing number of phytoplankton taxa. The synthesis and accumulation of glycolipids by the developed taxa were enhanced during nutrient exhaustion, contributing in late summer, on average, 20.2 and 22.0% at the mesotrophic and oligotrophic stations, respectively, in the particulate fraction. The distribution of bacterial lipids and lipid breakdown products implies that bacterial lipid degradation was significant in spring, while very probably lipid abiotic degradation took place during summer.  相似文献   

16.
Six research cruises were conducted off the west coast of Vancouver Island between April and October of 1997 and 1998 as part of the Canadian GLOBEC project to compare nutrient and phytoplankton dynamics between ENSO (1997) and non-ENSO (1998) years. Limited sampling also was conducted during three cruises in 1999. During the 1997 ENSO period, there was a shallow thermocline (∼10 m) that resulted in a shallower mixed layer, lower salinity and density, and stronger summer stratification. In general on the shelf, the 1997 growing season was characterized by higher nitrate (7.5 μM) and silicic acid (17 μM) concentrations, lower total chlorophyll (∼76 mg m−2), lower phytoplankton carbon biomass (0.2 mg C L−1), and lower diatom abundance and biomass than in 1998. Phytoplankton assemblages were dominated by nanoplankton in 1997 and by diatoms in 1998. These results suggest that the 1997 ENSO was responsible for a reduction in the growth and biomass of larger phytoplankton cells. In mid-1998, the hydrographic characteristics off the west coast of Vancouver Island changed suddenly. The 1997 poleward transport of warm water reversed to an equatorward transport of coastal water in July 1998, which was accompanied by normal summer upwelling. During 1998, a large diatom bloom (mainly dominated by Chaetoceros debilis, Leptocylindrus danicus and to a lesser extent by Skeletomema and Pseudo-nitzschia sp.) was observed in July over the continental shelf. This large bloom resulted in chlorophyll concentrations of up to 400 mg m−2, primary productivity of up to 11 g C m−2 d−1, and near undetectable dissolved nitrogen concentrations at some of the shelf stations in 1998. In contrast, during 1997, the sub-tropical waters that were advected over the slope, resulted in low chlorophyll a and primary productivity (generally <1 g C m−2 d−1). Therefore, there was a sharp contrast between the very high primary productivity on the shelf in July 1998, due to normal nutrient replenishment from summer upwelling and outflow from the Strait of Juan de Fuca, and the lower primary productivity during the 1997 ENSO year. During 1998, non-ENSO conditions resulted in phytoplankton biomass that was twice as high on the shelf as that measured in regions beyond the continental shelf of the west coast of Vancouver Island.  相似文献   

17.
近年来, 渤海夏季低氧现象频发, 引起了人们的广泛关注。然而对该海域低氧形成的机制还未得到充分认识。研究基于在秦皇岛外海的现场观测, 分析了海水中颗粒物吸收光谱特征及其与不同粒径浮游植物叶绿素a (chl a)组成、环境因子的关系, 评估了夏季底层水体脱氧过程中有机物来源与特征。结果显示,夏季秦皇岛外海微型浮游植物chl a占总量的80%。表层水体中, 总颗粒物吸收光谱[ap(l)]特征由浮游植物色素吸收光谱[aph(l)]主导, 在中、底层水体中则由碎屑颗粒物吸收光谱[ad(l)]主导。垂向上, ap(440)和ad(440)均表现为表层<中层<底层。结果还表明, 浮游植物粒径主导秦皇岛外海chl a的光吸收效率, 即a*ph(440)。基于三粒级chl a含量, 可利用多元回归预测aph(440)。碎屑颗粒物的吸收光谱同样受浮游植物群落、有机质相对含量等的影响。研究结果表明初级生产产生的微型颗粒有机物是底层水体脱氧的主要底物。  相似文献   

18.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

19.
Ocean Station Papa (OSP, 50°N 145°W) in the NE subarctic Pacific is characterised as high nitrate low chlorophyll (HNLC). However, little is known about the spatial extent of these HNLC waters or the phytoplankton dynamics on the basin scale. Algal biomass, production and size-structure data are presented from winter, spring and summer between 1992 and 1997 for five stations ranging from coastal to open-ocean conditions. The inshore stations (P04–P16) are characterised by the classical seasonal cycle of spring and late summer blooms (production >3 g C m−2 d−1), diatoms are not Fe-stressed, and growth rate is probably controlled by macronutrient supply. The fate of the phytoplankton is likely sedimentation by diatom-dominated spring blooms, with a pelagic recycling system predominating at other times. The offshore stations (P20/OSP) display low seasonality in biomass and production (OSP, mean winter production 0.3 g C m−2 d−1, mean spring/summer production 0.85 g C m−2 d−1), and are dominated by small algal cells. Low Fe availability prevents the occurrence of diatom blooms observed inshore. The main fate of phytoplankton is probably recycling through the microbial food web, with relatively low sedimentation compared to inshore. However, the supply of macro- and micro-nutrients to the coastal and open ocean, respectively, may vary between years. Variability in macro-nutrient supply to the coastal ocean may result in decreased winter reserve nitrate, summer nitrate limitation, subsequent floristic shifts towards small cells, and reduced primary production. Offshore, higher diatom abundances are occasionally observed, perhaps indicating episodic Fe supply. The two distinct oceanic regimes have different phytoplankton dynamics resulting in different seasonality, community structure and fate of algal carbon. These differences will strongly influence the biogeochemical signatures of the coastal and open-oceanic NE subarctic Pacific.  相似文献   

20.
Phytoplankton and bacterial abundance, size-fractionated phytoplankton chlorophyll-a (Chl-a) and production together with bacterial production, microbial oxygen production and respiration rates were measured along a transect that crossed the Equatorial Atlantic Ocean (10°N–10°S) in September 2000, as part of the Atlantic Meridional Transect 11 (AMT 11) cruise. From 2°N to 5°S, the equatorial divergence resulted in a shallowing of the pycnocline and the presence of relatively high nitrate (>1 μM) concentrations in surface waters. In contrast, a typical tropical structure (TTS) was found near the ends of the transect. Photic zone integrated 14C primary production ranged from ∼200 mg C m−2 d−1 in the TTS region to ∼1300 mg C m−2 d−1 in the equatorial divergence area. In spite of the relatively high primary production rates measured in the equatorial upwelling region, only a moderate rise in phytoplankton biomass was observed as compared to nearby nutrient-depleted areas (22 vs. 18 mg Chl-a m−2, respectively). Picophytoplankton were the main contributors (>60%) to both Chl-a biomass and primary production throughout the region. The equatorial upwelling did not alter the phytoplankton size structure typically found in the tropical open ocean, which suggests a strong top-down control of primary producers by zooplankton. However, the impact of nutrient supply on net microbial community metabolism, integrated over the euphotic layer, was evidenced by an average net microbial community production within the equatorial divergence (1130 mg C m−2 d−1) three-fold larger than net production measured in the TTS region (370 mg C m−2 d−1). The entire region under study showed net autotrophic community metabolism, since respiration accounted on average for 51% of gross primary production integrated over the euphotic layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号