首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time- dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.  相似文献   

2.
In the disturbance of unsteady flow field under the sea, the monitoring accuracy and precision of the bottom-mounted acoustic monitoring platform will decrease. In order to reduce the hydrodynamic interference, the platform wrapped with fairing structure and separated from the retrieval unit is described. The suppression effect evaluation based on the correlation theory of sound pressure and particle velocity for spherical wave in infinite homogeneous medium is proposed and the difference value between them is used to evaluate the hydrodynamic restraining performance of the bottom-mounted platform under far field condition. Through the sea test, it is indicated that the platform with sparse layers fairing structure (there are two layers for the fairing, in which the inside layer is 6-layers sparse metal net, and the outside layer is 1-layer polyester cloth, and then it takes sparse layers for short) has no attenuation in the sound pressure response to the sound source signal, but obvious suppression in the velocity response to the hydrodynamic noise. The effective frequency of the fairing structure is decreased below 10 Hz, and the noise magnitude is reduced by 10 dB. With the comparison of different fairing structures, it is concluded that the tighter fairing structure can enhance the performance of sound transmission and flow restraining.  相似文献   

3.
Threshold of Sediment Movement in Different Wave Boundary Layers   总被引:3,自引:2,他引:3  
A review of former studies on the onset of sediment movement under wave action reveals that the Shields criterion obtained in unidirectional steady flow can also be applicable to oscillatory unsteady flow when the boundary layer is the same. In this paper, through comparison of different boundary layers in wave and steady flow conditions, a new criterion is presented which can be used to predict the threshold of sediment movement under wave action. The criterion curve shows good agreement with the experimental data.  相似文献   

4.
A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged Navier-Stokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations arc transformed into the a-coordinate system and the eddy viscosity is calculated with the standard k -ε turbulence model. The control volume method is used to discrete the equations, and the boundary conditions at the bed for shallow water models only include vertical diffusion terms expressed with wall functions. And the semi-implicit methed for pressure linked equation arithmetic is adopted to solve the equations. The model is applied to the 2D vertical plane flow of a current over two steep-sided trenches for which experiment data are available for comparison and good agreement is obtained. And the model is used to predicting the flow in a channel with a steep-sided submerged breakwater at the bottom, and the streamline is drawn.  相似文献   

5.
Owing to the fact that the wind speed and direction of typhoon vary rapidly with time and space in typhoon fetch; the nearer to the typhoon eye the greater the wind velocity, and the shorter the wind fetch the smaller the wind time,as a result,the more difficult for the wind wave to fully grow. Hence.in typhoon wave numerical calculation it is impossible to use the model for a fully grown wave spectrum. Lately, the author et at. presented a CHGS method for numerical forecasting of typhoon waves, where a model for the growing wave spectrum was set up (see Eq. (2) in the text). The model involves a parameter indicating the growing degree of wind wave, i. e. ,the mean wave age β. When βvalue is small, the wave energy is chiefly concentrated near the peak frequency, so that the spectral peak gets high and steep; with the increase of β the spectral shape gradually gets lower and gentler; when β=Ⅰ, the wave fully grows, the growing spectrum becomes a fully grown P-M spectrum. The model also shows a spect  相似文献   

6.
- In this paper a two-dimensional unsteady shallow water equations and convection-diffusion equations have been considered to describe the diluting process of the radioactive and heat discharged from a nuclear power plant. The theory of characteristic and eccentric difference scheme has been used.In order to obtain the distribution of the concentration in far-field and near-field, three different siges of mesh have been used. The flow field has been verified with the field data, and the computed temperature in the near-field agrees with the measurements in the normal physical model test.  相似文献   

7.
During ice-breaking navigation, a massive amount of crushed ice blocks with different sizes is accumulated under the hull of an ice-going ship. This ice slides into the flow field in the forward side of the podded propulsor, affecting the surrounding flow field and aggravating the non-uniformity of the propeller wake. A pulsating load is formed on the propeller, which affects the hydrodynamic performance of the podded propulsor. To study the changes in the propeller hydrodynamic performance during the ice podded propulsor interaction, the overlapping grid technique is used to simulate the unsteady hydrodynamic performance of the podded propulsor at different propeller rotation angles and different ice block sizes. Hence, the hydrodynamic blade behavior during propeller rotation under the interaction between the ice and podded propulsor is discussed. The unsteady propeller loads and surrounding flow fields obtained for ice blocks with different sizes interacting with the podded propulsor are analyzed in detail. The variation in the hydrodynamic performance during the circular motion of a propeller and the influence of ice size variation on the propeller thrust and torque are determined. The calculation results have certain reference significance for experiment-based research, theoretical calculations and numerical simulation concerning ice podded propulsor interaction.  相似文献   

8.
INTRODUCTIONIt is well-known that a typhoon has a strong wind zone and very steep pressure gradient. Thespatial and temPOral variations of the meteorological quantities within a typhoon are much largerthan that in a common synOPtic system and it involves strong convective activities. The details ofthe structures and physical processes of typhoons need to be properly resolved when we do the numerical simulation. When designing a typhoon model, however, the effect of large scale synopticsy…  相似文献   

9.
QI  Peng 《中国海洋工程》2002,16(2):201-210
A hybrid numerical method for the hydraulic modeling of a curtain-walled dissipater of reflected waves from breakwa-ters is presented. In this method, a zonal approach that combines a nonlinear weakly dispersive wave (Boussinesq-type equation) method and a Reynolds-Averaged Navier-Stokes (RANS) method is used. The Boussinesq-type equation is solved in the far field to describe wave transformation in shallow water. The RANS method is used in the near field to re-solve the turbulent boundary layer and vortex flows around the structure. Suitable matching conditions are enforced at the interface between the viscous and the Boussinesq region. The Coupled RANS and Boussinesq method successfully resolves the vortex characteristics of flow in the vicinity of the structure, while unexpected phenomena like wave re-reflection are effectively controlled by lengthening the Boussinesq region. Extensive results on hydraulic performance of a curtain-walled dissipater and the mechanism of dissipation of reflected waves  相似文献   

10.
In the light of the sea level synoptic charts from July to August for 1975-1978, we obtained more observed records of low latitudes by using the analysed stream and temperature-moisture field (or so called energy field θe field and θse field), the main characteristics of these fields in the period of multi-typhoon genesis and of typhoon interval in the mid-summer are studied.Finally, it should be pointed out that the position of the typhoon genesis and the typhoon track are generally consistent with the low temperature-moisture region of the sea surface as well as with its tendency, so that a valuable information is obtained for the forecast of the typhoon track.  相似文献   

11.
-At present, it is still difficult to obtain an accurate maximum wind speed of typhoon with modern means,such as satellite survey , radar tracing and airplane reconnaissance. The performance of statistical equation established with observational maximum wind speed and the central pressure of typhoon is unstable ,and it is unreliable in operational use. Therefore a general pressure field model of typhoon is introduced in this paper based on atmospheric motion equations and formulas are derived for computing the maximum wind speed around typhoon center over sea surface . The theoretical curves derived from these formulas are in good agreement with those using the statistic empirical curves of typhoon pressure-wind relations over the western Pacific. Tests were conducted for typhoons which occurred in 1973 and in 1983 and the strongest typhoons selected each year during 1970 and 1978,the results were satisfactory. Meanwhile the analyses of computing results showed that the effect of Coriolis force could be  相似文献   

12.
In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton's method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C~0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.  相似文献   

13.
The sedimentary record of climate change in the Arctic region is useful for understanding global warming.Kongsfjord is located in the subpolar region of the Arctic and is a suitable site for studying climate change.Glacier retreat is occurring in this region due to climate change,leading to an increase in meltwater outflow with a high debris content.In August 2017,we collected a sediment Core Z3 from the central fjord near the Yellow River Station.Then,we used the widely used chronology method o...  相似文献   

14.
The geophysical model function (GMF) describes the relationship between backscattering and sea surface wind, so that wind vec- tors can be retrieved from backscattering measurement. The GMF plays an important role in ocean wind vector retrievals, its performance will directly influence the accuracy of the retrieved wind vector. Neural network (NN) approach is used to develop a unified GMF for C-band and Ku-band (NN-GMF). Empirical GMF CMOIM and QSCAT-1 are used to generate the simulated training data-set, and Gaussian noise at a signal noise ratio of 30 dB is added to the data-set to simulate the noise in the backscat- tering measurement. The NN-GMF employs radio frequency as an additional parameter, so it can be applied for both C-band and Ku-band. Analyses show that the %predicted by the NN-GMF is comparable with the σpredicted by CMOIM and QSCAT-1. Also the wind vectors retrieved from the NN-GMF and empirical GMF CMOIM and QSCAT-1 are comparable, indicating that the NN-GMF is as effective as the empirical GMF, and has the advantages of the universal form.  相似文献   

15.
The flow past various mechanical cavity, which is a common structure on the surface of the underwater vehicle, and generating hydrodynamic noise has attracted considerable attention in recent years. In this paper, a hybrid method is presented to investigate the hydrodynamic noise induced by mechanical cavities with various shapes. With this method, the noise sources in the near wall turbulences or in the wake are computed by the large eddy simulation (LES) and the generation and propagation of the acoustic waves are solved by the Ffowcs Williams-Hawkings (FW-H) acoustic analogy method with acoustic source terms extracted from the time-dependent solutions of the unsteady flow. The feasibility and reliability of the current method was verified by comparing with experimental data (Wang, 2009). The 2D cavity models with different cross-section shapes and 3D cavity models with different cavity mouth shapes (rectangular and circular) are developed to study the influence of cavity shape on the hydrodynamic noise. By comparing the flow mechanisms, wall pressure fluctuations, near-field and far-field sound propagation distributions, it is found that the quadrangular cavity with equal depths of leading-edge and trailing-edge is preferred for its inducing lower hydrodynamic noise than the cylindrical cavity does.  相似文献   

16.
Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the continuity and momentum equations are satisfied simultaneously at each time step for oscillating flow. The numerical results show that the motion of vortices around a rolling ship hull is cyclical. It is found that the location of the vortices is very similar to the existing experimental result. Using these simulation results, we can calculate the roll damping of ships including viscous effects.  相似文献   

17.
A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined effect of the storm surge and an astronomical tide.The storm surge depends on many factors,such as the tracks of typhoon movement,the intensity of typhoon,the topography of sea area,the amplitude of tidal wave,the period during which the storm surge couples with the tidal wave.When coupling with different parts of a tidal wave,the storm surges caused by a typhoon vary widely.The variation of the storm surges is studied.An once-in-a-century storm surge was caused by Typhoon 7203 at Huludao Port in the north of the Liaodong Bay from July 26th to 27th,1972.The maximum storm surge is about 1.90 m.The wind field and pressure field used in numerical simulations in the research were derived from the historical data of the Typhoon 7203 from July 23rd to 28th,1972.DHI Mike21 is used as the software tools.The whole Bohai Sea is defined as the computational domain.The numerical simulation models are forced with sea levels at water boundaries,that is the tide along the Bohai Straits from July 18th to 29th(2012).The tide wave and the storm tides caused by the wind field and pressure field mentioned above are calculated in the numerical simulations.The coupling processes of storm surges and tidal waves are simulated in the following way.The first simulation start date and time are 00:00 July 18th,2012; the second simulation start date and time are 03:00 July 18th,2012.There is a three-hour lag between the start date and time of the simulation and that of the former one,the last simulation start date and time are 00:00 July 25th,2012.All the simulations have a same duration of 5 days,which is same as the time length of typhoon data.With the first day and the second day simulation output,which is affected by the initial field,being ignored,only the 3rd to 5th day simulation results are used to study the rules of the storm surges in the north of the Liaodong Bay.In total,57 cases are calculated and analyzed,including the coupling effects between the storm surge and a tidal wave during different tidal durations and on different tidal levels.Based on the results of the 57 numerical examples,the following conclusions are obtained:For the same location,the maximum storm surges are determined by the primary vibration(the storm tide keeps rising quickly) duration and tidal duration.If the primary vibration duration is a part of the flood tidal duration,the maximum storm surge is lower(1.01,1.05 and 1.37 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).If the primary vibration duration is a part of the ebb tidal duration,the maximum storm surge is higher(1.92,2.05 and 2.80 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).In the mean time,the sea level restrains the growth of storm surges.The hour of the highest storm tide has a margin of error of plus or minus 80 min,comparing the high water hour of the astronomical tide,in the north of the Liaodong Bay.  相似文献   

18.
The method of combining physical model with mathematical model is described to study the concentration profile of pollutant dispersion in the Yangtze Estuary. Two contents are included, the experiment of jet in the tidal physical model and two-dimensional calculations of advection and diffusion using momentum and mass conservation equations of unsteady flow. The feature of dispersion in the tidal flow, which is different from that in the steady flow such as rivers, is explained. The capabilities of dillution and dispersion mainly depend on the volume of runoff and tidal range. Finally, the results of the measurement and calculation are presented, and it can be seen that they are in good agreement.  相似文献   

19.
A mathematical equation for vibration of submerged floating tunnel tether under the effects of earthquake and parametric excitation is presented.Multi-step Galerkin method is used to simplify this equation and the fourth-order Runge-Kuta integration method is used for numerical analysis.Finally,vibration response of submerged floating tunnel tether subjected to earthquake and parametric excitation is analyzed in a few numerical examples.The results show that the vibration response of tether varies with the seismic wave type;the steady maximum mid-span displacement of tether subjected to seismic wave keeps constant when parametric resonance takes place;the transient maximum mid-span displacement of tether is related to the peak value of input seismic wave acceleration.  相似文献   

20.
Hydrothermal plume is an important constituent of seabed hydrothermal circulation and is also one of the characteristics of active hydrothermal vents. Portable Miniature Autonomous Plume Recorders (MAPR) attached to a towed deep-sea instrument was used to search for hydrothermal plumes and hydrothermal vents. We introduced the basic principle of MAPR based on deep towing technology to detect plumes, then analyzed the factors affecting the quality of the MAPR data and presented a data correction method for MAPR, including instrument location correction, noise reduction processing, system error elimination and seawater background reduction. Finally we applied the method to analyze MAPR data obtained during the Chinese DY115-21 cruise on R/VDayang Iin the “Precious Stone Mountain” hydrothermal field on the Gala-pagos Microplate. The results provided a better understanding of the distribution of the hydrothermal activ-ity in this field, indicating the presence of a new hydrothermal vent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号