首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study source properties of the main earthquakes of the 1997–98 Umbria-Marche (central Italy) sequence by analysis of regional-distanceand teleseismic long period and broadband seismograms recorded by MedNet and IRIS/GSN stations. We use a modified Harvardcentroid-moment tensor (CMT) algorithm to allow inversion of long period waveforms, primarily Rayleigh and Love waves, for small earthquakes (4.2 MW 5.5) at local to regional distances (<15°). For the seven largest earthquakes (MW>5.2) moment tensors derived from local and regional data agree well with those determined using teleseismic waveforms and standard methods of analysis. We also determine moment tensors for a foreshock and 12 other aftershocks, that were too small for global analysis. Focal depth and rupture propagation are analyzed for three largest shocks by inversion of teleseismic broadband body waves. The earthquakes are generally located at shallow depth (5 km or shallower) and are characterized by normal faulting mechanisms, with a NE-SW tension axis. The presumed principal fault plane dips at a shallow angle towards the SW. Only one of the events analyzed has an entirely different faulting geometry, indicating instead right-lateral strike-slip motion on a plane approximately E-W, or left-lateral faulting on a N-S plane. The other significant exception to the regular pattern of mechanisms is represented by the March 26, 1998, event, located at 51 km depth. Its connection with the shallow earthquake sequence is unclear and intriguing. The time evolution of the seismic sequence is unusual,with the mainshock accounting for only approximately 50% of the total moment release. The broadband teleseismic waveforms of the main, September 26, 09:40, earthquake are very complicated for the size of the event and suggest a complex rupture. In our favored source model, rupture initiated at 5 km depth, propagated updip and was followed, 3 seconds later, by a shallower subevent with a slightly rotated mechanism.  相似文献   

2.
The central area of the Ionian Sea is dominated by the Cephalonia Transform Fault Zone (CTFZ) with a pronounced dextral strike-slip component of motion. The CTFZ has two main segments: the Lefkada Segment (LS) in the north and the Cephalonia Segment (CS) in the south. On 14 August 2003 an Mw 6.2 earthquake ruptured the Lefkada Segment and produced extensive damage, especially to the western coast of the island. Teleseismic waveform modelling revealed the multiple source character of the mainshock, which occurred as three sub-events along a ∼N12E line. The first sub-event occurred at a depth of about 15 km, followed 2.5 s later by the second and largest sub-event at a depth of 11 km and the third sub-event 14 s after the second at a depth of 15 km. The total moment from the body waves of this sequence is about 22.3×1017 Nt m (Mw 6.2) with a source duration of ∼15 s. The rupture started at the northern part of the Lefkada fault Segment and propagated southwards. The second and third sub-events are located at 7 and 40 km to the south-east in respect to the first sub-event. The focal mechanisms of the two strongest sources indicate strike-slip faulting along the NE–SW trending Lefkada segment (sub-event 2: Strike = 12, Dip = 81, Rake = 174; sub-event 3: Strike = 20, Dip = 63, Rake = −179). Moment tensor inversion applied to regional broad band waveforms obtained from the Greek National Seismographic Network provided focal mechanisms for 23 aftershocks with magnitudes ranging from Mw 3.6 to 5.4. The aftershock sequence presented spatial and temporal variation. The aftershocks were concentrated in two clusters one at the northern part of the activated area and another at the southern part. Most of them were of strike-slip character, following the major tectonic lines of the area, although low-angle thrust and reverse faulting mechanisms were also observed. Thrust and reverse type mechanisms are mainly concentrated in the northern and mainland part of the Lefkada Island which probably indicates the segmented character of the fault and probable activation of adjacent structures.  相似文献   

3.
Rupture process of the 19 August 1992 Susamyr, Kyrgyzstan, earthquake   总被引:2,自引:2,他引:0  
The Susamyr earthquake of August 19, 1992 in Kyrgyzstan is one of the largest events (Ms = 7.4, Mb = 6.8) of this century in this region of Central Asia. We used broadband and long period digital data from IRIS and GEOSCOPE networks to investigate the source parameters, and their space-time distribution by modeling both body and surface waves. The seismic moment (M0 = 6.8 × 1019 N m) and the focal mechanism were determined from frequency-time analysis (FTAN) of the fundamental mode of long period surface waves (100–250 s). Then, the second order integral moments of the moment-rate release were estimated from the amplitude spectra of intermediate period surface waves(40–70 s). From these moments we determined a source duration of 11–13 s, major and minor axes of the source of 30 km and 10–22 km, respectively; and an instant centroid velocity of 1.2 km/s. Finally, we performed a waveform inversion of P and SH waves at periods from 5–60 s. We found a source duration of 18–20 s, longer than the integral estimate from surface wave amplitudes. All the other focal parameters inverted from body waves are similar to those obtained by surface waves ( = 87° ± 6°, = 49° ± 6°, = 105° ± 3°, h = 14 ± 2 km, and M0 = 5.8 ± 0.7 × 1019 N m). The initial rupture of this shallow earthquake was located at the south-west border of Susamyr depression in the western part of northern Tien Shan. A finite source analysis along the strike suggests a westward propagation of the rupture. The main shock of this event was preceded 2 s earlier by small foreshock. The main event was almost immediately followed by a very strong series of aftershocks. Our surface and body wave inversion results agree with the general seismotectonic features of the region.  相似文献   

4.
Two felt moderate-sized earthquakes with local magnitudes of 4.9 on October 11, 1999 and 4.3 on November 08, 2006 occurred southeast of Beni Suef and Cairo cities. Being well recorded by the digital Egyptian National Seismic Network (ENSN) and some regional broadband stations, they provided us with a unique opportunity to study the tectonic process and present-day stress field acting on the northern part of the Eastern Desert of Egypt. In this study, we analyze the main shocks of these earthquakes and present 15 well recorded aftershocks (0.9 ≤ ML ≤ 3.3) which have small errors on both horizontal and vertical axes. The relocation analysis using the double difference algorithm clearly reveals a NW trending fault for the 1999 earthquake. The spatial distribution of its aftershocks indicates a propagation of rupture from the SW towards the NW along a fault length ~5 km dipping nearly ~40°SW. We also determined the focal mechanisms of the two main shocks by two methods (polarities and amplitudes ratios of P, SV and SH and regional waveform inversion). Our results indicate a normal faulting mechanism with a slight shear component for the first event, while pure normal faulting for the second one. The spatial distribution of the 1999 aftershocks sequence along with the retrieved focal mechanism confirmed the NW plane as the true fault plane. While for the 2006 event, the few aftershocks do not reveal any fault geometry; its focal mechanism indicated a pure normal fault nearly trending WNW-ESE that corresponds more likely to the extension of the 1999 earthquake fault. The seismicity distribution between the two earthquake sequences reveals a noticeable gap that may be a site of a future event. The NNE-SSW extensional stress indicated by the mechanisms of these events is in agreement with the regional stress field and the rifting of the northern Red Sea in its northern branches (Gulf of Suez and Gulf of Aqaba). The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated and compared based on both the regional waveform inversion and the displacement spectra and interpreted in the context of the tectonic setting. The obtained results imply a reactivation of the pre-exiting NW-SE faults as a result of extensional deformation from the northern Red Sea-Gulf of Suez rifts.  相似文献   

5.
On September 26, 1997, at 00.33 h(GMT), a Mw 5.7 earthquake occurred in the axial zone of theUmbria-Marche Apennines of central Italy, in the Colfiorito basin area. At09.40 h (GMT), a Mw 6.0 earthquake again struck the area withinthe Colfiorito basin, a major intramontane basin filled with Quaternarycontinental deposits. The two main shocks, and the associated aftershockswere within a roughly NNW-SSE trending zone of largest damage (Imax10), in which ground deformation has been observed. Along this trend,Cello et al. (1997a) had mapped a few capable faults, showingtranstensional to pure extensional kinematics. Field inspection of themapped faults, carried out after the main shocks, revealed that some ofthem were locally reactivated (for lengths of several hundreds metres andsurface slip in the range of 2–8 cm) during the September 26, 1997earthquakes.  相似文献   

6.
On Oct. 4th, 1983 the area of Phlegraean Fields, near Naples (Southern Italy) was shaked by an earthquake of magnitude (M L) 4.0 that caused some damage in the town of Pozzuoli and its surroundings. This seismic event was the largest one recorded during the recent (1982–84) inflation episode occurred in the Phlegraean volcanic area, and a detailed macroseismic reconstruction of the event was carried out.Failing macroseismic data on other earthquakes occurred in Phlegraean Fields, the attenuation law of the intensity as a function of the distance as obtained for the Oct. 4th earthquake was compared with those obtained for other volcanic areas in central Italy —i.e., Tolfa, Monte Amiata — in order to check the reliability of the results obtained for Phlegraean Fields.The Blake's model of the earthquake of Oct. 4th, 1983 does not agree with the experimental data because isoseismals contain areas larger than those shown by the model. This result has been interpreted as an effect of energy focusing due to a reflecting layer 6–8 km deep.  相似文献   

7.
On 22 September 2002, the largest UK earthquake (mb4.3) of the last 10 years occurred near the town of Dudley in the West Midlands. Here we determine the earthquake focal mechanism and depth using data from stations at regional and teleseismic distances. Short-period teleseismic seismograms are interpreted in terms of P and surface reflections pP and sP. This analysis suggests that the source depth is deeper than the 9.7 km initially determined by the British Geological Survey (BGS). The relative amplitude method is applied to four teleseismic seismograms to support our interpretation of the surface reflections, and constrain the focal mechanism. Our preferred focal mechanism, a near vertical strike-slip with s = 94°, = 88° and = –179°, is in reasonable agreement with a moment tensor determined by the Swiss Seismological Service. Synthetic regional surface wave seismograms match the observed seismograms for a model focal depth of 19.5 (±3.0) km and scalar moment, M0, of 3.2 × 1015 N m. Our results emphasize that due to the well-known trade-off between depth and M0 from inversions of long period (0.02–0.1 Hz) surface waves, it is preferable to combine long- and short-period data to constrain reliably the depth and hence estimate M0. Our focal mechanism and depth are further validated by generating short-period synthetic seismograms that match the observations.  相似文献   

8.
Shallow shear-type seismic activity occurring beneath the Etna volcano during 1990–1995 has been analysed for hypocenter locations, focal mechanisms and stress tensor inversion. The results have been examined jointly with Electronic Distance Measurements and tiltmeter data collected in the same period and reported in the literature. Significant seismicity located in the upper 10 km was found to be confined to the time intervals in which ground deformation data indicated inflation of the volcano edifice (e.g., the periods preceding the December 1991–March 1993 and August 1995–March 1996 eruptive phases). The shocks mostly occurred in a sector approximately centered on the crater area and elongated in the East–West direction. The causative seismogenic stress shows a low-dip East–West orientation of σ1. In agreement with existing knowledge on relationships between local fault systems and magma uprise processes, the shallow seismicity in question is tentatively explained as being due to lateral compression by magma inside a nearly North–South system. The volcano deflation phase revealed by Electronic Distance Measurements and tilt data during the 1991–1993 major eruption was not accompanied by any significant shear-type shallow event. Below the depth of 10 km, the North–South prevailing orientation of σ1 reflects the dominant role of the regional stress.  相似文献   

9.
We investigate mainshock slip distribution and aftershock activity of the 8 January 2013 M w?=?5.7 Lemnos earthquake, north Aegean Sea. We analyse the seismic waveforms to better understand the spatio-temporal characteristics of earthquake rupture within the seismogenic layer of the crust. Peak slip values range from 50 to 64 cm and mean slip values range from 10 to 12 cm. The slip patches of the event extend over an area of dimensions 16?×?16 km2. We also relocate aftershock catalog locations to image seismic fault dimensions and test earthquake transfer models. The relocated events allowed us to identify the active faults in this area of the north Aegean Sea by locating two, NE–SW linear patterns of aftershocks. The aftershock distribution of the mainshock event clearly reveals a NE–SW striking fault about 40 km offshore Lemnos Island that extends from 2 km up to a depth of 14 km. After the mainshock most of the seismic activity migrated to the east and to the north of the hypocenter due to (a) rupture directivity towards the NE and (b) Coulomb stress transfer. A stress inversion analysis based on 14 focal mechanisms of aftershocks showed that the maximum horizontal stress is compressional at N84°E. The static stress transfer analysis for all post-1943 major events in the North Aegean shows no evidence for triggering of the 2013 event. We suggest that the 2013 event occurred due to tectonic loading of the North Aegean crust.  相似文献   

10.
李涛  付虹  徐甫坤 《中国地震》2018,34(2):337-349
2015年5月19日9时58分,云南双柏、峨山一带出现密集的小震活动,并于6月14日发生ML4.1地震,形成显著的震群事件。本文利用双差定位法对该震群进行精定位,结果显示,重新定位后震中分布优势方向更明显,主要沿绿汁江南段断裂呈NNE向分布,震源深度为6~12km,其中,又以8~10km最具优势。与原始数据相比,重定位后残差明显减小,走时残差平方和由原来的0.303s降为0.034s,震源位置估算误差在EW方向平均为0.21km,在NS方向平均为0.173km,在垂直方向平均为0.175km;利用广义极性振幅技术(GPAT)方法,计算得到了24个ML≥2.5地震的震源机制解,结果显示,此次震群的震源机制类型绝大部分表现为正断性质,与该区历史地震多为走滑的结果有所差异。结合震区附近的龙门水库蓄水水位和该震群的频度-震级关系分析认为,双柏震群活动与水库蓄水过程密切相关,该震群的发生是龙门水库水体载荷加载而引起正断层产生错动的结果。  相似文献   

11.
We present the spatio-temporal distribution of more than 2000 earthquakesthat occurred during the Umbria-Marche seismic crisis, between September 26and November 3, 1997. This distribution was obtained from recordings of atemporary network that was installed after the occurrence of the first two largest shocks (Mw =, 5.7, Mw = 6.0) of September 26. This network wascomposed of 27 digital 3-components stations densely distributed in theepicentral area. The aftershock distribution covers a region of about 40 km long and about2 km wide along the NW-SE central Apennines chain. The activity is shallow,mostly located at less than 9 km depth. We distinguished three main zonesof different seismic activity from NW to SE. The central zone, that containsthe hypocenter of four earthquakes of magnitude larger than 5, was the moreactive and the more complex one. Sections at depth identify 40–50°dipping structures that agree well with the moment tensor focalmechanisms results. The clustering and the migration of seismicity from NW to SE and the generalfeatures are imaged by aftershock distribution both horizontally and at depth.  相似文献   

12.
The lithospheric models obtained for the Baltic Shield by using deep seismic soundings are discussed and results from different parts of the shield are compared with models achieved by the investigation of surface waves and of P to S converted waves. The results are found to agree rather well with each other particularly with regard to the first interface (at a depth of 10–15 km) and the whole thickness of the crust (c. 40 km). The macroseismic focal depth determinations of regional earthquakes are correlated with lithospheric structure. The main maximum in the focal depth distributions of Finnish earthquakes occur at a depth of 10–12 km. The geographical distribution of the earthquake epicentres suggests several seismo-active zones in the northern Baltic Shield. One new finding in this field concerns the Lapland zone, which runs in a north-westerly direction.  相似文献   

13.
台湾9.21集集地震考察兼论强震发震断层   总被引:1,自引:0,他引:1       下载免费PDF全文
彭阜南  叶银灿 《地震地质》2004,26(4):576-585
1999年9月21日,台湾中部山麓带发生了M7.3的大地震,震源深度为8km,财产损失及人员伤亡是百年来台湾许多地震中损失及伤亡最大的1次,其震级也是台湾本岛陆上所发生的地震级别最大的。震源机制属低角度逆冲断层成因,余震在平面上围绕着北港高基底作半圆状分布,在垂向上,则分布在逆冲断层的上盘。与此相应,地面变形及上部结构物的破坏,以车笼埔发震断层上盘最为激烈,下盘几乎不受影响。此外,地震断裂的北端,水平位移量高达9.8m,垂直抬升达10m,比主震区要大;其地面加速度峰值,亦高达水平为502gal,垂直为519gal。这些特点表明,地震是受到地下深处侏罗型叠瓦状构造的控制。此外,3个诱发地震中心均受当地的地质构造与地貌条件的控制。文中还叙述了震害及工程结构物破坏的特点,尤其是水工结构物的震害  相似文献   

14.
四川芦山7.0级地震及其与汶川8.0级地震的关系   总被引:8,自引:1,他引:7       下载免费PDF全文
2013年4月20日在四川省雅安市芦山县发生M7.0级地震.根据四川省台网资料和收集的国内外相关资料,我们分析了芦山地震的基本参数、余震分布、序列衰减等特征.结果表明:芦山地震位于龙门山断裂南段,其震源力学机制显示为纯逆冲性质,与龙门山断裂构造特征相符合;芦山地震的余震较丰富,震后15天震区已发生7800多次余震,其中,5级以上余震4次,最大余震是4月21日17时5分芦山、邛崃交界M5.4级地震;余震分布形成的图形显示其长轴走向与龙门山断裂构造走向一致,余震分布显示密集区长轴约40 km,短轴约20 km.与汶川M8.0级地震在震源力学机制、破裂过程、余震空间展布以及地表破裂等对比分析后表明:芦山地震与汶川地震的震源错动类型、破裂过程、地表破裂以及余震活动等特征存在明显差异;芦山地震与汶川地震震中位置相距90 km,两次地震的余震密集区相距50 km;汶川8.0级地震造成龙门山断裂中北段较充分破裂,芦山7.0级地震则展布于龙门山断裂南段且破裂尺度有限;两者有发震构造上的联系,但两次地震是相对独立的地震事件.  相似文献   

15.
采用双差定位法对山东莱州地震序列重新定位,通过CAP方法反演M4.6地震震源机制,在此基础上初步探讨莱州地震序列发震构造。结果显示:精确定位震中位置主要位于柞村—仙夼断裂的NW方向,深度剖面显示从SE方向到NW方向断层深度呈由浅逐渐变深的趋势,这均与柞村—仙夼断裂位置、走向、倾向特征较为吻合;M4.6地震震源机制解的节面Ⅰ与柞村—仙夼断裂走向、倾角较为接近。综合精确定位震中位置、剖面深度分布特征、M4.6地震震源机制解及宏观调查烈度分布等结果与柞村-仙夼断裂产状之间的关系,初步推测柞村—仙夼断裂可能为莱州地震序列的发震断层。  相似文献   

16.
The long-period Rayleigh waves were investigated for the largest four deep shocks in 1963–1973 to determine the seismic moment by the same technique as used for shallow earthquakes. The results could be used for a quantitative comparison of source parameters between shallow and deep events. Three of the four shocks occurred beneath the South American continent (the Colombia earthquake, 1970; the western Brazil earthquake, 1963; the Peru—Bolivia border earthquake, 1963) and the other beneath the Japan Sea (1973). The focal depths are 653, 576, 593 and 575 km, respectively. The largest value of seismic moment was obtained as 2.1 · 1028 dyncm for the Colombia earthquake. This value is still about forty times smaller than that for the great Alaskan earthquake. A slight inconsistency was found between the first-motion diagram and the Rayleigh wave radiation pattern for the Colombia earthquake and the Peru—Bolivia border earthquake.  相似文献   

17.
Seismicity and Seismic Hazard in Alexandria (Egypt) and its Surroundings   总被引:3,自引:0,他引:3  
— Alexandria City has suffered great damage due to earthquakes from near and distant sources, both in historical and recent times. Sometimes the source of such damages is not well known. Seismogenic zones such as the Red Sea, Gulf of Aqaba-Dead Sea Hellenic Arc, Suez-Cairo-Alexandria, Eastern-Mediterranean-Cairo-Faiyoum and the Egyptian costal area are located in the vicinity of this city. The Egyptian coastal zone has the lowest seismicity, and therefore, its tectonic setting is not well known. The 1998 Egyptian costal zone earthquake is a moderate complex source. It is composed of two subevents separated by 4 sec. The first subevent initiated at a depth of 28 km and caused a rupture of strike (347°), dip (29°) and slip (125°). The second subevent occurred at a shallower depth (24 km) and has a relatively different focal parameter (strike 334°, dip 60° and slip 60°). The available focal mechanisms strongly support the manifestation of a complex stress regime from the Hellenic Arc into the Alexandria offshore area. In the present study a numerical modeling technique is applied to estimate quantitative seismic hazard in Alexandria. In terms of seismic hazard, both local and remote earthquakes have a tremendous affect on this city. A local earthquake with magnitude Ms = 6.7 at the offshore area gives peak ground acceleration up to 300 cm/sec2. The total duration of shaking expected from such an earthquake is about three seconds. The Fourier amplitude spectra of the ground acceleration reveals that the maximum energy is carried by the low frequency (1–3 Hz), part of the seismic waves. The largest response spectra at Alexandria city is within this frequency band. The computed ground accelerations due to strong earthquakes in the Hellenic Arc, Red Sea and Gulf of Aqaba are very small (less than 10 cm/sec2) although with long duration (up to 3 minutes).  相似文献   

18.
赵韬  王莹  徐一斐  刘盼  刘春 《中国地震》2023,39(4):893-901
2018年9月12日19时6分,陕西省汉中市宁强县发生5.3级地震,不同机构给出的震源深度结果相差较大。为进一步确定宁强5.3级地震的震源深度,基于区域速度模型,首先利用CAP方法反演得到该地震的震源机制解,然后采用瑞利面波振幅谱和CAP深度误差函数联合反演,进一步测定了此次地震的矩心深度。结果显示:CAP方法得到的陕西宁强5.3级地震矩心深度约为12km,瑞利面波振幅谱测定的矩心深度为13km,结合引入的误差函数联合反演,最终确定陕西宁强5.3级地震的矩心深度为13km左右,表明此次地震仍属于发生于上地壳的地震。  相似文献   

19.
The Hsingtai, China earthquakes of March 1966 were a series of destructive earthquakes associated with the Shu-lu graben. Five strong shocks of Ms ≥ 6 occurred within a period of less than a month, the largest of which was Ms 7.2. Body and surface waves over the period range from several to 100 s have been modeled for the four largest events using synthetic seismograms in the time domain and spectral analysis in the frequency domain. Data from ground deformation, local geology, regional seismic network, and teleseismic joint epicenter determination have also been used to constrain the source model and the rupture process.The fault mechanism of the Hsingtai sequence was mainly strike-slip with a small component of normal dip-slip. The strikes of the four largest shocks range from ~ N26° to 30°E, approximately along strike of the major faults of the Shu-lu graben and the aftershock distribution. The source mechanisms can be explained with a NNW-SSE extensional stress and a NEE-SWW compressional stress acting in the area. The major shocks all had focal depths ~ 10 km.The four largest shocks in the sequence were characterized by a relatively simple and smooth dislocation time history. The durations of the far-field source time functions ranged from 3.5 to 5 s, while the rise times were all ~ 1 s. The seismic moments of the four largest earthquakes ranged from 1.43 × 1025 to 1.51 × 1026 dyne cm?1. The fault sizes of the four events were very close. Assuming circular faults, the diameters of the four events were determined to be between 10 and 14 km. Stress drops varied from ~ 52 to 194 bars. A trend of increasing stress drop with earthquake size was observed.A survey of stress drop determinations for 15 major intraplate earthquakes shows that on the average the magnitude of stress drop of oceanic intraplate earthquakes and passive continental margin events is higher (~ 200 to several hundred bars) than that of continental intraplate earthquakes (~ 100 bars or less).  相似文献   

20.
Summary The average dependence of the calibration function q and the travel-time residuals t on the depth and distance of the source has been derived for individual branches of PKP waves using earthquakes from the SW Pacific Ocean (distance interval 147°–159°, depths 0–700 km). The analysis of very distant shocks of all depths according to the regional PKP travel time tables can be completed by the magnitude determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号