首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Lake St Lucia in South Africa is part of a UNESCO World Heritage site and a Ramsar wetland of international importance. Like many coastal wetlands worldwide, anthropogenic activities including catchment land-use changes, water diversions/abstractions, and manipulation of the mouth state have significantly affected its functioning over the past century. Questions concerning its sustainability have motivated a re-evaluation of management decisions made in the past and of options for the future. A model for the water and salt budgets has therefore been used to investigate “what if” scenarios in terms of past anthropogenic interventions. In particular, simulations allow us to evaluate the effects of diverting the Mfolozi river from St Lucia on the functioning of the system and on the occurrence of various water level/salinity states that drive the biological functioning of the ecosystem. In the past, when the St Lucia estuary and the Mfolozi river had a combined inlet, the mouth was predominantly open. The lake had relatively stable water levels but variable salinities that increased during dry conditions due to evaporative losses and saltwater inflows from the sea. If the mouth closed, the Mfolozi flow was diverted into the lake which reduced salinities and maintained or increased water levels. Simulations indicate that without a link to the Mfolozi the lake system would naturally have a mainly closed inlet with lower average salinities but more variable water levels. During dry conditions water levels would reduce and result in desiccation of large areas of the lake as has recently occurred. We conclude that the artificial separation of the St Lucia and Mfolozi inlets underpins the most significant impacts on the water & salt budget of the lake and that its reversal is key to the sustainability of the system.  相似文献   

2.
The Mfolozi estuary, located on the east coast of South Africa, was historically directly linked to the adjacent St Lucia estuarine system, the largest estuarine system in Africa and a World Heritage Site. The Mfolozi used to be the main feeder system to maintain lake levels in St Lucia, but increased siltation from sugar cane farming in the Mfolozi floodplain led to artificial separation of the two systems in 1950. Reduced freshwater inflow due to drought conditions caused the St Lucia mouth to remain closed from June 2002 to present, coinciding with low lake levels and hypersaline conditions, except for a brief period during 2007 after the St Lucia mouth breached. These conditions led to disruption of larval recruitment into the system and major changes in biotic communities. Due to the importance of the St Lucia – Mfolozi System link, a study was initiated in 2007 on the fish community of the Mfolozi system, which was sampled using seine and gill nets. The 48 species recorded were dominated by juveniles of marine spawners, particularly Leiognathus equula and Valamugil cunnesius and the estuarine spawners Ambassis dussumieri and Ambassis natalensis. Estuarine dependent marine spawning species formed 68% of both the species numbers and CPUE, an indication of the regional importance of the Mfolozi estuary as an alternate refuge for juvenile marine fish during periods when the St Lucia system remained closed. Post-larval recruits of marine spawning species were particularly abundant, but low zoobenthic densities caused a rapid decline in numbers of benthic feeders shortly after their recruitment into the system. The importance of the Mfolozi estuary in maintaining marine brood stocks of estuarine dependent marine fish is discussed with particular reference to estuarine degradation and the ecological integrity of the St Lucia system.  相似文献   

3.
Mesozooplankton samples were collected between March 2005 and November 2008 in St Lucia, the largest estuarine lake system in South Africa. St Lucia experienced an extended period of drought before and during the present study. This drought led to natural closing of the estuary mouth as a result of flood-tide marine sediment deposition in 2002. In March 2007 the mouth was washed open by exceptionally high tidal and wave conditions. This resulted in an influx of a large volume of seawater. The mouth closed again in August 2007. Before opening of the mouth salinities in the Estuary were below 10 and large parts of North Lake dried up while South Lake retained a relatively stable waterbody with salinities between 10 and 30. When the mouth opened seawater flooded the system and salinities changed to about 35. After the mouth had closed again in August 2007 salinities increased in the lakes and decreased in the Estuary. The mesozooplankton community was dominated by copepods during all sampling sessions, especially by the estuarine calanoids Pseudodiaptomus stuhlmanni and Acartia natalensis. Mean mesozooplankton densities were significantly higher in South Lake before the mouth opened in March 2007. While zooplankton density decreased when the mouth opened species richness increased with the influx of coastal marine species, especially in the Estuary. Overall zooplankton densities declined progressively as salinity increased to hypersaline levels after mouth closure. Multivariate analyses supported significant differences between the lakes and the Estuary in terms of mesozooplankton community composition. Taxa mostly responsible for the similarities within and dissimilarity between sections of the system were the copepods P. stuhlmanni and A. natalensis with the meroplankton, crab zoeae and mollusc larvae, also contributing significantly after the mouth-opening event.  相似文献   

4.
Fiddler crabs (Uca spp.) undergo the zoeal stage of development in open-ocean waters, where they experience stable salinity levels, low turbidity and reduced predation. The St Lucia estuarine system has undergone many geomorphological changes, both natural and anthropogenic, and the estuary mouth has been closed since the early 2000s. Despite recent attempts to improve marine connectivity, it remains limited, occurring primarily on the flood tide through channels connected to the adjacent Mfolozi River. Larval export from the St Lucia Estuary is therefore almost non-existent. A laboratory study was undertaken to examine the silt and salinity tolerance of Uca annulipes first stage zoeae, to investigate whether survival in the closed-estuary conditions would be possible. Salinity tolerance was narrow, with zoeae displaying 100% mortality at salinities <20 and >35 after five days. Zoeae were widely tolerant to silt loading and did not display a significant decrease in survival over a range of 0–1 000 NTU. A limited salinity tolerance is in accordance with the life-history strategy of fiddler crabs, and a high tolerance to turbid waters can be advantageous to small-bodied merozooplankton. Given the stenohaline nature of the zoeae, marine connectivity is therefore essential for the persistence of U. annulipes in this estuarine habitat.  相似文献   

5.
Lake St Lucia, the largest estuarine lake in Africa has been subjected to hypersaline conditions and low lake levels over the past eight years following the closure of its mouth due to drought in the region. This paper documents the physical changes through which the lake has passed and summarises the main findings of research undertaken on the three major biotic components that have been subjected to these conditions. A review of the anthropogenic impacts which have affected the system is provided. These indicate that in combination with drought conditions greater pressure is placed on the system that was the case in the historical past. Available data indicate that the current situation is not only impacting on the lake and its fauna but also on the adjacent nearshore marine environment, It is considered that the Meta area is potentially also under threat. Medium to long term relief possibilities that are under consideration are discussed in relation to the restructuring of something resembling the historically combined uMfolozi–St Lucia ecosystem that existed in the past. It is concluded that in the short term only two options are available to potentially provide relief for the system, the first is to breach the connection between the mouth and the sea. The second is to re-establish some form of more permanent connection, between uMfolozi and St Lucia.  相似文献   

6.
The St Lucia Estuarine System, South Africa, has been under pressure due to recent drought conditions, which have led to closure of the mouth, extremely low lake levels and hypersaline conditions. The estuary mouth closed in June 2002 and remained so for almost 5 years before being breached by Cyclone Gamede in May 2007. After mouth closure in August 2007, salinities in South and North Lake gradually increased to reach highs of 68 at the end of 2008, while salinities in the Narrows gradually declined during the study. Fish were sampled biannually during 2006–2008 with seine and gill-nets at six sites throughout the system. A total of 20,422 fish from 72 species were recorded, with the number of species and CPUE gradually decreasing from the Narrows throughout the system to Hells Gate in the upper parts of the system. The fish community was dominated by the freshwater species Oreochromis mossambicus, and two estuarine species, Ambassis ambassis and Hyporamphus capensis. The fish community was dominated in terms of species numbers by marine spawning species, but in terms of fish abundance by freshwater and estuarine breeding species. Recruitment of post-larvae of 20 marine species into the system occurred following opening of the mouth in March 2007, highlighting the importance of the system as a nursery area for marine species. The fish community was structured by spatial differences between sampling areas and between the three main compartments of the system, and not by temporal changes during the study period.  相似文献   

7.
St Lucia, the largest estuarine lake complex of its type in Africa, is characterised by natural physico-chemical spatial and temporal fluctuations. This estuary functions as an important nursery area making use of a number of different habitat types and associated environmental conditions. The system has been subject to a number of natural episodic events such as cyclonic flooding and cyclical droughts, the most current has persisted since 2001, resulting in almost permanent mouth closure. Furthermore, high levels of evaporation have reduced lake levels and resulted in compartmentalisation of the system for up to several years at a time. St Lucia is sensitive to evaporation and therefore to vast salinity fluctuations and hypersaline conditions. The upper reaches in North Lake are particularly sensitive to drying out and extended hypersaline events. The macrobenthos has been well studied, but no studies have concentrated on the entire system for such an extent of time. Macrobenthic samples were initially collected in 2004, again in 2005 and biannually from 2006 to 2008. This study was part of a larger multidisciplinary programme aimed at determining the effects of long term drought conditions on the ecology of the St Lucia system, and increasing current understanding of the system response to future catastrophic climatic events. Three areas were sampled (North and South Lake and Estuary) at five sites per area, over five years. Data were analysed by representing communities through time series depictions and discriminating sites and sampling periods to test multidimensional relationships. Linkages between biological distribution and selected environmental forcing variables were investigated. The system was found to be highly variable and supporting a large number of different habitats and co-occurring environmental conditions. This variability makes it difficult to discern spatial or temporal patterns in environmental conditions and macrobenthic ecology. However, some level of resilience to wide ranging environmental changes associated with drought is maintained. This study was able to determine that there exists a core of taxa able to persist even under shallow depth conditions and prolonged hypersalinity. These taxa clearly have a self recruiting strategy and are therefore not reliant on mouth opening to re-establish local populations. This finding alone has important bearing for future studies and management of the system under similar adverse conditions.  相似文献   

8.
The St. Lucia Estuary is Africa’s largest estuarine system and is currently experiencing the stress of prolonged freshwater deprivation, manifested by extremely low water levels and hypersalinity. These unprecedented conditions have raised questions regarding the trophic functioning of the ecosystem. Despite the substantial amount of research previously undertaken within this system, no studies of food web structure and function have yet been documented. This study therefore aimed to examine the food web structure of the St. Lucia estuary system through the use of carbon and nitrogen stable isotope analysis. Analysis of carbon isotope ratios indicates that benthic carbon sources are most utilised at sites with low water levels and generally higher salinity (Catalina Bay, Charter’s Creek). Conversely, the estuarine region of the mouth and Narrows, with its elevated water levels and lower salinity, still sustains a viable pelagic food web. Analysis of δ15N ratios indicates that the number of trophic transfers (food chain length) might be related to water levels. Overall, the study provides a greater understanding of the ecological processes of this complex estuarine lake, which may allow for future comparisons of trophic functioning under drought and normal/wet conditions to be made.  相似文献   

9.
The St. Lucia Estuary is Africa's largest estuarine system. It is a major component of the iSimangaliso (formerly Greater St. Lucia) Wetland Park, which was declared a World Heritage Site in 1999. The system has been severely affected by drought conditions which have culminated in the mouth of the system being cut off from the Indian Ocean since June 2002, for a period of almost five years. This study aimed to document the dynamics of meiofauna of the system during a drought phase, since (1) the effects of droughts on estuaries are poorly documented and understood and (2) because studies of meiofauna have never been undertaken in this system before. Meiofauna samples as well as physico-chemical data were collected at representative sites in February, April, August and October 2005. The drought had a major effect on the estuary, resulting in the development of hypersaline conditions (maximum 126 at Hells Gate), and to the complete evaporation of pelagic habitats, especially in the northern regions. The meiofauna of the St. Lucia Estuary was statistically separated into two distinct spatial clusters under drought conditions. The first cluster comprised sites in the Narrows and the southern region of South Lake, while the second comprised sites in the northern regions of South Lake and False Bay. Meiofauna of cluster 1, which was least affected by the drought, comprised nematodes, polychaetes, copepods, amphipods and ostracods, all of which accounted for 97% of meiofauna in this cluster. Cluster 2 on the other hand, which was more severely affected by the drought, was dominated by nematodes and copepods, which cumulatively contributed 97% to meiofauna in this group. Taxonomic richness and diversity of meiofauna were positively correlated with water depth, while abundance was inversely correlated with water temperature. The major effects of low water levels on the meiofauna of the system occurred through a negative impact on diversity and taxonomic richness, resulting in assemblages dominated by taxa most physiologically suited to such conditions. Secondly, at the peak of the drought, there was discontinuous water flow in the St. Lucia Estuary, resulting in parts of the northern and southern regions of the system being fragmented. This could have prevented the spread of meiofaunal taxa between the different basins of the system, and also explains the spatial separation of meiofauna into distinct clusters within the estuary.  相似文献   

10.
The St. Lucia Estuary is the largest estuarine system in Africa. The estuary is part of the Greater St. Lucia Wetland Park, which has been declared a World Heritage Site. This ecosystem has been subjected to severe drought conditions over the last four to five years, resulting in its mouth being closed off from the ocean in June 2002 for a period of over four years. The main aim of this study was to document the effects of the prevailing drought on the macrofauna of the system, since the last work on this benthic component had been undertaken over a decade ago, during a normal-to-wet phase. Macrofauna samples together with physico-chemical data were collected at representative sites in the Narrows, and the South and North lakes in February, April, August and October 2005. The drought exerted a strong influence on the system, leading to hypersaline conditions developing in its northern regions (maximum of 126 at Hell's Gate), and to the loss of aquatic habitat. Ordinations and clustering indicated that the macrofauna of the system could generally be separated into three clusters viz. (1) the Narrows and the southern portion of South Lake, (2) the northern half of South Lake, and (3) the North Lake–False Bay complex. Multivariate correlations indicated weak relationships between macrofaunal community structure and physico-chemical parameters. The distinction in macrofaunal assemblages between these clusters was probably caused by these habitats being physically separated at the peak of the drought, with no water flow between them, thereby preventing exchange of planktonic larvae and retarding colonisation of habitats. There was a northward decline in taxonomic richness and diversity of macrofauna in the system, which correlated positively with water depth and negatively with the biomass of microphytobenthos. It is evident that the drought structured macrofauna communities primarily through its effects on water depth and habitat fragmentation. The results of this investigation provide valuable information regarding the effects of droughts on estuarine–lake systems and the possible mechanisms by which they occur.  相似文献   

11.
The St. Lucia estuarine lake on the north coast of KwaZulu-Natal, South Africa, is one of the largest estuarine systems in Africa and of unique importance for the adjacent marine and terrestrial ecosystems. The area regularly experiences periods of drought, resulting in hypersaline conditions in its shallow lakes and the closure of the estuarine mouth. This study aimed to assess the primary production rates of phytoplankton and microphytobenthos throughout an annual cycle of this drought phase. Primary production rates were assessed at representative sites, namely the Mouth, Narrows, South and North Lakes from June 2006 to May 2007. Because of the drought, the salinity gradient from the mouth to the head of the estuary was reversed by comparison to estuarine systems with a steady freshwater inflow and regular marine exchange. In March 2007, during the study, the mouth opened as a result of rough seas, and the marine influence broke the existing reversed gradient, producing a marine salinity throughout the system. Microphytobenthic primary productivity varied between 0 and 34 mg C m−2 h−1 and showed strong correlations with salinity, DIN:DIP ratios and irradiance. Benthic productivity was high across the system after breaching of the mouth. Pelagic primary productivity (between 0 and 180 mg C m−2 h−1), showed a correlation with temperature and irradiance and was highest across the system in February 2007 when the mouth was still closed. There was no significant correlation between production rates and biomass (chl-a) in either the benthic or pelagic habitats. The negative correlation between DIN:DIP ratio and benthic primary productivity indicated that phosphorus was the limiting nutrient. This study shows that salinity, along with seasonally dependent parameters such as temperature and irradiance, correlates with the rate of microalgal production. Hence, in these shallow lakes, the largest primary productivity can occur in either the pelagic or benthic subsystems, depending on prevailing conditions at the time.  相似文献   

12.
This paper reports on the composition, abundance and distribution of the larval fish assemblage in the nearshore coastal waters off the St Lucia Estuary mouth, South Africa. Ichthyoplankton samples were collected over a 12 month period from five stations located along a transect up to 2·5 km offshore, and from two stations north and south of the estuary mouth, respectively. In all, 6126 fish larvae, representing 89 families and 186 species, were collected. Larvae in the families Myctophidae and Tripterygiidae comprised 21% and 16% of the total catch, respectively. The most abundant species were an unidentified triplefin, Tripterygiid 1 and the lanternfish Benthosema fibulatum, together which contributed nearly 18% of the total catch. Larvae of marine spawners independent of estuaries dominated the catch both in terms of density (90%) and in terms of number of taxa (89%). Some larvae of estuarine-associated species were present, in addition to a few specimens of estuarine resident species. Overall the dominant environmental variable affecting larval densities was temperature, particularly for Trypterygiid 1 where temperature contributed to 9% of the variance model. Densities of fish larvae peaked in November and December 1990 (late spring and early summer) and were lowest from January to June 1991 (summer, autumn an early winter). Different taxa dominated the catch each month with reef- and shelf-associated species accounting for the peak in August and September 1990, oceanic species in November 1990 and a mixture of the two groups in December. Overall larval densities were significantly higher in bottom samples with a trend of increasing densities offshore for reef and shelf taxa. The larvae of reef and shore taxa were predominantly preflexion larvae, whilst the few estuarine spawner species that were collected were mainly postflexion. Ontogenetic patterns related to depth and distance offshore were evident for the dominant species in each estuarine-association category.The present study has shown that temporal and spatial variations in the larval fish assemblage off St Lucia are related to environmental conditions and ontogenetic behavioural patterns of certain species. The origin of many of the larvae in the assemblages off the coast of St Lucia is probably from both local spawning populations in the shelf waters off KwaZulu-Natal and spawning populations farther north in shelf waters off Mozambique. Additional studies with more detailed oceanographic measurements will further our understanding of the physical processes that supply larvae to the St Lucia region.  相似文献   

13.
Mangrove swamps and hypersaline saltflats fringe many estuaries in dry tropical climates, especially in Northern Australia. For most of the year these estuaries receive zero riverine freshwater input and thus, after the wet season, a steady increase in salinity occurs. In some locations the estuary becomes fully inverse, i.e. the salinity increases monotonically from the mouth to the head. In other locations, a salinity maximum zone separates the sea from low salinity water that persists at the head of the estuary throughout the dry season. Field data from five estuaries indicate that in short estuaries where a large area of saltflats and mangroves extends over the whole length of the estuary, the estuary becomes completely inverse with salinity rising to 55 within a couple of months. The evaporation and evapotranspiration over the saltflats and mangroves cause this rapid increase in salinity. Longer estuaries where a large area of salt flat exists only close to the mouth do not become completely hypersaline for the whole length of the estuary by the end of the dry season. A salinity-maximum is generated close to the river mouth but salinities of less than 10 persist in the upper reaches of the estuary until the end of the dry season, even though the estuary does not receive any further freshwater input. A simple analytical expression is presented that reproduces the changes in salinities in the estuaries studied. This model can be used to predict the formation of hypersaline conditions in other mangrove and saltflat fringed estuaries where freshwater flow is negligible.  相似文献   

14.
Wastewater discharges affect the functioning of small temporarily open/closed estuaries (TOCEs) through two main mechanisms: (1) they can significantly change the water balance by altering the quantity of water inflows, and (2) they can significantly change the nutrient balance and hence the water quality. This study investigated the bio-physical responses of a typical, small TOCE on the east coast of South Africa, the Mhlanga Estuary. This estuary receives significant inflows of treated effluent from upstream wastewater treatment works. Water and nutrient budgets were used together with biological sampling to investigate changes in the functioning of the system. The increase in inflows due to the effluent discharges has significantly increased the mouth breaching frequency. Furthermore, when the mouth closes, the accumulation of nutrients leads to eutrophication and algal blooms. A grey water index, namely the proportion of effluent in the estuary and an indicator of the additional nutrient inputs into the estuary, reached high values (?50%) during low flow regimes and when the mouth was closed. In these hyper-eutrophic conditions (DIN and DIP concentrations up to 457 μM and 100 μM respectively), field measurements showed that algal blooms occurred within about 14 days following closure of the mouth (chlorophyll-a concentrations up to 375 mg chl-a m−3). Water and nutrient balance simulations for alternative scenarios suggest that further increases in wastewater discharges would result in more frequent breaching events and longer open mouth conditions, but the occurrence of hyper-eutrophic conditions would initially intensify despite more frequent openings. The study indicates how water and nutrient balance simulations can be used in the planning and impact assessment of wastewater treatment facilities.  相似文献   

15.
Bivalves feed on a combination of phytoplankton and zooplankton and have the potential to impact considerably the planktonic biomass, especially when they occur in high densities, such as in oyster and mussel beds. The brackwater mussel Brachidontes virgiliae is numerically dominant during wet phases within Africa’s largest estuarine lake, St Lucia, in the iSimangaliso Wetland Park on the east coast of South Africa. The ingestion rates and potential grazing impact of this small mussel (maximum shell length = 2.5 cm) were estimated for both the wet and dry seasons using an in situ gut fluorescence technique. Ingestion rates were higher during the wet season (5.78 µg pigment ind.?1 d?1) than during the dry season (4.44 µg pigment ind.?1 d?1). This might be explained by the increased water temperature and food availability during the wet season. Because of the patchy distribution of mussel populations, there could be higher localised grazing impact near mussel aggregations. Results showed a potential grazing impact of up to 20 times the available phytoplankton biomass at specific sites. These high grazing impacts have the potential to deplete phytoplankton stocks in the lake, especially during wet phases in the northern reaches, where mussel densities are highest. This needs to be factored into ecological models of Lake St Lucia, because the system might function differently during increased flood events.  相似文献   

16.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

17.
Assessing changes in food-web structure provides a useful monitoring tool for gauging the resilience of ecosystems in the face of climatic impacts. We consider the ecological resilience of a large estuarine lake (St Lucia Estuary, South Africa) in the wake of an extreme climatic event (prolonged drought). Using carbon and nitrogen stable isotopes, food-web structure was assessed at five sites across the estuary during the winter and spring of 2013. Sampling occurred approximately three years after heavy rains flooded the system and returned it to a relatively diluted state following an almost decade-long drought that decimated food webs in the upper parts of the estuary due to hypersalinity effects. Comparisons of niche width and variance of consumer food webs among sites revealed a general homogenisation of food webs across the entire system, contrasting with the spatial differentiation of food webs documented during the drought phase. Our results indicate that the estuary is able to maintain ecological resilience at the whole-system level in the face of an extreme drought. This is likely facilitated by source pools of species residing in the relatively stable lower estuary, which are able to rapidly recolonise areas denuded by drought in the upper estuary.  相似文献   

18.
Seasonal changes in freshwater inflow and other environmental conditions may induce changes in density and species composition of mangrove fishes along estuarine gradients. Fishes within mangrove habitats in a subtropical estuary were sampled monthly from May 1989 to May 1990, using block nets with rotenone and visual censuses. At 18 stations, temperature ranged from 22 to 34°C, depth from 10 to 104cm and underwater visibility from 1 to 13m. Salinity ranged from 0 to 60 upstream, and 35 to 54 mid- and downstream. A total of 573191 individuals (76 species) was observed or collected, with an average density of 6·5 fish m−2. Engraulidae, Atherinidae, Poeciliidae and Cyprinodontidae numerically dominated the assemblage. Distinct assemblages occurred up-, mid- and downstream and maintained coherent groups in these gradient positions over the seasons. Residents totalled 94·5% of the individuals, estuarine transients comprised 5·1% and occasional marine visitors were less than 0·4%. Densities of resident fishes peaked in winter as temperatures and water levels fell, uncorrelated with changes in salinity. These observations suggest that mangrove habitats may sustain diverse and abundant fish communities dominated by euryhaline residents. Although estuarine transients were consistently rare in upstream sub-basins, downstream were found numerous sub-adults of species occurring as adults on nearby reefs (Lutjanidae, Haemulidae). Thus, reef-associated estuarine transients may be abundant in mangrove habitats having near-marine salinities. Contrary to expectations, mangrove habitats in northeastern Florida bay did not function as a nursery as defined under the nursery-ground paradigm: young-of-the-year juveniles of estuarine transient species did not seek low salinity sub-basins. However, northeastern Florida Bay may not be representative of most mangrove estuaries as the area: (1) is without lunar tides and related circulation; (2) has low and variable amounts of submersed vegetation; and (3) experiences severe hypersaline conditions.  相似文献   

19.
长江口3个不同生态系的浮游植物群落   总被引:7,自引:1,他引:7  
初步研究表明 ,长江口及邻近海域存在 3个不同的生态系 ,与以盐度划分的水团 (长江河口水、长江冲淡水、外海水 )基本一致 ,每个生态系包含 1个浮游植物群落。 1997~ 2 0 0 0年的 7个航次调查中共鉴定出浮游植物 393种 ,其中大部分为硅藻。长江口的浮游植物基本可归为 5个类群 :淡水类群、河口半咸水类群、近岸低盐性类群、外海高盐类群、海洋广布性类群。它们自西向东在 3个生态系中有明显的分布格局 ,并且随着长江径流量的变化而摆动和变化。根据栖息水域的盐度浮游植物可分为 3个群落 :河口群落、冲淡水低盐群落、外海高盐群落。  相似文献   

20.
Abstract. A mixed population of unicellular and colonial cyanobacteria was transferred into culture from a hypersaline helio-thermal pond in the vicinity of the Dead Sea. The entire complex of strains, incubated in Dead Sea water of varying salinity and temperature, showed a pronounced shift of the maximal growth from a salinity of 72 g l-1 at 30 oC up to 142 g 1-1 at 50 oC. Over the above range of salinities and temperatures, these cyanobacteria were capable of about four divisions per day, providing that any increase in salinity was coupled with the suitable increase in temperature. The above peculiar adaptation can explain the prominent success of this group of microorganisms in the extreme and unstable ecological conditions of hypersaline habitats. Amounts of slime accumulating in the cultures were proportional to the incubation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号