首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The carbon flux through major phytoplankton groups, defined by their pigment markers, was estimated in two contrasting conditions of the Northwestern Mediterranean open ocean ecosystem: the spring bloom and post-bloom situations (hereafter Bloom and Post-bloom, respectively). During Bloom, surface chlorophyll a (Chl a) concentration was higher and dominated by diatoms (53% of Chl a), while during Post-bloom Synechococcus (42%) and Prymnesiophyceae (29%) became dominant. The seawater dilution technique, coupled to high pressure liquid chromatography (HPLC) analysis of pigments and flow cytometry (FCM), was used to estimate growth and grazing rates of major phytoplankton groups in surface waters. Estimated growth rates were corrected for photoacclimation based on FCM-detected changes in red fluorescence per cell. Given the 30% average decrease in the pigment content per cell between the beginning and the end of the incubations, overlooking photoacclimation would have resulted in a 0.40 d?1 underestimation of phytoplankton growth rates. Corrected average growth rates (μo) were 0.90±0.20 (SD) and 0.40±0.14 d?1 for Bloom and Post-bloom phytoplankton, respectively. Diatoms, Cryptophyceae and Synechococcus were identified as fast-growing groups and Prymnesiophyceae and Prasinophyceae as slow-growing groups across Bloom and Post-bloom conditions. The higher growth rate during Bloom was due to dominance of phytoplankton groups with higher growth rates than those dominating in Post-bloom. Average grazing rates (m) were 0.58±0.20 d?1 (SD) and 0.31±0.07 d?1. The proportion of phytoplankton growth consumed by microzooplankton grazing (m/μo) tended to be lower in Bloom (0.69±0.34) than in Post-bloom (0.80±0.08). The intensity of nutrient limitation experienced by phytoplankton indicated by μo/μn (where μn is the nutrient-amended growth rate), was similar during Bloom (0.78) and Post-bloom (0.73). Primary production from surface water (PP) was estimated with 14C incubations. A combination of PP and Chl a synthesis rate yielded C/Chl a ratios of 34±21 and 168±75 (g:g) for Bloom and Post-bloom, respectively. Transformation of group-specific Chl a fluxes into carbon equivalents confirmed the dominant role of diatoms during Bloom and Synechococcus and Prymnesiophyceae during Post-bloom.  相似文献   

2.
Microbial plankton biomass, primary production (PP) and phytoplankton growth rates (μ) were estimated along the NW Iberian margin during an upwelling relaxation event. Although the interaction between wind forcing and coastline singularities caused high spatial variability in PP (0.4-8.4 g C m−2 d−1), two domains (coastal and oceanic) could be distinguished regarding microbial plankton biomass and μ. At the coastal domain, with higher influence of upwelling, diatoms showed an important contribution (27 ± 17%) to total autotrophic biomass (AB). Nonetheless, AB was dominated by autotrophic nanoflagellates (ANF) at both realms, accounting for 62 ± 16% and 89 ± 6% of the integrated AB at the coastal and oceanic domain respectively. AB and heterotrophic biomass (HB) were significantly higher at the oceanic than at the coastal domain, with both biomasses covarying according to HB:AB = 0.33. Whereas the low phytoplankton carbon to chlorophyll a ratio (Cph:chl a = 38 ± 3) and the high μ = 0.54 ± 0.09 d−1 registered at the coastal stations suggest that phytoplankton was not nutrient limited at this domain, the values (Cph:chl a = 157 ± 8; μ = 0.17 ± 0.02 d−1) recorded at the oceanic domain point to severe nutrient limitation. However, the high Fv/Fm fluorescence ratios (0.56 ± 0.09) measured at the sea surface in the oceanic domain suggest that nutrient limitation did not occur. To reconcile these two apparently opposite views, it is suggested the occurrence of mixotrophic nutrition of ANF, with heterotrophic nutrition supplying about 75% of carbon requirements.  相似文献   

3.
The relation between trophic regime and phytoplankton composition and function in oceanic systems is well accepted in oceanography. However, the relative dynamics and carbon cycling contributions of different phytoplankton groups across gradients of ocean richness are not fully understood. In this work we investigated phytoplankton dynamics along two transects from the NW African coastal upwelling to open-ocean waters of the north Atlantic subtropical gyre. We adopted a pigment-based approach to characterize community structure and to quantify group-specific growth and grazing rates and associated carbon fluxes. Changes in pigment cell concentration during the incubation experiments due to photoadaptation were corrected to obtain reliable rates. The oceanic region was dominated by Prochlorococcus (PRO) (45±7% of total chlorophyll a) while diatoms dominated in upwelling waters (40±37%). Phytoplankton grew faster (μ=0.78±0.26 d−1) and free of nutrient limitation (μ/μn=0.98±0.42) in the coastal upwelling region, with all groups growing at similar rates. In oceanic waters, the growth rate of bulk phytoplankton was lower (μ=0.52±0.16 d−1) and nutrient limited (μ/μn=0.68±0.19 d−1). Diatoms (0.80±0.39 d−1) and Synechococcus (SYN) (0.72±0.25 d−1) grew faster than Prymnesiophyceae (PRYMN) (0.62±0.26 d−1) and PRO (0.46±0.18 d−1). The growth rates of PRO and SYN were moderately nutrient limited (μ/μn=0.81 and 0.91, respectively), while the limitation for diatoms (μ/μn=0.71) and PRYMN (μ/μn=0.37) was more severe. Microzooplankton grazing rate was higher in upwelling (0.68±0.32 d−1) than in oceanic waters (0.37±0.19 d−1), but represented the main loss pathway for phytoplankton in both systems (m/μ=0.90±0.32 and 0.69±0.24, respectively). Carbon flux through phytoplankton, produced and grazed, increased from offshore to coastal (∼2 to ∼200 μg C L−1 d−1), with diatoms dominating the flux in the upwelling region (52%) while PRYMN (40%) and PRO (30%) dominated in the open ocean.  相似文献   

4.
To examine the influence of river discharge on plankton metabolic balance in a monsoon driven tropical estuary, daily variations in physico-chemical and nutrients characteristics were studied over a period of 15 months (September 2007 to November 2008) at a fixed location (Yanam) in the Godavari estuary, India. River discharge was at its peak during July to September with a sharp decrease in the middle of December and complete cessation thereafter. Significant amount of dissolved inorganic nitrogen (DIN, of 22–26 μmol l−1) and dissolved inorganic phosphate (DIP, of 3–4 μmol l−1) along with suspended materials (0.2–0.5 g l−1) were found at the study region during the peak discharge period. A net heterotrophy with low gross primary production (GPP) occurred during the peak discharge period. The Chlorophyll a (Chl a) varied between 4 and 18 mg m−3 that reached maximum levels when river discharge and suspended loads decreased by >75% compared to that during peak period. High productivity was sustained for about one and half months during October to November when net community production (NCP) turned from net heterotrophy to autotrophy in the photic zone. Rapid decrease in nutrients (DIN and DIP by ∼15 and 1.4 μmol l−1, respectively) was observed during the peak Chl a period of two weeks. Chl a in the post monsoon (October–November) was negatively related to river discharge. Another peak in Chl a in January to February was associated with higher nutrient concentrations and high DIN:DIP ratios suggest possible external supply of nitrogen into the system. The mean photic zone productivity to respiration ratio (P:R) was 2.38 ± 0.24 for the entire study period (September 2007–November 2008). Nevertheless, the ratio of GPP to the entire water column respiration was only 0.14 ± 0.02 revealing that primary production was not enough to support water column heterotrophic activity. The excess carbon demand by the heterotrophs could be met from the allochthonous inputs of mainly terrestrial origin. Assuming that the entire phytoplankton produced organic material was utilized, the additional terrestrial organic carbon supported the total bacterial activity (97–99%) during peak discharge period and 40–75% during dry period. Therefore, large amount of terrestrial organic carbon is getting decomposed in the Godavari estuarine system.  相似文献   

5.
We examined short-term phytoplankton and sediment dynamics in Tampa Bay with data collected between 8 December 2004 and 17 January 2005 from optical, oceanographic, and meteorological sensors mounted on a coastal oceanographic tower and from satellite remote sensing. Baseline phytoplankton (chlorophyll-a, Chl) and sediment concentrations (particle backscattering coefficient at 532 nm, bbp(532)) were of the order of 3.7 mg m−3 and 0.07 m−1, respectively, during the study period. Both showed large fluctuations dominated by semidiurnal and diurnal frequencies associated with tidal forcing. Three strong wind events (hourly averaged wind speed >8.0 m s−1) generated critical bottom shear stress of >0.2 Pa and suspended bottom sediments that were clearly observed in concurrent MODIS satellite imagery. In addition, strong tidal current or swells could also suspend sediments in the lower Bay. Sediments remained suspended in the water column for 2–3 days after the wind events. Moderate Chl increases were observed after sediment resuspension with a lag time of ˜1–2 days, probably due to release of bottom nutrients and optimal light conditions associated with sediment resuspension and settling. Two large increases in Chl with one Chl > 12.0 mg m−3 over ˜2 days, were observed at neap tides. For the study site and period, because of the high temporal variability in phytoplankton and sediment concentrations, a monthly snapshot can be different by −50% to 200% from the monthly “mean” chlorophyll and sediment conditions. The combination of high-frequency observations from automated sensors and synoptic satellite imagery, when available, is an excellent complement to limited field surveys to study and monitor water quality parameters in estuarine environments.  相似文献   

6.
Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (<2 μm) by a demosponge (Callyspongia sp.), and carbon flux through this process, were examined for the first time in the oligotrophic coastal waters of southwestern Australia, where sponge abundance and biodiversity ranks among the highest in the world. Water sampling and flow rate measurements were conducted over five sampling occasions following the InEx method of Yahel et al. (2005), with heterotrophic bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type (p < 0.01). Overall filtration efficiency for Synechococcus (86.6 ± 6.3%; mean ± s.d.) was always significantly higher (p < 0.05) than for low DNA (LDNA) bacteria (40 ± 17.2%), except during winter 2007 (p = 0.14) when ambient Synechococcus concentrations were lowest. When compared to ambient abundances of the different food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time (p < 0.01), with lowest rates recorded during the winter (0.5 ± 0.4–0.6 ± 0.8 mg C m−2 d−1) and highest values recorded in summer (3.5 ± 1.9 mg C m−2 d−1). These flux estimates quantify the role of a demosponge species in the ultimate fate of prokaryotic picoplankton within the nearshore food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that optimise their nutritional intake.  相似文献   

7.
Biomass and primary productivity of picophytoplankton (PP; phytoplankton <3 μm) and larger phytoplankton (>3 μm) were determined during an annual cycle along the salinity gradient in North Carolina’s Neuse River Estuary (NRE), a eutrophic, microtidal estuary. The PP were a major component of total phytoplankton biomass and productivity, contributing ∼35–44% of the total chlorophyll a (Chl a) and 42–55% of the total primary productivity. Chl a and productivity of PP decreased from the upper to lower estuary, although the PP contribution relative to larger phytoplankton remained nearly constant. Significant PP growth occurred in the spring, but PP productivity and biomass were maximal in summer. PP productivity and biomass were positively correlated with temperature and dissolved inorganic phosphorus concentrations, which were maximal in summer due to release from sediments. Biomass and productivity of PP and >3 μm phytoplankton were also positively correlated, suggesting that growth conditions favoring the onset of blooms of larger phytoplankton species will similarly affect PP. High PP productivity and biomass in the NRE support the notion that PP play an important role in the production and eutrophication potentials of this estuary. High PP productivity and biomass have been noted in several other temperate estuaries, all sharing a common feature with the NRE—long residence time. These findings challenge the assumption that PP relative importance should be minimal in eutrophic systems.  相似文献   

8.
During a cruise of r/v ‘Oceania’ in May 2006, seven vertical dissolved organic carbon (DOC) concentration profiles were produced against a background of CTD, chlorophyll a (chl a) and phaeopigment concentration profiles. The results indicate distinct vertical and spatial DOC fluctuations, ranging from 248 ± 7 μmol C dm−3 at 70 m depth at the westernmost station G/06 to 398 ± 5 μmol C dm−3 at 5 m depth at station A/06 in the western Gulf of Gdańsk. DOC concentrations were the highest at 10 m depth, where phytoplankton activity was relatively intensive, as reflected by the active chl a concentration distribution. DOC concentrations decreased towards the sea bottom.  相似文献   

9.
We conducted studies of phytoplankton and hydrological variables in a semi-enclosed bay in northern China to understand the spatial–temporal variability and relationship between these variables. Samples were collected during seven cruises in Jiaozhou Bay from November 2003 to October 2004, and were analyzed for temperature, nutrients and phytoplankton pigments. Pigments from eight possible phytoplankton classes (Diatoms, Dinoflagellates, Chlorophyceae, Prasinophyceae, Chrysophyceae, Haptophyceae, Cryptophyceae and Caynophyceae) were detected in surface water by high performance liquid chromatography (HPLC). Phytoplankton pigment and nutrient concentrations in Jiaozhou Bay were spatially and temporally variable, and most of them were highest in the northern and eastern parts of the sampling regions in spring (May) and summer (August), close to areas of shellfish culturing, river estuaries, dense population and high industrialization, reflecting human activities. Chlorophyll a was recorded in all samples, with an annual mean concentration of 1.892 μg L−1, and fucoxanthin was the most abundant accessory pigment, with a mean concentration of 0.791 μg L−1. The highest concentrations of chlorophyll a (15.299 μg L−1) and fucoxanthin (9.417 μg L−1) were observed in May 2004 at the station close to the Qingdao Xiaogang Ferry, indicating a spring bloom of Diatoms in this area. Although chlorophyll a and other biomarker pigments showed significant correlations, none of them showed strong correlations with temperature and nutrients, suggesting an apparent de-coupling between the pigments and these hydrological variables. The nutrient composition and phytoplankton community composition of Jiaozhou Bay have changed significantly in the past several decades, reflecting the increasing nutrient concentrations and decline of phytoplankton cell abundance. The unchanged total chlorophyll a levels indicated that smaller species have filled the niche vacated by the larger species in Jiaozhou Bay, as revealed by our biomarker pigment analysis.  相似文献   

10.
Phytoplankton community structure is expected to shift to larger cells (e.g., diatoms) with monsoonal forcing in the Arabian Sea, but recent studies suggest that small primary producers remain active and important, even in areas strongly influenced by coastal upwelling. To better understand the role of smaller phytoplankton in such systems, we investigated growth and grazing rates of picophytoplankton populations and their contributions to phytoplankton community biomass and primary productivity during the 1995 Southwest Monsoon (August–September). Environmental conditions at six study stations varied broadly from open-ocean oligotrophic to coastal eutrophic, with mixed-layer nitrate and chlorophyll concentrations ranging from 0.01 to 11.5 μM NO3 and 0.16 to 1.5 μg Chl a. Picophytoplankton comprised up to 92% of phytoplankton carbon at the oceanic stations, 35% in the diatom-dominated coastal zone, and 26% in a declining Phaeocystis bloom. Concurrent in situ dilution and 14C-uptake experiments gave comparable ranges of community growth rates (0.53–1.05 d−1 and 0.44–1.17 d−1, to the 1% light level), but uncertainties in C:Chl a confounded agreement at individual stations. Microzooplankton grazing utilized 81% of community phytoplankton growth at the oligotrophic stations and 54% at high-nutrient coastal stations. Prochlorococcus (PRO) was present at two oligotrophic stations, where its maximum growth approached 1.4 d−1 (two doublings per day) and depth-integrated growth varied from 0.2 to 0.8 d−1. Synechococcus (SYN) growth ranged from 0.5 to 1.1 d−1 at offshore stations and 0.6 to 0.7 d−1 at coastal sites. Except for the most oligotrophic stations, growth rates of picoeukaryotic algae (PEUK) exceeded PRO and SYN, reaching 1.3 d−1 offshore and decreasing to 0.8 d−1 at the most coastal station. Microzooplankton grazing impact averaged 90, 70, and 86% of growth for PRO, SYN, and PEUK, respectively. Picoplankton as a group accounted for 64% of estimated gross carbon production for all stations, and 50% at high-nutrient, upwelling stations. Prokaryotes (PRO and SYN) contributed disproportionately to production relative to biomass at the most oligotrophic station, while PEUK were more important at the coastal stations. Even during intense monsoonal forcing in the Arabian Sea, picoeukaryotic algae appear to account for a large portion of primary production in the coastal upwelling regions, supporting an active community of protistan grazers and a high rate of carbon cycling in these areas.  相似文献   

11.
Two microcosm experiments were carried out to simulate the effect of sporadic oil spills derived from tanker accidents on oceanic and coastal marine phytoplankton assemblages. Treatments were designed to reproduce the spill from the Prestige, which took place in Galician coastal waters (NW Iberia) in November 2002. Two different concentrations of the water soluble fraction of oil were used: low (8.6 ± 0.7 μg l−1 of chrysene equivalents) and high (23 ± 5 μg l−1 of chrysene equivalents l−1). Photosynthetic activity and chlorophyll a concentration decreased in both assemblages after 24–72 h of exposure to the two oil concentrations, even though the effect was more severe on the oceanic assemblage. These variables progressively recovered up to values close or higher than those in the controls, but the short-term negative effect of oil, which was generally stronger at the high concentration, also induced changes in the structure of the plankton community. While the biomass of nanoflagellates increased in both assemblages, oceanic picophytoplankton was drastically reduced by the addition of oil. Effects on diatoms were also observed, particularly in the coastal assemblage. The response of coastal diatoms to oil addition showed a clear dependence on size. Small diatoms (<20 μm) were apparently stimulated by oil, whereas diatoms >20 μm were only negatively affected by the high oil concentration. These differences, which could be partially due to indirect trophic interactions, might also be related to different sensitivity of species to PAHs. These results, in agreement with previous observations, additionally show that the negative effect of the water soluble fraction of oil on oceanic phytoplankton was stronger than on coastal phytoplankton.  相似文献   

12.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

13.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   

14.
Phytoplankton growth and microzooplankton grazing were studied during the 2007 spring bloom in Central Yellow Sea. The surveyed stations were divided to pre-bloom phase (Chl a concentration less than 2 μg L−1), and bloom phase (Chl a concentration greater than 2 μg L−1). Shipboard dilution incubation experiments were carried out at 19 stations to determine the phytoplankton specific growth rates and the specific grazing rates of microzooplankton on phytoplankton. Diatoms dominated in the phytoplankton community in surface waters at most stations. For microzooplankton, Myrionecta rubra and tintinnids were dominant, and heterotrophic dinoflagellate was also important in the community. Phytoplankton-specific growth rates, with an average of 0.60±0.19 d−1, were higher at pre-bloom stations (average 0.62±0.17 d−1), and lower at the bloom stations (average 0.59±0.21 d−1), but the difference of growth rates between bloom and pre-bloom stations was not statistically significant (t test, p=0.77). The phytoplankton mortality rate by microzooplankton grazing averaged 0.41±0.23 d−1 at pre-bloom stations, and 0.58±0.31 d−1 during the blooms. In contrast to the growth rates, the statistic difference of grazing rates between bloom and pre-bloom stations was significant (after removal of outliers, t test, p=0.04), indicating the importance of the top-down control in the phytoplankton bloom processes. Average potential grazing efficiency on primary productivity was 66% at pre-bloom stations and 98% at bloom stations, respectively. Based on our results, the biomass maximum phase (bloom phase) was not the maximum growth rate phase. Both phytoplankton specific growth rate and net growth rate were higher in the pre-bloom phase than during the bloom phase. Microzooplankton grazing mortality rate was positively correlated with phytoplankton growth rate during both phases, but growth and grazing were highly coupled during the booming phase. There was no correlation between phytoplankton growth rate and cell size during the blooms, but they were positive correlated during the pre-bloom phase. Our results indicate that microzooplankton grazing is an important process controlling the growth of phytoplankton in spring bloom period in the Central Yellow Sea, particularly in the “blooming” phase.  相似文献   

15.
Chlorophyll a (chl a) concentrations and primary production by the 0.2–2, 2–18 and >18 μm phytoplankton size-fractions were estimated along a transect in the NW Indian Ocean extending from the coast of Oman to 8°N 68°E during the late SW monsoon and autumn intermonsoonal seasons in 1994. Primary production was estimated using the 14C technique with either in situ or simulated in situ incubations. During the late monsoon season, maximal chl a and production values were recorded in the coastal upwelling zone with values of 69 mg m-2 and 3800 mg C m-2 d-1, respectively. The maxima, which were distributed patchily in this region, were dominated by the >18 μm size-fraction. Over the remainder of the transect chl a concentrations and production averaged 30 mg m-2 and 1500 mg C m-2 d-1, respectively, with approximately equal contributions by the three size-fractions in the case of chl a at the majority of stations, but in general, with a maximum in production in the 0.2–2 μm fraction. Immediately following cessation of the SW monsoon wind, chl a and production values over the northern part of the transect decreased to values similar to those over the southern part of the transect at the time of the SW monsoon, with the contributions by the three size-fractions being approximately equal. During the following intermonsoonal season, both chl a concentrations and production across the section were dominated by the 0.2–2 μm size-fraction, with average chl a and production values of the order of 20 mg m-2 and 750 mg C m-2 d-1, respectively. Considerable variation in production values, however, was exhibited across the transect. A clearly defined subsurface chl a maximum was only recorded at the southernmost stations of the transect in oligotrophic waters: the feature did not develop universally across the transect during the intermonsoon.  相似文献   

16.
The aim of this study was to distinguish between sources of the complex variety of Marennes-Oléron Bay suspended particulate organic matter (SPOM) contributing to the tropho-dynamics of the Marennes-Oléron oyster farming bay. Basic biomarkers (Chl a, C/N and POC/Chl a ratios), carbon and nitrogen stable isotopes from SPOM were analyzed and the microalgae community was characterized. The sampling strategy was bimonthly from March 2002 to December 2003; samples were taken from an intertidal mudflat. Four main sources contributed to the SPOM pool: terrigenous input from rivers, neritic phytoplankton, resuspended microphytobenthos and periodic inputs from intertidal Zostera noltii meadows. Seasonal fluctuations were observed in both years of the study period: (1) SPOM collected in the spring of 2002 (δ13C = −25‰ to −23‰) was mainly composed of fresh estuarine inputs; (2) SPOM from the summer and fall of 2002 and 2003 was predominantly neritic phytoplankton (δ13C = − 22‰ to −19‰); (3) SPOM from the winter of 2002, spring of 2003 and winter of 2003 (δ13C = −21 to −23‰) was composed of a mixture of decayed terrigenous river inputs and pelagic phytoplankton, which was predominantly resuspended microphytobenthos. In the summer of 2003—the warmest summer on record in southern France and Europe—SPOM was particularly enriched for 13C, with δ13C values ranging from −14‰ to −12‰. Pulses in δ13C values, indicative of 13C-enriched decaying materials, extended into the fall. These were attributed to benthic intertidal inputs, including both resuspended microphytobenthos and Z. noltii detritus. Changes in SPOM sources in Marennes-Oléron Bay may lead to differences in the quality of the trophic environment available for reared oysters.  相似文献   

17.
Variations in abundance, biomass, vertical profile and cell size of heterotrophic dinoflagellates (HDFs) between summer and winter and its controlling factors were studied in the northern South China Sea (SCS). It was found that HDF abundance and carbon biomass were 4–102 × 103 cells L−1 and 0.34–12.3 mg C L−1 in winter (February 2004), respectively, while they were 2–142 × 103 cells L−1 and 0.22–31.4 μg C L−1 in summer (July, 2004), respectively, in the northern SCS. HDF abundance and carbon biomass decreased from the estuary to inshore and then offshore. Vertical profiles of HDF abundance were heterogeneous, which accorded well with that of chlorophyll a (Chl.a). Higher abundance of HDFs was often observed at a depth of 30–70 m offshore waters, matching well with the Chl.a maximum, while it showed high abundance at the surface in some coastal and estuary stations. Small HDFs (≤20 μm) dominated the assemblage in term of abundance accounting for more than 90%. However, large HDFs (>20 μm) generally contributed equally in terms of carbon biomass, accounting for 47% on average. HDFs showed different variation patterns for the different study regions; in the estuarine and continental shelf regions, abundance and biomass values were higher in summer than those in winter, while it was the reverse pattern for the slope waters. Hydrological factors (e.g. water mass, river outflow, monsoon and eddies) associated with biological factors, especially the size-fractionated Chl.a, seemed to play an important role in regulating HDF distribution and variations in the northern South China Sea.  相似文献   

18.
The distribution of protein and carbohydrate concentrations of the particulate matter (size fraction: 0.45–160 μm) was studied, from 22 January 2003 to 02 December 2003, in three ponds of increasing salinity in the Sfax solar saltern (Tunisia). The coupling of N/P: DIN (DIN = NO2 + NO3 + NH4+) to DIP (DIP = PO43−) with P/C: protein/carbohydrates ratios along salinity gradient allowed the discrimination of three types of ecosystems. Pond A1 (mean salinity: 45.0 ± 5.4) having marine characteristics showed enhanced P/C ratios during a diatom bloom. N/P and P/C ratios were closely coupled throughout the sampling period, suggesting that the nutritional status is important in determining the seasonal change in the phytoplankton community in pond A1. In pond A16 (mean salinity: 78.7 ± 8.8), despite the high nitrate load, P/C ratios were overall lower than in pond A1. This may be explained by the fact that dinoflagellates, which were the most abundant phytoplankton in pond A16 might be strict heterotrophs and/or mixotrophs, and so they may have not contributed strongly to anabolic processes. Also, N/P and P/C ratios were uncoupled, suggesting that cells in pond A16 were stressed due to the increased salinity caused by water evaporation, and so cells synthesized reserve products such as carbohydrates. In pond M2 (mean salinity: 189.0 ± 13.8), P/C levels were higher than those recorded in either pond A1 or A16. N/P and P/C were more coupled than in pond A16. Species in the hypersaline pond seemed paradoxally less stressed than in pond A16, suggesting that salt-tolerant extremophile species overcome hypersaline constraints and react metabolically by synthesizing carbohydrates and proteins.  相似文献   

19.
After a prolonged summer dry period, the effects of a distinctive and continuing rainfall on the nutrients and plankton of an urban coastal lagoon were investigated over 2 months. The lagoon filled up over 5 weeks from <10% of its maximum volume until it broke open to the sea. Nutrients (ammonia and oxidised nitrogen) significantly increased the day after initial rainfall, before returning to pre-rainfall conditions within 5 days. Phytoplankton biomass grew 10 fold within a week after initial rainfall in the 25–30 °C water and declined to near initial levels 2 weeks later. The assemblage of phytoplankton and zooplankton changed dramatically after 1 day and again by 6 days later, gradually returning to the original community by 2 weeks after the initial rainfall. Zooplankton responded within a day with a two fold increase in the adult stages of the calanoid copepod Oithona sp., followed a week later by nauplii and adult Acartia bispinosa. The influx of adult Oithona indicates resting populations that were previously under sampled by our plankton net. The plankton community returned to the initial state by 2 weeks, to being dominated by a centric diatom and A. bispinosa after 5 weeks. Dilution of the lagoon reached a maximum of 0.25 d−1, while growth rates of the phytoplankton population reached a maximum of 1 d−1, and A. bispinosa nauplii growth of 2.5 d−1. Declines in chlorophyll biomass from the maximum 10 μg l−1, at a rate of approximately 10% d−1 are consistent with the modelled uptake by zooplankton. The nutrients from runoff, growth and the influx of new zooplankton into the water column, resulted in a depleted δ13C and δ15N stable isotope signature of A. bispinosa by 2–4 ppt within 1–2 weeks, consistent with diatom growth and the terrestrial supply of depleted nutrients. δ34S of A. bispinosa was enriched by 2 ppt for 1–2 weeks after rainfall, but unlike C and N, returned to pre-rainfall levels by the end of the study period. We suggest that plankton studies in coastal lakes with variable water levels that are not tidally driven, should account for the influence of changes in water levels to help explain data variability.  相似文献   

20.
Eukaryotic phytoplankton such as diatoms and prymnesiophytes produce biogenic halocarbons in the ocean that serve as important sources of chlorine and bromine to the atmosphere, but the role of cyanobacteria in halocarbon production is not well established. We studied distributions of chloroform (CHCl3), carbon tetrachloride (CCl4), methylene bromide (CH2Br2) and bromoform (CHBr3) in relation to phytoplankton composition, determined from pigment analysis complemented by microscopic examination, for one month in coastal waters of the eastern Arabian that experienced a Trichodesmium bloom that typically occurs during the Spring Intermonsoon season. High concentrations of zeaxanthin (23 μg l−1), alpha beta betacarotene (6 μg l−1) and chlorophyll a (67 μg l−1) were found within the bloom whereas the marker pigment concentrations were low outside the bloom. CHCl3 and CCl4 occurred in relatively high concentrations in surface waters whereas CH2Br2 and CHBr3 were restricted to the subsurface layer. Chlorinated halocarbons were positively inter-correlated and with CHBr3. The observed spatial and temporal trends in brominated compounds appear to be related to the abundance of Trichodesmium although correlations between concentrations of brominated compounds with various marker pigments were poor and statistically non-significant. The results support the existence of multiple sources and sinks of halogenated compounds, which might obscure the relationship between halocarbons and phytoplankton composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号