首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volcanic fields in the Pannonian Basin, Western Hungary, comprise several Mio/Pliocene volcaniclastic successions that are penetrated by numerous mafic intrusions. Peperite formed where intrusive and extrusive basaltic magma mingled with tuff, lapilli-tuff, and non-volcanic siliciclastic sediments within vent zones. Peperite is more common in the Pannonian Basin than generally realised and may be also important in other settings where sediment sequences accumulate during active volcanism. Hajagos-hegy, an erosional remnant of a maar volcano, was subsequently occupied by a lava lake that interacted with unconsolidated sediments in the maar basin and formed both blocky and globular peperite. Similar peperite developed in Kissomlyó, a small tuff ring remnant, where dykes invaded lake sediments that formed within a tuff ring. Lava foot peperite from both Hajagos-hegy and Kissomlyó were formed when small lava flows travelled over wet sediments in craters of phreatomagmatic volcanoes. At Ság-hegy, a large phreatomagmatic volcanic complex, peperite formed along the margin of a coherent intrusion. All peperite in this study could be described as globular or blocky peperite. Globular and blocky types in the studied fields occur together regardless of the host sediment.  相似文献   

2.
The basaltic Kaupulehu 1800–1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafix xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m s-1 (more than 40 km h-1). This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.  相似文献   

3.
Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180° of the circumference of the volcano.Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows.Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75–95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these “dryer” deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The “wetter” nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows.Field observations and two new 40Ar–39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.  相似文献   

4.
Mount Erebus, a large intraplate stratovolcano dominating Ross Island, Antarctica, hosts the world's only active phonolite lava lakes. The main manifestation of activity at Erebus volcano in December 2004 was as the presence of two convecting lava lakes within an inner crater. The long-lived Ray Lake, ~ 1400 m2 in area, was the site of up to 10 small Strombolian eruptions per day. A new but short-lived, ~ 1000–1200 m2 lake formed at Werner vent in December 2004 sourced by lava flowing from a crater formed in 1993 by a phreatic eruption. We measured the radiative heat flux from the two lakes in December 2004 using a compact infrared (IR) imaging camera. Daily thermal IR surveys from the Main Crater rim provide images of the lava lake surface temperatures and identify sites of upwelling and downwelling. The radiative heat outputs calculated for the Ray and Werner Lakes are 30–35 MW and 20 MW, respectively. We estimate that the magma flux needed to sustain the combined heat loss is ~ 250–710 kg s− 1, that the minimum volume of the magma reservoir is 2 km3, and that the radius of the conduit feeding the Ray lake is ~ 2 m.  相似文献   

5.
The stable, persistent, active lava lake at Erebus volcano (Ross Island, Antarctica) provides an excellent thermal target for analysis of spacecraft observations, and for testing new technology. In the austral summer of 2005 visible and infrared observations of the Erebus lava lake were obtained with sensors on three space vehicles Terra (ASTER, MODIS), Aqua (MODIS) and EO-1 (Hyperion, ALI). Contemporaneous ground-based observations were obtained with hand-held infrared cameras. This allowed a quantitative comparison of the thermal data obtained from different instruments, and of the analytical techniques used to analyze the data, both with and without the constraints imposed by ground-truth. From the thermal camera data, in December 2005 the main Erebus lava lake (Ray Lake) had an area of ≈ 820 m2. Surface colour temperatures ranged from 575 K to 1090 K, with a broad peak in the distribution from 730 K to 850 K. Total heat loss was estimated at 23.5 MW. The flux density was ≈ 29 kW m− 2. Mass flux was estimated at 64 to 93 kg s− 1. The best correlation between thermal emission and emitting area was obtained with ASTER, which has the best combination of spatial resolution and wavelength coverage, especially in the thermal infrared. The high surface temperature of the lava lake means that Hyperion data are for the most part saturated. Uncertainties, introduced by the need to remove incident sunlight cause the thermal emission from the Hyperion data to be a factor of about two greater than that measured by hand-held thermal camera. MODIS also over-estimated thermal output from the lava lake by the same factor of two because it was detecting reflected sunlight from the rest of the pixel area. The measurement of the detailed temperature distribution on the surface of an active terrestrial lava lake will allow testing of thermal emission models used to interpret remote-sensing data of volcanism on Io, where no such ground-truth exists. Although the Erebus lava lake is four orders of magnitude smaller than the lava lake at Pele on Io, the shape of the integrated thermal emission spectra are similar. Thermal emission from this style of effusive volcanism appears to be invariant. Excess thermal emission in most Pele spectra (compared to Erebus) at short wavelengths (< 3 μm) is most likely due to disruption of the surface on the lava lake by escaping volatiles.  相似文献   

6.
Pahoehoe flows interbedded with sediments have been identified in the superior portion of Paraná Continental Flood Basalts (PCFB), west portion of Paraná State, southern Brazil. In the study area peperites are generated by the interaction between lava flows and wet lacustrine sediments (silt and clay). Evidence that the sediments were unconsolidated or poorly consolidated and wet when the lava flowed over them includes vesiculated sediment, sediment in vesicles and fractures in lava flow and in juvenile clasts in the peperite and soft sediment deformation. Hydrodynamic mingling of lava and wet sediments (coarse mingling) is predominant and volcanic rocks and textures related to explosive phase of Molten Fuel Coolant Interaction (MFCI) are not observed in study area. Locally centimeter-sized areas display direct contact between ash-sized juvenile clasts and sediments formed by the collapse of a vapor film. The textures of fluidal peperites in the central PCFB indicate that the relevant factors that led to a coarse mingling between lava/sediment are (1) lava properties (low viscosity); (2) fine grained, unconsolidated or poorly consolidated wet sediment; and (3) a single episode of interaction between lava flows and sediment.  相似文献   

7.
During the 1969–1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970–1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12–13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes.  相似文献   

8.
Monitoring of the remote South Sandwich Islands volcanic arc, using advanced very high resolution radiometer (AVHRR) data, has identified a radiant pixel on channels 3 (3.55–3.93 μm) and (rarely) 4 (10.3–11.3 μm). The position of the pixel is coincident with Mount Michael, Saunders Island, the active summit crater of a snow-covered basaltic stratovolcano with a persistent steam plume. The radiant pixel was continuously present in successive AVHRR images acquired during intervals of several months in the period examined (March 1995–February 1998), although apparently disappearing for similar time intervals. More than 5000 images were examined during this study. The radiant pixel is interpreted to indicate that the crater has contained a lava lake, the first to be recorded in the South Sandwich Islands. The lake appears to persist in the crater for several months at a time, at least. It may have drained completely at times and was probably absent when the crater was viewed briefly during an overflight in January 1997. Persistent or recurring lava lakes are very uncommon world-wide and that at Mount Michael is one of only two recorded in the Antarctic region.  相似文献   

9.
The 1986 eruption of B fissure at Izu-Oshima Volcano, Japan, produced, among other products, one andesite and two basaltic andesite lava flows. Locally the three flows resemble vent-effused holocrystalline blocky or aa lava; however, remnant clast outlines can be identified at most localities, indicating that the flows were spatter fed or clastogenic. The basaltic andesite flows are interpreted to have formed by two main processes: (a) reconstitution of fountain-generated spatter around vent areas by syn-depositional agglutination and coalescence, followed by extensional non-particulate flow, and (b) syn-eruptive collapse of a rapidly built spatter and scoria cone by rotational slip and extensional sliding. These processes produced two morphologically distinct lobes in both flows by: (a) earlier non-particulate flow of agglutinate and coalesced spatter, which formed a thin lobe of rubbly aa lava (ca. 5 m thick) with characteristic open extension cracks revealing a homogeneous, holocrystalline interior, and (b) later scoria-cone collapse, which created a larger lobe of irregular thickness (<20 m) made of large detached blocks of scoria cone interpreted to have been rafted along on a flow of coalesced spatter. The source regions of these lava flows are characterized by horseshoe-shaped scarps (<30 m high), with meso-blocks (ca. 30 m in diameter) of bedded scoria at the base. One lava flow has a secondary lateral collapse zone with lower (ca. 7 m) scarps. Backward-tilted meso-blocks are interpreted to be the product of rotational slip, and forward-tilted blocks the result of simple toppling. Squeeze-ups of coalesced spatter along the leading edge of the meso-blocks indicate that coalescence occurred in the basal part of the scoria cone. This low-viscosity, coalesced spatter acted as a lubricating layer along which basal failure of the scoria cone occurred. Rotational sliding gave way to extensional translational sliding as the slide mass spread out onto the present caldera floor. Squeeze-ups concentrated at the distal margin indicate that the extensional regime changed to one of compression, probably as a result of cooling of the flow front. Sliding material piled up behind the slowing flow front, and coalesced spatter was squeezed up from the interior of the flow through fractures and between rafted blocks. The andesite flow, although morphologically similar to the other two flows, has a slightly different chemical composition which corresponds to the earliest stage of the eruption. It is a much smaller lava flow emitted from the base of the scoria cone 2 days after the eruption had ceased. This lava is interpreted to have been formed by post-depositional coalescence of spatter under the influence of the in-situ cooling rate and load pressure of the deposit. Extrusion occurred through the lower part of the scoria cone, and subsequent non-particulate flow of coalesced material produced a blocky and aa lava flow. The mechanisms of formation of the lava flows described may be more common during explosive eruptions of mafic magma than previously envisaged. Received: 30 May 1997 / Accepted: 19 May 1998  相似文献   

10.
Factors which control lava flow length are still not fully understood. The assumption that flow length as mainly influenced by viscosity was contested by Walker (1973) who proposed that the length of a lava flow was dependent on the mean effusion rate, and by Malin (1980) who concluded that flow length was dependent on erupted volume. Our reanalysis of Malin's data shows that, if short duration and tube-fed flows are eliminated, Malin's Hawaiian flow data are consistent with Walker's assertion. However, the length of a flow can vary, for a given effusion rate, by a factor of 7, and by up to 10 for a given volume. Factors other than effusion rate and volume are therefore clearly important in controlling the lengths of lava flows. We establish the relative importance of the other factors by performing a multivariate analysis of data for recent Hawaiian lava flows. In addition to generating empirical equations relating flow length to other variables, we have developed a non-isothermal Bingham flow model. This computes the channel and levee width of a flow and hence permits the advance rates of flows and their maximum cooling-limited lengths for different gradients and effusion rates to be calculated. Changing rheological properties are taken into account using the ratio of yield strength to viscosity; available field measurements show that this varies systematically from the vent to the front of a lava flow. The model gives reasonable agreement with data from the 1983–1986 Pu'u Oo eruptions and the 1984 eruption of Mauna Loa. The method has also been applied to andesitic and rhyolitic lava flows. It predicts that, while the more silicic lava flows advance at generally slower rates than basaltic flows, their maximum flow lengths, for a given effusion rate, will be greater than for basaltic lava flows.  相似文献   

11.
The Golan Heights is a Plio-Pleistocene volcanic plateau. Cinder cones of Late Pleistocene age are very common in the eastern and northern Golan, while phreatomagmatic deposits are relatively rare and occur just in two structures — the maar of Birket Ram and the tuff ring of Mt. Avital. The complex of Mt. Avital includes two large cinder cones, a tuff ring with an elongated central depression and several basaltic flows, some of them breach the cinder cones. The (exposed) eruptive history of the complex includes (1) an early stage of basaltic lava flows, (2) strombolian activity and the buildup of the southern cinder cone, (3) a second stage of basaltic flows and the buildup of the northern cinder cone, and then a transition to (4) phreatomagmatic explosions. The phreatomagmatic deposits include surges, lapilli fallout deposits and coarse-grained lithic tuff breccias, which were found up to 200 m above the central depression. Basaltic and scoriaceous clasts are the main component of all deposits, while juvenile material is usually a minor component, almost absent in the lapilli deposits.It is suggested that the phreatomagmatic events in Mt. Avital were induced by the infiltration of water from a lake that existed in a nearby topographic low (Quneitra Valley). The lake was formed or significantly expanded at about 300 ka due to a lava flow that blocked the drainage of the valley to the west. The interlayering of tuff and scoria at the top of the northern cinder cone and the good preservation of a lava flow top breccia under the surges imply that the phreatomagmatic activity immediately followed and even coincided with the last stages of strombolian activity. It is suggested that the dry–wet transition was triggered by the effusion of the second stage lavas and the buildup of the northern cinder cone, which probably caused a reduction of pressure in the magmatic system and allowed the lake water an access to the magmatic system. The minimum age of the phreatomagmatic events is determined by a 54 ka Musterian site which lies directly on top of the tuff in the Quneitra Valley.  相似文献   

12.
A short length of channel on Pico Partido volcano, Lanzarote, provides us the opportunity to examine the dynamics of lava flowing in a channel that extends over a sudden break in slope. The 1–2-m-wide, 0.5–2-m-deep channel was built during the 1730–1736 eruptions on Lanzarote and exhibits a sinuous, well-formed channel over a steep (11° slope) 100-m-long proximal section. Over-flow units comprising smooth pahoehoe sheet flow, as well as evidence on the inner channel walls for multiple (at least 11) flow levels, attest to unsteady flow in the channel. In addition, superelevation is apparent at each of the six bends along the proximal channel section. Superelevation results from banking of the lava as it moves around the bend thus causing preferential construction of the outer bank. As a result, the channel profile at each bend is asymmetric with an outer bank that is higher than the inner bank. Analysis of superelevation indicates flow velocities of ~8 m s–1. Our analysis of the superelevation features is based on an inertia-gravity balance, which we show is appropriate, even though the down-channel flow is in laminar flow. We use a viscosity-gravity balance model, together with the velocities calculated from superelevation, to obtain viscosities in the range 25–60 Pa s (assuming that the lava behaved as a Newtonian liquid). Estimated volume fluxes are in the range 7–12 m3 s–1. An apparent down-flow increase in derived volume flux may have resulted from variable supply or bulking up of the flow due to vesiculation. Where the channel moves over a sharp break in slope and onto slopes of ~6°, the channel becomes less well defined and widens considerably. At the break of slope, an elongate ridge extends across the channel. We speculate that this ridge was formed as a result of a reduction in velocity immediately below the break of slope to allow deposition of entrained material or accretion of lava to the channel bed as a result of a change in flow regime or depth.  相似文献   

13.
Kaguyak Caldera lies in a remote corner of Katmai National Park, 375 km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ± 0.2 ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61–67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80 km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5–64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53–74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60 ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200 years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62–65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.  相似文献   

14.
Preceded by four days of intense seismicity and marked ground deformation, a new eruption of Mt. Etna started on 17 July and lasted until 9 August 2001. It produced lava emission and strombolian and phreatomagmatic activity from four different main vents located on a complex fracture system extending from the southeast summit cone for about 4.5 km southwards, from 3000 to 2100 m elevation (a.s.l.). The lava emitted from the lowest vent cut up an important road on the volcano and destroyed other rural roads and a few isolated country houses. Its front descended southwards to about 4 km distance from the villages of Nicolosi and Belpasso. A plan of intervention, including diversion and retaining barriers and possibly lava flow interruption, was prepared but not activated because the flow front stopped as a consequence of a decrease in the effusion rate. Extensive interventions were carried out in order to protect some important tourist facilities of the Sapienza and Mts. Silvestri zones (1900 m elevation) from being destroyed by the lava emitted from vents located at 2700 m and 2550 m elevation. Thirteen earthen barriers (with a maximum length of 370 m, height of 10–12 m, base width of 15 m and volume of 25 000 m3) were built to divert the lava flow away from the facilities towards a path implying considerably less damage. Most of the barriers were oriented diagonally (110–135°) to the direction of the flow. They were made of loose material excavated nearby and worked very nicely, resisting the thrust of the lava without any difficulty. After the interventions carried out on Mt. Etna in 1983 and in 1991–1992, those of 2001 confirm that earthen barriers can be very effective in controlling lava flows.  相似文献   

15.
We studied the anisotropy of magnetic susceptibility (AMS) of 22 basaltic flow units, including S-type pahoehoe, P-type pahoehoe, toothpaste lava and 'a' emplaced over different slopes in two Hawaiian islands. Systematic differences occur in several aspects of AMS (mean susceptibility, degree of anisotropy, magnetic fabric and orientation of the principal susceptibilities) among the morphological types that can be related to different modes of lava emplacement. AMS also detects systematic changes in the rate of shear with position in a unit, allowing us to infer local flow direction and some other aspects of the velocity field of each unit. 'A' flows are subject to stronger deformation than pahoehoe, and also their internal parts behave more like a unit. According to AMS, the central part of pahoehoe commonly reveals a different deformation history than the upper and lower extremes, probably resulting from endogenous growth.  相似文献   

16.
On the 21st of June, 1982, Mt. Niragongo ended a period of dormancy that had begun on January 11, 1977, and fresh lava began to flow into the 800-m-deep crater. On October 3, a huge lava lake, wider and deeper than any previously observed (500 m across and close to 400 m deep) rose to within 440 m of the crater rim. The observed activity consisted of a large, central upwelling fountain of very fluid lava from which concentric lava waves expanded radially; numerous small, relatively viscous lava flows creeped over the surrounding thin solidified crust, that covered about 95% of the lake area. These observed features seem to characterize the upper part of a large convective system. The persistence of such an extraordinarily large steady-state lava lake may be due to the equally exceptional fluidity of the magma rising at the intersection of four different tectonic trends of fractures in the subvolcanic basement.  相似文献   

17.
The 1934–1935 Showa Iwo-jima eruption started with a silicic lava extrusion onto the floor of the submarine Kikai caldera and ceased with the emergence of a lava dome. The central part of the emergent dome consists of lower microcrystalline rhyolite, grading upward into finely vesicular lava, overlain by coarsely vesicular lava with pumice breccia at the top. The lava surface is folded, and folds become tighter toward the marginal part of the dome. The dome margin is characterized by two zones: a fracture zone and a breccia zone. The fracture zone is composed of alternating layers of massive lava and welded oxidized breccia. The breccia zone is the outermost part of the dome, and consists of glassy breccia interpreted to be hyaloclastite. The lava dome contains lava with two slightly different chemical compositions; the marginal part being more dacitic and the central part more rhyolitic. The fold geometry and chemical compositions indicate that the marginal dacite had a slightly higher temperature, lower viscosity, and lower yield stress than the central rhyolite. The high-temperature dacite lava began to effuse in the earlier stage from the central crater. The front of the dome came in contact with seawater and formed hyaloclastite. During the later stage, low-temperature rhyolite lava effused subaerially. As lava was injected into the growing dome, the fracture zone was produced by successive fracturing, ramping, and brecciation of the moving dome front. In the marginal part, hyaloclastite was ramped above the sea surface by progressive increments of the new lava. The central part was folded, forming pumice breccia and wrinkles. Subaerial emplacement of lava was the dominant process during the growth of the Showa Iwo-jima dome.Editorial Responsibility J. McPhie  相似文献   

18.
We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel–levee structure. The levees comprise three packages. The basal package comprises an 80–150 m wide ′a′a flow in which a ∼2 m deep and ∼11 m wide channel became centred. This is capped by a second package of thin (<45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised ′a′a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May–2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal ′a′a flow thickness yields effusion rates of 35 m3 s−1 for the opening phase, with the initial flow advancing across the mapped section at ∼10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90–420 m3 s−1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ∼2 m with an effusion rate of ∼35 m3 s−1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23–54 m3 s−1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed ′a′a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ∼10 h. The complex processes involved in levee–channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using high-resolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.  相似文献   

19.
Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ±8–10° C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975–1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa.  相似文献   

20.
A Landsat Thematic Mapper (TM) image acquired on 23 July 1991 recorded widespread activity associated with the Episode 48 of the Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano, Hawaii. The scene contains a very large number (>3500) of thermally elevated near infrared (0.8–2.35 m) pixels (each 900 m2), which enable the spatial distribution of volcanic activity to be identified. This activity includes a lava lake within Pu'u 'O'o cone, an active lava tube system (7.9 km in length) with skylights between the Kupaianaha lava shield and several ocean entry points, and extensive active surface flows (total area of 1.3 km2) within a much larger area of cooling flows (total16 km2). The production of an average flux density map from the TM data of the flow field, wherein the average flux density is defined in units of Wm-2, allows for the chronology of emplacement of active and cooling flows to be determined. The flux density map reveals that there were at least three breakouts (>5000 Wm-2) feeding active flows, but on the day that the data were collected the TM recorded a waning phase of surface activity in this area, based on the relatively large amount of intermediate power-emitting (cooling) flows compared to high power-emitting (active) flows. The production of a comparable flux density map for future eruptions would aid in the assessment of volcanic hazards if the data were available in near-real time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号