首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Based on the analytical layer-element method, an analytical solution is proposed to determine the dynamic interaction between the elastic circular plate and transversely isotropic multilayered half-space. The dynamic response of the elastic circular plate is governed by the classical thin-plate theory with the assumption that the contact surface between the plate and soil is frictionless. The total stiffness matrix of the transversely isotropic multilayered half-space is acquired by assembling the analytical layer-element of each soil layer with the aid of the continuity conditions between adjacent layers. According to the displacement condition of coordination between the plate and soil, the dynamic interaction problem is reduced to that of multilayered transversely isotropic half-space subjected to axisymmetric harmonic vertical loading. Some numerical examples are given to study the vertical vibration of the plate, and the results indicate that the dynamic response of elastic circular plate depends strongly on the material properties of the soils, the rigidity of the plate, the frequency of excitation and the external load form.  相似文献   

2.
An exact theoretical formulation is presented for the analysis of a thin-walled pile embedded in an elastic half-space under vertically-incident P-wave excitation. In the framework of three-dimensional elastodynamics and a shell theory, the axisymmetrical wave-scattering problem is shown to be reducible to a set of Fredholm boundary integral equations. With the incorporation of the singular characteristics of the wave-induced contact load distributions into the solution scheme, a computational boundary element method is developed for a rigorous treatment of the seismic soil-structure interaction problem. Typical results for the dynamic contact load distributions, displacements, complex-valued foundation input motion functions, and resonant pile foundation response are included for direct engineering applications.  相似文献   

3.
4.
The dynamic analysis of a surface rigid foundation in smooth contact with a transversely isotropic half-space under a buried inclined time-harmonic load is addressed. By virtue of the superposition technique, appropriate Green׳s functions, and employing further mathematical techniques, solution of the mixed-boundary-value problem is expressed in terms of two well-known Fredholm integral equations. Two limiting cases of the problem corresponding to the static loading and isotropic medium are considered and the available results in the literature are fully recovered. For the static case, the results pertinent to both frictionless and bonded contacts are obtained and compared. With the aid of the residue theorem and asymptotic decomposition method, an effective and robust approach is proposed for the numerical evaluation of the obtained semi-infinite integrals. For a wide range of the excitation frequency, both normal and rotational compliances are depicted in dimensionless plots for different transversely isotropic materials. Based on the obtained results, the effects of anisotropy are highlighted and discussed.  相似文献   

5.
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.  相似文献   

6.
With the aid of the analytical layer-element method, a comprehensive analytical derivation of the response of transversely isotropic multilayered half-space subjected to time-harmonic excitations is presented in a cylindrical coordinate system. Starting with the governing equations of motion and the constitutive equations of transversely isotropic elastic body, and based on the Fourier expansion, Hankel and Laplace integral transform, analytical layer-elements for a finite layer and a half-space are derived. Considering the continuity conditions on adjacent layers׳ interfaces and the boundary conditions, the global stiffness matrix equations for multilayered half-space are assembled and solved. Finally, some numerical examples are given to make a comparison with the existing solution and to demonstrate the influence of parameters on the dynamic response of the medium.  相似文献   

7.
A transversely isotropic material in the sense of Green is considered. Using a series of potential functions proposed in [Eskandari-Ghadi M. A complete solution of the wave equations for transversely isotropic media. J Elasticity 2005; 81:1–19], the solutions of the transient wave equations within a half-space under surface load are obtained in the Laplace–Hankel domain for axisymmetric problems. The solutions are investigated in detail in the special case of a surface point force pulse varying with time as Heaviside function. Using Cagniard–De Hoop method, the inverse Laplace transform and inverse Hankel transform of the solutions are then obtained in the form of integrals with finite limits. For validity of the analytical results, the final formulations for surface waves are degenerated for an isotropic material and compared with the existing formulation obtained by Pekeris [The seismic surface pulse. Proc Natl Acad Sci USA 1955;41:469–80], to show that they are exactly the same. The numerical evaluations of the integrals for some transversely isotropic materials as well as an isotropic one are obtained. The present approach is then numerically verified by comparing a particular case of displacements for the surface of an isotropic half-space subjected to a point load of Heaviside function with the solutions obtained by Pekeris [The seismic surface pulse. Proc Natl Acad Sci USA 1955;41:469–80]. In addition, the wave equations for the mentioned medium are obtained on the vertical line directly under the applied surface load. The final formulations are degenerated for an isotropic material and compared with the existing formulation given in Graff [Wave motion in elastic solids. New York: Dover Publications Inc; 1975 [New Ed edition, November 1991]], to show that they are also exactly the same. Then equations are presented in graphical forms using an appropriate numerical evaluation.  相似文献   

8.
王小岗 《地球物理学报》2009,52(8):2084-2092
基于孔隙介质的Biot理论,首先利用Laplace变换,给出圆柱坐标系下横观各向同性饱和弹性多孔介质在变换域上的波动方程;将波动方程解耦后,根据方位角的Fourier展开和径向Hankel变换,求解了Biot波动方程,得到以土骨架位移、孔隙水压力和土介质总应力分量的积分形式的一般解;借助一般解,建立了有限厚度饱和土层和饱和半空间的精确动力刚度矩阵,并由土层的层间界面连续条件建立三维非轴对称层状饱和地基的总刚度方程;在此基础上,系统研究了横观各向同性饱和半空间体在内部集中荷载激励下的动力响应,并给出了问题的瞬态解答.该研究为运用边界元法求解饱和地基动力响应奠定了理论基础.  相似文献   

9.
A method to obtain the three-dimensional harmonic response of a infinitely long cylindrical shell of circular cross-section embedded in a layered viscoelastic half-space and subjected to harmonic plane waves impinging at an oblique angle with respect to the axis of the shell is presented. The procedure combines an indirect integral representation for the field in the exterior half-space with a model of the pipeline or tunnel based on Donnell shell theory. The integral representation for the soil is based on the use of moving Green's functions for the layered viscoelastic half-space. The accuracy of the formulation is tested by comparison of results obtained by using different discretizations. Extensive comparisons with previous two- and three-dimensional results for the case of a shell embedded in a uniform half-space and some new numerical results for a shell embedded in a multilayered half-space are presented in a companion paper.  相似文献   

10.
A half-space containing horizontally multilayered regions of different transversely isotropic elastic materials as well as a homogeneous half-space as the lowest layer is considered such that the axes of material symmetries of different layers and the lowest half-space to be as depth-wise. A rigid circular disc rested on the free surface of the whole half-space is considered to be under a forced either vertical or horizontal vibration of constant amplitudes. Because of the involved integral transforms, the mixed boundary value problems due to mixed condition at the surface of the half-space are changed to some dual integral equations, which are reduced to Fredholm integral equations of second kind. With the help of contour integration, the governing Fredholm integral equations are numerically solved. Some numerical evaluations are given for different combinations of transversely isotropic layers to show the effect of degree of anisotropy of different layers on the response of the inhomogeneous half-space.  相似文献   

11.
The fundamental solution for a periodic point force in the interior of a three-dimensional, homogeneous, isotropic, elastic half-space is derived. The method of synthesis and superposition is employed to obtain the solution in the Laplace transform as well as the frequency domain. These correspond to the dynamic equivalent of Mindlin's static half-space point force solutions. It is reduced, for certain limiting conditions, to the dynamic equivalent of Boussinesq's and Cerruti's problems of a normal and tangential periodic point force respectively, on the boundary of a half-space. Also, static solutions of Mindlin, Boussinesq and Cerruti are recovered for small frequency parameters. Finally, results are presented and compared with other available solutions.  相似文献   

12.
This paper is concerned with the investigation of the vertical vibration of a rigid circular disc buried at an arbitrary depth in a transversely isotropic half space in such a way the axis of material symmetry of the half space is normal to the surface of it and parallel to the vibration direction. By using the Hankel integral transforms, the mixed boundary-value problem is transformed to a pair of integral equations called dual integral equations, which generally can be reduced to a Fredholm integral equation of the second kind. With the aid of complex variable or contour integration, the governing integral equation is numerically solved in the general dynamic case. Two degenerated cases (i) the disc is buried in a transversely isotropic full space, and (ii) rigid circular disc is attached on the surface of the half space are discussed. The reduced static case of the dual integral equations is solved analytically and the vertical displacement, the contact pressure and the static impedance/compliance function are explicitly found. It is shown that the vertical pressure and the compliance function reduced for isotropic half space are identical to the previous solutions reported in the literature. The dynamic contact pressure under the disc and the impedance function are numerically evaluated in general dynamic case and graphically shown that the singularity exists in the contact pressure at the edge of the disc is the same as the static case. In addition, the impedance functions evaluated here for the isotropic domain are collapsed on the solution given by Luco and Mita. To show the effect of different material anisotropy, the numerical evaluations are given for some different transversely isotropic materials and compared.  相似文献   

13.
范家参 《地震研究》1990,13(4):435-442
用布希涅斯克定义的弹性半空间内的垂直位移包括两项积分,除了积分号前面系数的差别之外,第一项积分是单层位势而第二项积分为双层位势。若扁壳基础是正高斯曲率的几何曲面,则壳底与半空间表面间的挤压强度就是半空间表面作用的分布垂直荷载。当越过边界时,双层势位的函数值和单层势位的法向导数值发生跳跃。利用这些性质,本文得出布希涅斯克积分的反演公式,从而避开要求解偏微分—积分方程组的巨大数学困难而易于得出解析解。以椭园抛物面扁壳为例说明本文方法的应用。  相似文献   

14.
A theoretical investigation of plane waves in granular soils is presented. Dynamic equations are derived with the use of the hypoplasticity theory for granular materials. For numerical calculations the material parameters of Karlsruhe sand are used. Wave speeds as slopes of characteristics of the dynamic equations are calculated for various stresses and densities. It is shown that under certain conditions the dynamic equations lose hyperbolicity and the initial boundary value problem thus becomes ill-posed. Two types of ill-posedness are found, known as flutter ill-posedness and stationary discontinuity. The latter is shown to arise at higher shear stress than the former. A comparison is made between dynamic ill-posedness and stability of static equilibrium. With the use of the second-order work stability criterion it is found that the dynamic equations lose hyperbolicity when the static equilibrium under a dead load is still stable. Numerical solutions to the problem of propagation of boundary disturbance in a half-space are obtained. Owing to dilatancy and contractancy of the granular material, a purely transverse disturbance induces a longitudinal component of velocity in the wave, and vice versa.  相似文献   

15.
A procedure to calculate the three-dimensional harmonic response of a infinitely long cylindrical shell of circular cross-section embedded in a layered viscoelastic half-space and subjected to harmonic plane waves impinging at an oblique angle with respect to the axis of the shell is validated by extensive comparisons with previous two- and three-dimensional results for the particular case of a shell embedded in a uniform half-space. New numerical results describing the motion and stresses within a shell embedded in a multilayered half-space and subjected to obliquely incident P-, SV- and SH-waves with different horizontal angles of incidence are presented and discussed.  相似文献   

16.
An analytical approach is developed to study the dynamic response of a flexible plate on single-layered saturated soil. The analysis is based on Biot's two-phased theory of poroelasticity and also on the classical thin-plate theory. First, the governing differential equations for saturated soil are solved by the use of Hankel transform. The general solutions of the skeleton displacements, stresses, and pore pressures, derived in the transformed domain, are subsequently incorporated into the imposed boundary conditions, which leads to a set of dual integral equations describing the corresponding mixed boundary value problem. These governing integral equations are finally reduced to the Fredholm integral equations of the second kind and solved by standard numerical procedures. The accuracy of the present solution is validated via comparisons with existing solutions for an ideal elastic half-space. Furthermore, some numerical results are presented to show the influences of the layer depth, the plate flexibility, and the soil porosity on the dynamic compliances.  相似文献   

17.
The dynamic soil–structure interaction of a rigid rectangular foundation with the subsoil represents a mixed-boundary value problem. This problem is formulated in terms of a system of coupled Fredholm integral equations of the first kind. The subsoil is modelled by a homogeneous, linear-elastic and isotropic half-space which is perfectly bonded to the rigid, rectangular foundation. An approximate solution for the resultant loads between the foundation and the half-space due to a unit forced displacement or rotation is obtained using the Bubnov–Galerkin method. Using this method the displacement boundary value conditions are exactly satisfied and the contact stress distributions between the foundation and the half-space are approximated by series expansions of Chebyshev polynomials. This method provides a simple means of studying the soil-structure interaction of rectangular foundations with different inertia properties.  相似文献   

18.
A study on the transient response of a circular cylindrical shell of finite length embedded in a homogeneous, isotropic and linear elastic half-space is presented. The soil-structure system is subjected to suddenly applied explosion waves. The numerical method employed is a combination of the time domain semi-analytical boundary element method used for the semi-infinite soil medium and the finite strip method used for the circular cylindrical shell. The two methods are combined through equilibrium and compatibility conditions at the soil-structure interface. The dynamic responses at the interface between the soil medium and the structure for every time step are obtained. Numerical examples are presented in detail to demonstrate the use and versatility of the proposed method. The following parameters are found to affect the response: (1) the slenderness ratio of the length over the diameter of the shell, L/D; (2) the relative wall thickness, h/a; (3) the relative stiffness ratio between the shell and the medium, Es/Em; and (4) the incidence angle of the explosion wave, α.  相似文献   

19.
This paper proposes a coupled fluid layer–foundation–poroelastic half-space vibration model to study how still water affects foundations operating underwater. As an example, we consider the problem of the vertical vibration of a rigid disk on a poroelastic half-space covered by a fluid layer having a finite depth. The solution of the disk vibration problem is obtained using the boundary conditions at the free surface of the fluid layer and the boundary conditions at the fluid layer–poroelastic medium interface. The solution is expressed in terms of dual integral equations that are converted into Fredholm integral equations of the second kind and solved numerically. Selected numerical results for the vertical dynamic impedance coefficient are examined based on different water depths, poroelastic materials, disk permeabilities and frequencies of excitation. Based on the numerical results, it is proposed that the hydrodynamic pressure caused by the foundation vibration is the intrinsic reason that the existence of a fluid layer has such a great effect on the dynamic characteristics of the foundation. In many cases, the hydrodynamic pressure caused by the foundation vibration cannot be ignored when designing dynamic underwater foundations. These results are helpful in understanding the dynamic response of foundations under still water without water waves, such as foundations in pools, lakes and reservoirs.  相似文献   

20.
This paper examines the axisymmetric torsional vibrations of an elastic pile and a hemispherical foundation embedded in a homogeneous elastic half-space. The embedded foundation–half-space system is decomposed into an extended half-space and a fictitious foundation. The deformations of the fictitious system are specified by an admissible function containing a set of generalized coordinates. The Lagrangian equations of motion are used to determine these coordinates associated with the assumed displacement function. Numerical results are presented for torsional impedance of an elastic pile and a hemisphere to illustrate the effects of relative flexibility and geometry. By employing certain simplifications on the pile–half-space system an approximate closed form solution is presented for the torsional impedance of an elastic pile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号