首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L&#;  Houyuan  Wang  Sumin  Wu  Naiqin  Tong  Guobang  Yang  Xiangdong  Sheng  Caiming  Li  Shijie  Zhu  Liping  Wang  Luo 《中国科学:地球科学(英文版)》2001,44(1):292-300

A new pollen record from the lake of Co Ngoin in the central Tibetan Plateau provides information on the vegetation and climate changes during the last 2.8 Ma. Seven major significant changes in pollen associations indicate the processes of vegetation change and possible tectonic uplifts. The seven changes in vegetation succession include a temperate montane conifer and broad-leaved mixed forest, cold temperate montane dark conifer forest, alpine shrub-meadow and alpine desert, montane dark coniferous forest and alpine shrub meadow, montane dark coniferous forest and alpine shrub meadow, montane dark coniferous forest and alpine meadow, and alpine desert and meadow. The pollen record provides the evidence of at least five times tectonic uplifts occurring at about 2.58 Ma, 1.87 Ma, 1.17 Ma, 0.83 Ma, and 0.3 Ma ago, respectively. Before 0.8 Ma, this region maintained the altitude below 4000 m a.s.l. Larger amplitude of uplift occurring at about 0.8 Ma ago enforced the plateau rising into cryosphere, shaping the basic topographic pattern of modern plateau. The major successions in vegetation of this area were largely controlled by stepwise uplift of the Tibetan Plateau.

  相似文献   

2.
Modern pollen analysis is the basis for revealing the palaeovegetation and palaeoclimate changes from fossil pollen spectra. Many studies pertaining to the modern pollen assemblages on the Tibetan Plateau have been conducted, but little attention has been paid to pollen assemblages of surface lake sediments. In this study, modern pollen assemblages of surface lake sediments from 34 lakes in the steppe and desert zones of the Tibetan Plateau are investigated and results indicate that the two vegetation zones are dominated by non-arboreal pollen taxa and show distinctive characteristics. The pollen assemblages from the desert zone contain substantially high relative abundance of Chenopodiaceae while those from the steppe zone are dominated by Cyperaceae. Pollen ratios show great potential in terms of separating different vegetation zones and to indicate climate changes on the Tibetan Plateau. The Artemisia/Chenopodiaceae ratio and arboreal/non-arboreal pollen ratio could be used as proxies for winter precipitation. Artemisia/Cyperaceae ratio and the sum of relative abundance of xerophilous elements increase with enhanced warming and aridity. When considering the vegetation coverage around the lakes, hierarchical cluster analysis suggests that the studied sites can be divided into four clusters: meadow, steppe, desert-steppe, and desert. The pollen-based vegetation classification models are established using a random forest algorithm. The random forest model can effectively separate the modern pollen assemblages of the steppe zone from those of the desert zone on the Tibetan Plateau. The model for distinguishing the four vegetation clusters shows a weaker but still valid classifying power. It is expected that the random forest model can provide a powerful tool to reconstruct the palaeovegetation succession on the Tibetan Plateau when more pollen data from surface lake sediments are included.  相似文献   

3.
The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modern pollen data with contemporary vegetation and climate, and the differences between the pollen assemblages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region(desert, steppe, meadow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the different relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of surface lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the tendency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae(A/C) ratio in pollen assemblages of surface lake sediments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.  相似文献   

4.
In order to reveal the changes of vegetation in southern China since the Last Glacial Maximum, we have established high-resolution time scales and palynological sequences of borehole profiles by drilling cores in some weak areas of the research to restore vegetation changes over the past 20,000 years on the basis of previous work. This paper gives the vegetation zoning maps of 18, 9 and 6 ka BP respectively in southern China, and describes the distribution characteristics of plants in different zones/subzones. The results show that the vegetation zonations around 18 ka BP were significantly different from that at present.It appeared in turn with Cold-temperate coniferous forest and alpine meadow steppe zone, and Temperate mixed coniferous and broad-leaved forest zone/warm temperate deciduous broad-leaved forest zone from northwest to southeast in the west, and Temperate mixed coniferous and broad-leaved forest zone, Warm temperate deciduous broad-leaved forest zone, and Northern subtropical mixed evergreen and deciduous broad-leaved forest zone from north to south in the central and east. The vegetation distribution around 9 ka BP changed distinctively. Except that the northwest part was located in Mountain temperate mixed coniferous and broad-leaved forest zone, the vegetation in other areas occurred in turn with North subtropical mixed evergreen and deciduous broad-leaved forest subzone, Mid-subtropical typical evergreen broad-leaved forest subzone, and South subtropical monsoon evergreen broad-leaved forest subzone/Tropical seasonal rainforest and rainforest zone from north to south.There was little change in the appearance of vegetation zonations between 6 and 9 ka BP, but the northern edge of each vegetation belt moved a little northward, reflecting that the overall climate became warmer around 6 ka BP. The vegetation changes in southern China over the past 20,000 years were largely driven by environmental changes. Climate change was the main factor affecting the vegetation distribution. The impact of human activities became more and more remarkable in the later period. In the lower reaches of the Yangtze River and the delta region, sea level changes also influenced the vegetation distribution.  相似文献   

5.
The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China.Artemisia,Chenopodiaceae,Poaceae,Cyperaceae,and Asteraceae are the dominant pollen types in pollen assemblages,reflecting the typical steppe communities well.The five dominant pollen types and six common types(Thalictrum,Iridaceae,Potentilla,Ephedra,Brassicaceae,and Ulmus)have strong wind transport abilities;the estimated Relevant Source Area of Pollen(RSAP)is ca.1000 m when the sediment basin radius is set at 0.5 m.Ulmus,Artemisia,Brassicaceae,Chenopodiaceae,and Thalictrum have relative high RPPs;Poaceae,Cyperaceae,Potentilla,and Ephedra pollen have moderate RPPs;Asteraceae and Iridaceae have low RPPs.The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction.However,the RPPs of Asteraceae and Iridaceae are obviously underestimated,and those of Poaceae,Chenopodiaceae,and Ephedra are either slightly underestimated or slightly overestimated,suggesting that those RPPs should be considered with caution.These RPPs were applied to estimating plant abundances for two fossil pollen spectra(from the Lake Bayanchagan and Lake Haoluku)covering the Holocene in typical steppe area,using the"Regional Estimates of Vegetation Abundance from Large Sites"(REVEALS)model.The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae,Cyperaceae,and Artemisia plants flourished in this area before 6500–5600 cal yr BP,and then was replaced by present typical steppe.  相似文献   

6.
李静  陈光杰  黄林培  孔令阳  索旗  王旭  朱云  张涛  王露 《湖泊科学》2023,35(6):2170-2184
区域增温和大气氮沉降作用已成为高山湖泊面临的重要环境胁迫,已有高山湖泊生物群落响应的长期模式研究主要集中于藻类而缺乏更高营养级生物(如浮游动物)的系统调查。本研究选择滇西北地区深水型的高山湖泊沃迪错开展沉积物调查,通过多指标分析(总氮、总磷、叶绿素a、氮稳定同位素等)并结合区域气候重建记录,识别近两百年来该湖泊及流域环境的变化历史,进一步利用枝角类群落指标(物种组成、生物量等)定量评价了湖泊生物群落的响应模式与驱动因子。结果表明,湖泊营养水平(如总氮浓度)和初级生产力(叶绿素a浓度等)在过去近两百年总体呈上升趋势。相关分析显示,大气氮沉降和流域外源输入是影响总氮上升的主要因素,同时区域增温和营养盐富集促进了湖泊初级生产力的不断上升。自1960s以来区域升温明显,湖泊营养水平和叶绿素a浓度呈现加速上升的趋势。钻孔中枝角类群落以浮游属种(Daphnia longispina等)为优势种,在1900AD以前D.longispina相对丰度较为稳定(40.83%±8.02%),之后出现下降趋势且在1948—1965年间明显下降,之后再次明显上升并成为主要优势种。排序分析显示,气温、叶绿素a和总...  相似文献   

7.
通过210Pb测年建立年代标尺,利用黑龙江省连环湖阿木塔泡高分辨率的孢粉记录,探讨了研究区约220年的环境变化与人类活动.研究表明,1790-1820 AD期间,植被类型可能是以禾本科为主的草甸草原植被,沙地类型以固定沙地为主,气候相对较凉湿或环境几乎不受人类活动的破坏,湖泊营养较丰富.1820-1930 AD期间,草...  相似文献   

8.
The ecotone between alpine steppe and meadow in the central Tibetan Plateau is sensitive to climate changes. Here we used the pollen records from three lakes in this region to reconstruct the evolution of local vegetation and climate since 8200 cal. yr BP. The history of temperature and precipitation was reconstructed quantitatively with multi-bioclimatic indexes and a transfer function from pollen records. Results show that the steppe/meadow dominated during the period of 8200–6500 cal. yr BP, especially 8200–7200 cal. yr BP, indicating the central Tibetan Plateau was controlled by strong monsoon. The steppe dominated during the periods of 6000–4900, 4400–3900, and 2800–2400 cal. yr BP. The steppe decreased gradually and the meadow expanded during the period of 4900–4400 cal. yr BP. Three century-scale drought events occurred during 5800–4900, 4400–3900 and 2800 cal. yr BP, respectively. The first time when the regional climate shifted to the present level was at 6500 cal. yr BP in the central Plateau. Since 3000 cal. yr BP, the temperature and precipitation have decreased gradually to the present level. However, the cold climate between 700–300 cal. yr BP likely corresponds to the Little Ice Age. Supported by Chinese Academy of Sciences 100 Talents Project (Grant No. 29082762), National Natural Science Foundation of China (Grant Nos. 40671196, 40372085, 49371068, 49871078), and U.S. National Science Foundation (Grant Nos. ATM-9410491, ATM-008194)  相似文献   

9.
Many lakes in the Tibetan Plateau (TP) experienced dramatic lake level changes in the late Quaternary, as suggested by well-preserved paleo-shorelines up to ∼200 m above present lake levels. These relic shorelines provide direct geomorphic record to reconstruct past lake level fluctuation history and water volume changes, linked closely to variations in paleo-climatic controls including Asian monsoon, westerlies and glacial meltwater. In this study, 27 near-shore sediment samples from three of eight paleo-shorelines at north of Nam Co were dated by Optically Stimulated Luminescence (OSL) technique, using coarse grains of quartz and potassium feldspar.Our results indicate that: 1) S1 is the highest/most developed shoreline (+26 m). Sediment from upper part of S1 has a consistent age of ∼25 ka (nine samples from 3 gullies), suggesting a high lake level of Nam Co occurred around 25 ka. An overflow point west of Nam Co has a close elevation to that of S1 and thus limits the presence of higher lake levels; 2) sediment profile from the slightly lower S2 (+22 m) contains two parts, silty sand (6.9–8.9 ka) at the bottom and shoreline deposits atop (∼2.3 ka), suggesting Nam Co maintained a relative high lake level in the early Holocene and such lake level occurred again at about 3.0–2.0 ka; 3) In contrast to the swift variations of monsoon precipitation and glacial meltwater in the late Quaternary, water level of Nam Co remained relatively stable during the period from ∼25 ka to about early Holocene (from +26 m to +22 m), implying a continuous outflowing stage and lake infill constantly exceeds evaporation; 4) S5 (+11 m) has an age of 0.7–1.4 ka. Nam Co showed a much accelerated pace of shrinkage since about 2.0 ka in the late Holocene in roughly two steps: it dropped from +22 m to +11 m from ∼2.0 ka to 1.4 ka, and subsequently dropped another 11 m after 0.7 ka.  相似文献   

10.
Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau   总被引:9,自引:0,他引:9  
Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angles of grassland coverage and biological production the variation characteristics of high-cold eco- systems in different representative regions and different geomorphologic units under different climatic conditions were quantitatively assessed. In the future, adopting effective measures to protect permafrost is of vital importance to maintaining the stability of permafrost engineering and alpine cold eco- systems in the plateau.  相似文献   

11.
为深入理解纳木错湖水及入湖河流中溶解有机碳(DOC)和总氮(TN)浓度的季节变化特征及其影响因素,于2012-2013年不同季节对纳木错2个站点及流域内21条主要入湖河流进行采样及分析,采用统计学方法初步探讨纳木错水体和21条河流DOC和TN浓度季节变化特征.结果表明,河流DOC平均浓度范围为0.763~1.537 mg/L,TN平均浓度范围为0.179~0.387 mg/L.21条入湖河流DOC浓度在春末夏初和夏季达到高值,冬季为低值,TN浓度季节变化趋势大体上与DOC浓度相反.湖泊水体DOC和TN浓度范围分别为2.42~8.08和0.237~0.517 mg/L,明显分别高于河水中的浓度.湖泊DOC浓度季节变化趋势与河流一致,而TN浓度无明显的季节性变化.河水DOC浓度的季节变化和空间差异受控于河流的补给方式,湖水DOC浓度受湖泊内部藻类等水生植物活动和河流外源输入的影响.DOC等有机质的分解是影响纳木错流域湖水和河水TN浓度的重要原因.  相似文献   

12.
孔令阳  羊向东  王倩 《湖泊科学》2017,29(3):730-739
高山湖泊吉仁错位于川西高原树线以上,受现代冰川融水补给影响.通过吉仁错沉积钻孔~(210)Pb/~(137)Cs定年和沉积枝角类和多环境代用指标分析,结合主成分分析和冗余分析等方法,高分辨率重建了近200 a来吉仁错枝角类组合和环境变化的过程.结果表明,尽管过去200 a来吉仁错枝角类组合一直以沿岸种为主,但仍经历了3个明显的变化阶段.1850 AD后,枝角类组合中Alonella nana、Chydorus sphaericus和Pleuroxus sp.的增加、以及Alona rustica和Alona guttata丰度的下降指示了水温和水体pH值的上升.1900 AD后枝角类通量的增高并不同步于组合的变化,指示了湖泊营养开始增加,这种不一致的变化分别代表了大气氮沉降和区域气候变暖的影响结果.多指标综合分析得出,过去150 a来,气候变暖和大气污染沉降通过直接和间接作用(流域冰川融水过程和植被土壤过程),较深刻地影响了湖泊物理过程(水温升高和无冰期加长)、营养过程(氮、磷营养升高)和酸碱平衡过程(碱性增强),改变了湖泊生物的生长季节,并通过促进藻类发育,最终引起了湖泊枝角类群落组合的变化和生物量的增加.1945 AD前后吉仁错枝角类与藻类群落结构和湖泊环境的同步变化,响应于持续增温背景下多环境过程的相互作用.  相似文献   

13.
Northeast China is an essential area for studying the strength of East Asian Summer Monsoon(EASM), due to its northernmost location in EASM domain. However, the lack of sufficient modern pollen data in this region hinders an effective interpretation of fossil pollen records and quantitative vegetation/climate reconstructions. Here, 44 surface pollen samples from forest, steppe, and meadow were used to explore pollen-vegetation-climate relationships. Cluster analysis, species indicator analysis, and principal components analysis, were used to identify the discontinuous and continuous trends in pollen dataset. In addition, correlation analysis and boosted regression trees were used to investigate primary explanatory variables, while coinertia analysis and redundancy analysis to examine pollen-vegetation and pollen-climate correlations respectively. Our results show that:(1) vegetation can be well represented by surface pollen assemblages, i.e. forest is characterized by a high proportion of tree pollen(70%) dominated by Betula(40%) along with Alnus, Larix, and Pinus, whereas Steppe by herb pollen(80%),dominated by Artemisia, Chenopodiaceae;(2) significant correlations exist between pollen assemblages and mean annual temperature and then mean annual precipitation;(3) pollen ratios of Artemisia/Chenopodiaceae and arboreal/non-arboreal can respectively be used as good indicators of humidity and temperature in Northeast China.  相似文献   

14.
The stoichiometric composition of lake water chemistry affects nutrient limitation among phytoplankton. I show how TN:TP and DIN:TP ratios vary in oligotrophic lakes of Europe and the USA affected by different amounts of N deposition, and evaluate whether the DIN:TP ratio is a better indicator than the TN:TP ratio for discriminating between N and P limitation of phytoplankton. Data were compiled from boreal and low to high alpine lakes, and comprise epilimnetic lake water chemistry data (106 lakes) and results from short-term nutrient bioassay experiments (28 lakes). A large share (54%) of the oligotrophic lakes in the study had low TN:TP mass ratios (<25). DIN:TP ratios showed higher variability than TN:TP ratios. Variability in DIN:TP ratios was related to N deposition, but also to catchment characteristics. Data from short-term bioassay experiments with separate addition of N and P showed that the DIN:TP ratio was a better indicator than the TN:TP ratio for N and P limitation of phytoplankton. Phytoplankton shift from N to P limitation when DIN:TP mass ratios increase from 1.5 to 3.4. High DIN:TP ratios, indicating P limitation of phytoplankton, were generally found in alpine lakes with low to moderate N deposition and in boreal lakes with high to very high amounts of N deposition.  相似文献   

15.
Investigating the spatial and temporal variance in productivity along natural precipitation gradients is one of the most efficient approaches to improve understanding of how ecosystems respond to climate change. In this paper, by using the natural precipitation gradient of the Inner Mongolian Plateau from east to west determined by relatively long-term observations, we analyzed the temporal and spatial dynamics of aboveground net primary productivity (ANPP) of the temperate grasslands covering this region. Across this grassland transect, ANPP increased exponentially with the increase of mean annual precipitation (MAP) (ANPP=24.47e0.005MAP, R2=0.48). Values for the three vegetation types desert steppe, typical steppe, and meadow steppe were: 60.86 gm-2a-1, 167.14 gm-2a-1 and 288.73 gm-2a-1 respectively. By contrast, temperature had negative effects on ANPP. The moisture index (K ), which takes into ac- count both precipitation and temperature could explain the spatial variance of ANPP better than MAP alone (ANPP=2020.34K1.24, R2=0.57). Temporally, we found that the inter-annual variation in ANPP (cal- culated as the coefficient of variation, CV) got greater with the increase of aridity. However, this trend was not correlated with the inter-annual variation of precipitation. For all of the three vegetation types, ANPP had greater inter-annual variation than annual precipitation (PPT). Their difference (ANPP CV/PPT CV) was greatest in desert steppe and least in meadow steppe. Our results suggest that in more arid regions, grasslands not only have lower productivity, but also higher inter-annual variation of production. Climate change may have significant effects on the productivity through changes in precipitation pattern, vegetation growth potential, and species diversity.  相似文献   

16.
In temperate humid catchments, evapotranspiration returns more than half of the annual precipitation to the atmosphere, thereby determining the balance available to recharge groundwaters and support stream flow and lake levels. Changes in evapotranspiration rates and, therefore, catchment hydrology could be driven by changes in land use or climate. Here, we examine the catchment water balance over the past 50 years for a catchment in southwest Michigan covered by cropland, grassland, forest, and wetlands. Over the study period, about 27% of the catchment has been abandoned from row‐crop agriculture to perennial vegetation and about 20% of the catchment has reverted to deciduous forest, and the climate has warmed by 1.14 °C. Despite these changes in land use, the precipitation and stream discharge, and by inference catchment‐scale evapotranspiration, have been stable over the study period. The remarkably stable rates of evapotranspirative water loss from the catchment across a period of significant land cover change suggest that rainfed annual crops and perennial vegetation do not differ greatly in evapotranspiration rates, and this is supported by measurements of evapotranspiration from various vegetation types based on soil water monitoring in the same catchment. Compensating changes in the other meteorological drivers of evaporative water demand besides air temperature—wind speed, atmospheric humidity, and net radiation—are also possible but cannot be evaluated due to insufficient local data across the 50‐year period. Regardless of the explanation, this study shows that the water balance of this landscape has been resilient in the face of both land cover and climate change over the past 50 years.  相似文献   

17.
纳木错水温变化及热力学分层特征初步研究   总被引:3,自引:3,他引:0  
水温变化是湖泊的重要物理特性,对湖泊的水质特征、湖水能量循环、水生生态系统研究具有重要意义.基于不同季节的实地观测资料,分析青藏高原高海拔、深水大湖纳木错的水温变化特征及季节差异,并着重分析湖水热力学分层的季节变化.结果显示纳木错中部、东部两个湖盆冬季封冻,夏季存在稳定分层,春、秋季混合,是一个典型双季对流、完全混合型湖泊.但两个湖盆水温变化与热力学分层又有各自的特征,东部浅湖盆湖水在春季升温快,夏季分层与秋季翻转均比中部湖盆早,且秋季翻转时水温也比中部湖盆高.初步分析认为两个湖盆不同的湖盆形状及水深分布可能是造成其热力学特征差异的主要原因.  相似文献   

18.
湖泊沉积有机碳同位素与环境变化的研究进展   总被引:22,自引:2,他引:20  
湖泊沉积有机质稳定碳同位素(δ^13Corg)在区域气候与环境变化方面的应用近年来发展迅速,成果令人瞩目,保存在各类湖泊岩芯中的δ^13Corg记录揭示了晚更新世以来大气CO2浓度的变化、湖泊水位波动、湖区生态与植被的变迁以及气温变化等重要环境信息,由于造成δ^13Corg值变化的影响因素较多,确定个湖与环境变化有关的主导因素时常有赖于其它证据的帮助,诸如地球化学、古湖沼学、孢粉学、分子同位素地层学等等,前人通过研究来自不同类型湖泊、具不同曲线形态特征的δ^13Corg记录,提出了多种环境解释模型,本文对此作了归纳和评述。鉴别和澄清湖泊沉积有机质的源物质以及有机物源随环境变化而发生过的变化,是研究δ^13Corg记录环境意义至关重要的基础性工作,由于有机质含量、碳氮比值、氢指数、生物残留物鉴别等常能提供有关有关湖泊有机质来源、产率、成岩作用等方面的有用信息,这方面的研究结果应该尽可能一并提供,以利于恰当地应用现有的环境解释模型,或者建立个湖新模型,单体生物标志化合物鉴别通常也能为区分湖积有机质中陆生、水生、细菌生等不同碳的来源提供有用信息,特定化合物同位素分析技术近年来成功地应用于建立单体生物标志化合物碳同位素地层学,为湖积有机碳同位素在生态环境演变研究方面的应用提供了思路,我国许多湖泊的湖底沉积岩芯尚未钻取,那些对过去全球变化研究有价值的δ^13Corg记录有待我们去获取和研究。  相似文献   

19.
The long‐term and large‐scale soil moisture (SM) record is important for understanding land atmosphere interactions and their impacts on the weather, climate, and regional ecosystem. SM products are one of the parameters used in some Earth system models, but these records require evaluation before use. The water resources on the Qinghai–Tibet Plateau (QTP) are important to the water security of billions of people in Asia. Therefore, it is necessary to know the SM conditions on the QTP. In this study, the evaluation metrics of multilayer (0–10, 10–40, and 40–100 cm) SM in different reanalysis datasets of the European Centre for Medium‐Range Weather Forecasts interim reanalysis (ERA‐Interim [ERA]), National Centers for Environmental Prediction Climate Forecast System and the Climate Forecast System version 2 (CFSv2), and China Meteorological Administration Land Data Assimilation System (CLDAS) are compared with in situ observations at 5 observation sites, which represent alpine meadow, alpine swamp meadow, alpine grassy meadow, alpine desert steppe, and alpine steppe environments during the thawing season from January 1, 2011, to December 31, 2013, on the QTP. The ERA SM remains constant at approximately 0.2 m3?m?3 at all observation sites during the entire thawing season. The CLDAS and CFSv2 SM products show similar patterns with those of the in situ SM observations during the thawing season. The CLDAS SM product performs better than the CFSv2 and ERA for all vegetation types except the alpine swamp meadow. The results indicate that the soil texture and land cover types play a more important role than the precipitation to increase the biases of the CLDAS SM product on the QTP.  相似文献   

20.
Lake Qinghai is the largest inland brackish lake in China and lies within the NE Tibetan Plateau. Our study shows that pollen assemblages in each vegetation belt are significantly correlated with the vegetation types of this area. Among the herbaceous and shrubby pollen assemblages, Artemisia is over-represented, while Poaceae, Cyperaceae and Polygonaceae are under-represented. Artemisia/ Chenopodiaceae (A/C) ratios with the regional vegetation characteristic can be used as a proper index to reconstruct the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号