首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oliver Korup   《Geomorphology》2005,66(1-4):167
Quantitative assessments of landslide hazard usually employ empirical, heuristic, deterministic, or statistical methods to derive estimates of magnitude–frequency distributions of landsliding. The formation and failure of landslide dams are common geomorphic processes in mountain regions throughout the world, causing a series of consequential off-site hazards such as catastrophic outburst floods, debris flows, backwater ponding, up- and downstream aggradation, and channel instability.Conceptual and methodological problems of quantifying geomorphic hazard from landslide dams result from (a) aspects of defining “landslide-dam magnitude”, (b) scaling effects, i.e. the geomorphic long-range and long-term implications of river blockage, and (c) paucity of empirical data. Geomorphic hazard from a landslide dam-break flood on the basis of conditional probabilities is being analysed for the alpine South Westland region of New Zealand, where formation and failure of landslide dams is frequent. Quantification of the annual probability of landsliding and subsequent dam formation in the area is limited by historical and only partially representative empirical data on slope instability. Since landslide-dam stability is a major control governing the potential of catastrophic outburst flooding, the ensuing hazard is best assessed on a recurring basis. GIS-based modelling of virtual landslide dams is a simple and cost-effective approach to approximate site-specific landslide dam and lake dimensions, reservoir infill times, and scaled magnitude of potential outburst floods. Although crude, these order-of-magnitude results provide information critical to natural hazard planning, mitigation, or emergency management decisions.  相似文献   

2.
The Southern Alps of New Zealand are the topographic expression of active oblique continental convergence of the Australian and Pacific plates. Despite inferred high rates of tectonic and climatic forcing, the pattern of differential uplift and erosion remains uncertain. We use a 25-m DEM to conduct a regional-scale relief analysis of a 250-km long strip of the western Southern Alps (WSA). We present a preliminary map of regional erosion and denudation by overlaying mean basin relief, a modelled stream-power erosion index, river incision rates, historic landslide denudation rates, and landslide density. The interplay between strong tectonic and climatic forcing has led to relief production that locally attains 2 km in major catchments, with mean values of 0.65–0.68 km. Interpolation between elevations of major catchment divides indicates potential removal of l01–103 km3, or a mean basin relief of 0.51–0.85 km in the larger catchments. Local relief and inferred river incision rates into bedrock are highest about 50–67% of the distance between the Alpine fault and the main divide. The mean regional relief variability is ± 0.5 km.Local relief, valley cross-sectional area, and catchment width correlate moderately with catchment area, and also reach maximum values between the range front and the divide. Hypsometric integrals show scale dependence, and together with hypsometric curves, are insufficient to clearly differentiate between glacial and fluvial dominated basins. Mean slope angle in the WSA (ψ = 30°) is lower where major longitudinal valleys and extensive ice cover occur, and may be an insensitive measure of regional relief. Modal slope angle is strikingly uniform throughout the WSA (φ = 38–40°), and may record adjustment to runoff and landsliding. Both ψ and φ show non-linear relationships with elevation, which we attribute to dominant geomorphic process domains, such as fluvial processes in low-altitude valley trains, surface runoff and frequent landsliding on montane hillslopes, “relief dampening” by glaciers, and rock fall/avalanching on steep main-divide slopes.  相似文献   

3.
Using geomorphological knowledge, spatial data and GIS methods, one can obtain phytogeomorphological site variables describing interactions between landforms and vegetation. We used 15 site variables derived from maps to explain forest site productivity in southern and central Finland expressed as dominant height of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) with ages of 30–110 years. These site variables were grouped into two: Group 1 with seven variables describing geographical conditions of sites including climate, and Group 2 with eight variables describing local morphometric and soil properties. We calculated slope and aspect from a 25 × 25 m DEM. The catchment area, calcium content in soil, length of the growing season, radiation index, sea index, lake index, past highest shoreline and total annual temperature sum with threshold + 5 °C were also obtained. Then we classified the landforms of 688 sample plots into four major types and 15 sub-types. We applied regression analysis to explain the tree height as a function of the tree age and the phytogeomorphological site variables. When the tree height was explained with the tree age and the Group 1 variables, the remaining standard error of the model was 16.6–17.9%. When the Group 2 variables were added to the analysis, the standard error decreased slightly. The most significant variables were the temperature sum, latitude coordinate and length of the growing season. Other significant variables were elevation, slope and aspect. The major landform types, sub-types and watershed area did not explain the tree height. Furthermore, if the forest site types determined in the field were included, the remaining standard error decreased by ca. 2%, showing the importance of field information.  相似文献   

4.
通过野外调查及试验对堰塞坝的稳定和裂点的发育进行研究,发现堰塞坝的稳定性主要取决于泄洪道内阶梯-深潭系统的发育程度SP和坝体上游洪峰的水流能量P.堰塞坝的保存与溃决情况采用保留的坝高比进行定量描述,对于洪峰流量小于30 m3/s山区河流,保留坝高比与SP呈线性相关;洪峰流量大于30 m3/s(< 30000m3/s)时,河道稳定所需的最小河床结构强度SP随着单宽水流能量P的增加而增大.堰塞坝泄洪道内不发育阶梯-深潭系统或发育程度较低的坝体,SP值小于稳定河床最小的阻力强度,将会发生下切、溯源冲刷并引起溃坝.保留的堰塞坝在泥沙淤积和水流的长期作用下会形成裂点,对河床下切起到控制作用,降低再次发生滑坡的风险.大型裂点能改变河床演变和河流地貌,连续堰塞坝形成的裂点能长期保存并形成优美的自然景观,创造良好的河流生态环境.  相似文献   

5.
A landslide-hazard map is intended to show the location of future slope instability. Most spatial models of the hazard lack reliability tests of the procedures and predictions for estimating the probabilities of future landslides, thus precluding use of the maps for probabilistic risk analysis. To correct this deficiency we propose a systematic procedure comprising two analytical steps: “relative-hazard mapping” and “empirical probability estimation”. A mathematical model first generates a prediction map by dividing an area into “prediction” classes according to the relative likelihood of occurrence of future landslides, conditional by local geomorphic and topographic characteristics. The second stage estimates empirically the probability of landslide occurrence in each prediction class, by applying a cross-validation technique. Cross-validation, a “blind test” here using non-overlapping spatial or temporal subsets of mapped landslides, evaluates accuracy of the prediction and from the resulting statistics estimates occurrence probabilities of future landslides. This quantitative approach, exemplified by several experiments in an area near Lisbon, Portugal, can accommodate any subsequent analysis of landslide risk.  相似文献   

6.
In this article a statistical multivariate method, i.e., rare events logistic regression, is evaluated for the creation of a landslide susceptibility map in a 200 km2 study area of the Flemish Ardennes (Belgium). The methodology is based on the hypothesis that future landslides will have the same causal factors as the landslides initiated in the past. The information on the past landslides comes from a landslide inventory map obtained by detailed field surveys and by the analysis of LIDAR (Light Detection and Ranging)-derived hillshade maps. Information on the causal factors (e.g., slope gradient, aspect, lithology, and soil drainage) was extracted from digital elevation models derived from LIDAR and from topographical, lithological and soil maps. In landslide-affected areas, however, we did not use the present-day hillslope gradient. In order to reflect the hillslope condition prior to landsliding, the pre-landslide hillslope was reconstructed and its gradient was used in the analysis. Because of their limited spatial occurrence, the landslides in the study area can be regarded as “rare events”. Rare events logistic regression differs from ordinary logistic regression because it takes into account the low proportion of 1s (landslides) to 0s (no landslides) in the study area by incorporating three correction measures: the endogenous stratified sampling of the dataset, the prior correction of the intercept and the correction of the probabilities to include the estimation uncertainty. For the study area, significant model results were obtained, with pre-landslide hillslope gradient and three different clayey lithologies being important predictor variables. Receiver Operating Characteristic (ROC) curves and the Kappa index were used to validate the model. Both show a good agreement between the observed and predicted values of the validation dataset. Based on a qualified judgement, the created landslide susceptibility map was classified into four classes, i.e., very high, high, moderate and low susceptibility. If interpreted correctly, this classified susceptibility map is an important tool for the delineation of zones where prevention measures are needed and human interference should be limited in order to avoid property damage due to landslides.  相似文献   

7.
Abstract

Small dams fragment river landscapes, disrupting channel connectivity and impacting water quality and quantity. Although they impound volumetrically less total water than large dams, the ubiquity of small dams suggests their cumulative impacts could be significant. Documenting the distribution and characteristics of small dams is necessary to understanding and mitigating their impacts. In this study, we compare datasets of small dams in Oregon, compile a new comprehensive dataset, and document geographic variations in small dam distributions between different ecoregions. We used Oregon Water Resources Department dam and Oregon Department of Fish and Wildlife fish passage barrier datasets to compare dam heights and contributing drainage areas between different ecoregions. Over 61% of Oregon’s land area is above one or more small dam. We highlight the location of Oregon’s small dams at valley margins, transition zones between flat plains and mountains, and areas of high population density. Given the hidden nature of small dams, evaluation of small dam impacts using public imagery is not effective. However, knowledge of small dam distributions given their association with landforms can aid in finding unrecorded dams, assessing approaches for evaluating their geomorphic impacts, and informing their management.  相似文献   

8.
在对金沙江流域内的部分大型水电站工程区内的滑坡分析基础上,以两个滑坡为例,针对水电站工程区讨论了单体滑坡的风险评价方法。选取滑坡稳定性,规模和可能造成的涌浪高度3个指标进行危险性评价;并且定性地将大坝的易损性确定为高、中、低三个等级。在此基础上,对研究区的牛滚函滑坡和东岳庙滑坡进行了危险性分析和易损性评价,得出这两个单体滑坡的风险分析结果:牛滚函滑坡为低度风险,东岳庙滑坡为中度风险。研究成果为水电站工程区滑坡减灾防灾与风险管理提供了科学依据。  相似文献   

9.
滑坡危险度评价的地形判别法   总被引:10,自引:1,他引:10  
樊晓一  乔建平 《山地学报》2004,22(6):730-734
选取影响滑坡发育的坡度、坡形、坡向、坡体的相对高度和地形与地层产状的组合关系5个主要地形因素,结合三峡库区重点滑坡段(云阳-巫山)205个滑坡统计资料,利用地形判别法,对典型滑坡危险度进行评价。将各地形判别因子在区域滑坡发育上的贡献率作为评价典型滑坡危险度的评价值,利用层次分析法,建立典型滑坡危险度判别矩阵。将判别矩阵的归一化特征向量作为判别因子的权重,得到典型滑坡的危险度。通过建立典型滑坡危险度评价表,对滑坡进行有效的管理。此研究方法有效地避免了对评价因子赋值的主观性,并提出了对不同危险度等级的滑坡管理措施。  相似文献   

10.
Chinese historic documents recorded that on June 1, 1786, a strong M=7.75 earthquake occurred in the Kangding-Luding area, Sichuan, southwestern China, resulting in a large landslide that fell into the Dadu River. As a result, a landslide dam blocked the river. Ten days later, the sudden breaching of the dam resulted in catastrophic downstream flooding. Historic records document over 100,000 deaths by the flood. This may be the most disastrous event ever caused by landslide dam failures in the world. Although a lot of work has been carried out to determine the location, magnitude and intensity of the 1786 earthquake, relatively little is known about the occurrence and nature of the landslide dam. In this paper, the dam was reconstructed using historic documents and geomorphic evidence. It was found that the landslide dam was about 70 m high, and it created a lake with a water volume of about 50×106 m3 and an area of about 1.7 km2. The landslide dam breached suddenly due to a major aftershock on June 10, 1786. The peak discharge at the dam breach was estimated using regression equations and a physically based predictive equation. The possibility of a future failure of the landslide seems high, particularly due to inherent seismic risk, and detailed geotechnical investigations are strongly recommended for evaluating the current stability of the landslide.  相似文献   

11.
The purpose of this study was to investigate the capabilities of different landslide susceptibility methods by comparing their results statistically and spatially to select the best method that portrays the susceptibility zones for the Ulus district of the Bart?n province (northern Turkey). Susceptibility maps based on spatial regression (SR), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression (LR) method, and artificial neural network method (ANN) were generated, and the effect of each geomorphological parameter was determined. The landslide inventory map digitized from previous studies was used as a base map for landslide occurrence. All of the analyses were implemented with respect to landslides classified as rotational, active, and deeper than 5 m. Three different sets of data were used to produce nine explanatory variables (layers). The study area was divided into grids of 90 m × 90 m, and the ‘seed cell’ technique was applied to obtain statistically balanced population distribution over landslide inventory area. The constructed dataset was divided into two datasets as training and test. The initial assessment consisted of multicollinearity of explanatory variables. Empirical information entropy analysis was implemented to quantify the spatial distribution of the outcomes of these methods. Results of the analyses were validated by using success rate curve (SRC) and prediction rate curve (PRC) methods. Additionally, statistical and spatial comparisons of the results were performed to determine the most suitable susceptibility zonation method in this large-scale study area. In accordance with all these comparisons, it is concluded that ANN was the best method to represent landslide susceptibility throughout the study area with an acceptable processing time.  相似文献   

12.
During previous work in the San Juan Mountains of Colorado, we observed that headwater (first-order) streams draining landslides were often characterized by the presence of beaver (Castor canadensis) dams whereas other headwater tributaries typically lacked evidence of beaver. Here, we hypothesize that hummocky landslide topography attracts beaver. To test the hypothesis, we examined 10 landslides and 11 adjacent headwater streams in the area, noting location, vegetation, elevation, and evidence of beaver activity, and then compared the landslide and non-landslide headwater streams using the G-test to determine whether or not variables were independent of one another. We reject the null hypothesis that beaver dam presence is unrelated to landslide deposits (p = 0.003). We further hypothesize that this relationship results from differences in stream gradient and concavity between landslide streams and other streams. We found streams on landslides to have a greater portion of their gradients below what geologic and ecologic literature suggests is a reasonable upper threshold (12%) for beaver dam maintenance. Additionally, streams on landslides are more concave. We conclude that the relationship between beaver presence and landslides results from a higher proportion of reaches below the 12% threshold and increased concavity of headwater streams on landslides.  相似文献   

13.
Probabilistic landslide hazard assessment at the basin scale   总被引:32,自引:9,他引:32  
We propose a probabilistic model to determine landslide hazard at the basin scale. The model predicts where landslides will occur, how frequently they will occur, and how large they will be. We test the model in the Staffora River basin, in the northern Apennines, Italy. For the study area, we prepare a multi-temporal inventory map through the interpretation of multiple sets of aerial photographs taken between 1955 and 1999. We partition the basin into 2243 geo-morpho-hydrological units, and obtain the probability of spatial occurrence of landslides by discriminant analysis of thematic variables, including morphological, lithological, structural and land use. For each mapping unit, we obtain the landslide recurrence by dividing the total number of landslide events inventoried in the unit by the time span of the investigated period. Assuming that landslide recurrence will remain the same in the future, and adopting a Poisson probability model, we determine the exceedance probability of having one or more landslides in each mapping unit, for different periods. We obtain the probability of landslide size by analysing the frequency–area statistics of landslides, obtained from the multi-temporal inventory map. Assuming independence, we obtain a quantitative estimate of landslide hazard for each mapping unit as the joint probability of landslide size, of landslide temporal occurrence and of landslide spatial occurrence.  相似文献   

14.
美国西部滑坡坝的合作研究   总被引:1,自引:0,他引:1  
沟谷的滑坡成坝已成为美国西部山地中一个值得注意的问题。1985年作者们考察了美国西部六州九个滑坡坝的特点。这是执行1979年中美科学技术合作协议(特别是1980年地学合作补充议定书)的部分内容。中美两国科学家和工程专家考察九个滑坡坝后,取得了一些研究成果,即论述了滑坡坝(尤其是近代滑坡坝)的成因与稳定性,并列举了灾变性溃坝防止措施的若干成功经验。  相似文献   

15.
During the last decade, slope failures were reported in a 500 km2 study area in the Geba–Werei catchment, northern Ethiopia, a region where landslides were not considered an important hazard before. Field observations, however, revealed that many of the failures were actually reactivations of old deep-seated landslides after land use changes. Therefore, this study was conducted (1) to explore the importance of environmental factors controlling landslide occurrence and (2) to estimate future landslide susceptibility. A landslide inventory map of the study area derived from aerial photograph interpretation and field checks shows the location of 57 landslides and six zones with multiple landslides, mainly complex slides and debris flows. In total 14.8% of the area is affected by an old landslide. For the landslide susceptibility modelling, weights of evidence (WofE), was applied and five different models were produced. After comparison of the models and spatial validation using Receiver Operating Characteristic curves and Kappa values, a model combining data on elevation, hillslope gradient, aspect, geology and distance to faults was selected. This model confirmed our hypothesis that deep-seated landslides are located on hillslopes with a moderate slope gradient (i.e. 5°–13°). The depletion areas are expected on and along the border of plateaus where weathered basalts rich in smectite clays are found, and the landslide debris is expected to accumulate on the Amba Aradam sandstone and upper Antalo limestone. As future landslides are believed to occur on inherently unstable hillslopes similar to those where deep-seated landslides occurred, the classified landslide susceptibility map allows delineating zones where human interventions decreasing slope stability might cause slope failures. The results obtained demonstrate that the applied methodology could be used in similar areas where information on the location of landslides is essential for present-day hazard analysis.  相似文献   

16.
A terrain partition scheme is presented that allows the identification of regions with high landslide risk in natural terrain zones on the basis of geomorphometric criteria from moderate resolution DEMs. The key factor being the terrain segmentation to aspect regions (regions formed by points preserving the same aspect direction) instead of using an artificial regular-grid terrain partition scheme. The study area is in western Greece (NW Peloponnesus) whereas a moderate resolution digital elevation model with spacing 75 m is used. Landslide inventory analysis and knowledge conceptualization identified that the landslide susceptibility of a particular aspect region is high, if the mean elevation is low and the mean gradient is high. Each aspect region was parametrically represented on the basis of its mean gradient and elevation. The domain of each parameter was divided to seven slices (classes) on the basis of the observed density. Subsequent knowledge based mapping identified aspect regions with high landslide susceptibility for the following spatial rule: (a) “mean slope in class 6 or 7” and (b) “mean elevation in class 1 to 5”. Alternatively the rule is expressed as mean slope to be equal or greater than 15 whereas mean elevation to be in the range 0 to 750 m. These identified zones correspond to regions where historical landslides occurred (populated coastal areas in the North) as well as to south regions (natural terrain zone) where no landslide record is available, because of the limitations posed by the natural terrain landslide mapping program in Greece. The presented terrain segmentation technique combined to the spatial decision-making process, provided both an object framework for integrating geomorphometric parameters and a method for landslide risk analysis in natural terrain zones.  相似文献   

17.
A geomorphological study focussing on slope instability and landslide susceptibility modelling was performed on a 278 km2 area in the Nalón River Basin (Central Coalfield, NW Spain). The methodology of the study includes: 1) geomorphological mapping at both 1:5000 and 1:25,000 scales based on air-photo interpretation and field work; 2) Digital Terrain Model (DTM) creation and overlay of geomorphological and DTM layers in a Geographical Information System (GIS); and 3) statistical treatment of variables using SPSS and development of a logistic regression model. A total of 603 mass movements including earth flow and debris flow were inventoried and were classified into two groups according to their size. This study focuses on the first group with small mass movements (100 to 101 m in size), which often cause damage to infrastructures and even victims. The detected conditioning factors of these landslides are lithology (soils and colluviums), vegetation (pasture) and topography. DTM analyses show that high instabilities are linked to slopes with NE and SW orientations, curvature values between − 6 and − 0.7, and slope values from 16° to 30°. Bedrock lithology (Carboniferous sandstone and siltstone), presence of Quaternary soils and sediments, vegetation, and the topographical factors were used to develop a landslide susceptibility model using the logistic regression method. Application of “zoom method” allows us to accurately detect small mass movements using a 5-m grid cell data even if geomorphological mapping is done at a 1:25,000 scale.  相似文献   

18.
X. Yao  L.G. Tham  F.C. Dai 《Geomorphology》2008,101(4):572-582
The Support Vector Machine (SVM) is an increasingly popular learning procedure based on statistical learning theory, and involves a training phase in which the model is trained by a training dataset of associated input and target output values. The trained model is then used to evaluate a separate set of testing data. There are two main ideas underlying the SVM for discriminant-type problems. The first is an optimum linear separating hyperplane that separates the data patterns. The second is the use of kernel functions to convert the original non-linear data patterns into the format that is linearly separable in a high-dimensional feature space. In this paper, an overview of the SVM, both one-class and two-class SVM methods, is first presented followed by its use in landslide susceptibility mapping. A study area was selected from the natural terrain of Hong Kong, and slope angle, slope aspect, elevation, profile curvature of slope, lithology, vegetation cover and topographic wetness index (TWI) were used as environmental parameters which influence the occurrence of landslides. One-class and two-class SVM models were trained and then used to map landslide susceptibility respectively. The resulting susceptibility maps obtained by the methods were compared to that obtained by the logistic regression (LR) method. It is concluded that two-class SVM possesses better prediction efficiency than logistic regression and one-class SVM. However, one-class SVM, which only requires failed cases, has an advantage over the other two methods as only “failed” case information is usually available in landslide susceptibility mapping.  相似文献   

19.
This research deals with the Fadalto landslide (Lapisina Valley, Venetian Prealps), which took place in the Lateglacial and has continued its activity until today. Our aim is to recognize how the landslide failed, the causes of such failure and the activity of this landslide. The study of this landslide is important not only to understand the geomorphological history of this alpine area, and why the Piave River modified its course in the Late Pleistocene, but also the links with human activities, and specifically with the road and rail network.The geomorphological study, carried out by the interpretation of aerial photos and by a detailed field survey, has been integrated with a geological survey, geophysical investigations and a morphometric analysis (DTM). The Fadalto landslide is considered to be a rockslide reactivated in various phases, with different dimensions and with different characters (slides, slumps and flows). The landslides have been provoked by natural causes, both external and internal; the fundamental external causes are the retreat of the Würmian glacier and tectonic activity; the internal factors that decrease the shear resistance are the bedding planes and joints of the bedrock, the attitude of the rocks dipping towards the valley bottom and, as regards more recent failures, the presence of glacial deposits underlying the landslide debris. Besides, in recent times, we must also consider human activity as a cause of slope instability.As to the activity, the Fadalto landslide is defined “dormant”. This means that in this area there is a geomorphological risk connected with the important road and rail network of the Lapisina Valley.  相似文献   

20.
基于多源数据的皇甫川淤地坝信息提取   总被引:1,自引:0,他引:1  
淤地坝是黄土高原水土流失防治的主要工程措施之一,明确淤地坝重要参数信息对流域水土保持研究具有重要意义。利用皇甫川流域不同数据来源资料包括地形图(1976年)、TM影像(1990年、2007年)、Google Earth影像(2010年)对其进行预处理获取矢量数据,利用遥感及GIS软件实现淤地坝数目、淤地坝位置、水面面积、控制面积等主要信息的提取并分析其动态变化,采用相关系数、NDAI和DAI进行提取误差评定。结果表明:皇甫川流域淤地坝数目随年代递增而增加,水面面积和控制面积也随之增大,流域西部淤地坝数目明显少于东部。TM数据上提取的淤地坝水面面积与通过Google Earth数据提取的结果相关系数为0.98,实测淤地坝控制面积与TM影像上提取结果相关系数为0.96,NDAI和DAI值平均误差绝对值均<5%。由此得出,基于多源数据淤地坝信息提取技术具有很好的可行性及较高的准确性,本文为淤地坝减水减沙效益及黄河粗泥沙来源研究提供必要的决策支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号