首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 707 毫秒
1.
王下牙老金矿为贫硫化物方解石-石英脉型金矿床,矿体严格受断裂裂隙控制.矿石的有用组分单一,有害杂质少,金矿物主要为自然金.主要的金属矿物为毒砂、黄铁矿,同时也是主要的载金矿物;非金属矿物为石英、碳酸盐矿物.矿石多具自形、半自形、他形粒状结构,以脉状、浸染状构造为主.自然金形态为角粒状、长角粒状,赋存状态以粒间金为主,其次为包裹金,裂隙金仅占8.2%,自然金为显微金.矿石类型以含金方解石-石英复合脉为主,其次为含金构造角砾岩型和含金蚀变岩型.  相似文献   

2.
鹿儿坝金矿床地质特征与找矿标志   总被引:1,自引:0,他引:1  
鹿儿坝金矿床产于西秦岭中三叠统浊积岩建造的浅变质岩中的NWW向断裂破碎带及两侧硅化蚀变带内。矿石的金矿物由自然金和银金矿组成,以粒间金为主,次为裂隙金和包裹金,矿石分为破碎角砾岩型和碎裂岩型。金矿与围岩硅化、黄铁矿化蚀变关系密切,具有消长关系。微量元素显示Au-As-Sb-Hg-Bi低温矿物元素组合。表明鹿儿坝金矿为低温热液型金矿床。同时指出了沉积相、构造破碎带、硅化黄铁矿化蚀变等找矿标志。  相似文献   

3.
海南乐东地区抱伦金矿矿石特征及其成因矿物学意义   总被引:3,自引:1,他引:3  
抱伦金矿为大型中温热液石英脉型矿床,矿石以含金石英脉型为主,次为含金蚀变岩型。主要金属矿物为黄铁矿和磁黄铁矿,次要金属矿物20多种;脉石矿物有石英、方解石、绢云母和绿泥石等。金矿物主要为自然金,次为金、铋和银的固溶体,含Au8.20%~99.30%,Ag≤52.71%,Bi≤91.20%。铋、碲矿物有自然金属、硫化物、铋化物、硫盐和碲化物等类型。金矿石含Bi0.18×10-6~16×10-6,平均4.11×10-6,富矿石中达419×10-6。该矿床属较特殊的富铋类型,与琼西戈枕剪切带的金矿有相似之处,在琼西-粤东金矿带大陆一侧存在类似矿床,它们在成因上均应与岩浆和韧—脆性断裂活动有关。  相似文献   

4.
邱添  朱永峰 《矿床地质》2014,33(3):541-557
新疆西准噶尔萨Ⅰ金矿床由含金糜棱岩化石英菱镁岩和含金石英脉组成,矿体围岩为石英菱镁岩、碳酸盐-滑石片岩和蛇纹岩。根据岩相学研究,将萨Ⅰ金矿床的形成过程划分为5个阶段:黄铁矿-石英-碳酸盐阶段(Ⅰ)、自然金-辉砷镍矿-铬云母阶段(Ⅱ)、黄铁矿-碳酸盐-石英阶段(Ⅲ)、自然金-硫化物-石英阶段(Ⅳ)和碳酸盐阶段(Ⅴ)。阶段Ⅰ和阶段Ⅱ对应于石英菱镁岩经历的韧-脆性变形时期,其他3个阶段形成于脆性变形期间,反映出构造性质由挤压向拉伸环境转换的过程。阶段Ⅱ和阶段Ⅳ分别对应于Au-As和Au-Cu成矿作用。金矿化与石英菱镁岩经历的剪切变形过程相关。含金糜棱岩化石英菱镁岩的微量元素含量明显高于未变形的石英菱镁岩,说明剪切带流体输送了相关微量元素和成矿元素。在韧性变形向脆性变形转换过程中,流体压力骤降,含金络合物分解形成金矿。萨Ⅰ金矿床是产在糜棱岩化石英菱镁岩中的严格受剪切带控制的热液脉型金矿床。  相似文献   

5.
金家山金矿受张性或扭张性断层控制,成矿地质体为构造角砾岩,围岩为新元古代环砂组和牛屋组浊积岩。矿石自然类型以蚀变岩型为主,少量含金石英脉;矿石矿物主要为毒砂、黄铁矿,少量黄铜矿、闪锌矿、褐铁矿。通过金家山及周边地区十多年金矿勘查和分析,初步认为金家山地区金矿为低温热液交代叠加构造岩形成的微细浸染型金矿。  相似文献   

6.
鹿儿坝金矿床成质特征与找矿标志   总被引:1,自引:0,他引:1  
鹿儿坝金矿床产行西秦岭中三叠统浊积岩建造的浅变质岩中的NWW向断裂破碎带及两侧硅化蚀变带内,矿石的金矿物由自然金和银金矿组成,以粒间金为主,次为裂隙金和包裹金,矿石分为破碎角砾岩型和碎屑岩型。金矿与围岩硅化,黄铁矿化蚀变关系密切,具有消长关系,微量元素显示Au-As-Sb-Hg-Bi低温矿物元素组合,表明鹿儿坝金矿为 温热液型金矿床,同时指出了沉积相,构造破碎带,硅化黄铁矿化蚀变等找矿标志。  相似文献   

7.
安芳  朱永峰 《岩石学报》2010,26(8):2275-2286
京希-伊尔曼德金矿位于新疆北天山吐拉苏盆地的西北缘,赋存于泥盆纪-早石炭世火山-沉积地层底部的凝灰岩、凝灰质砂岩中,围岩经历了绢云母化、黄铁矿化、多期硅化和角砾化、碳酸盐化和重晶石化,金矿化与硅化围岩紧密伴生。矿体呈透镜状、层状和似层状,产状与围岩基本一致,主要由热液角砾岩型矿石组成,其热液演化期由四个阶段组成:I:硅化及绢云母化——在围岩凝灰岩和凝灰质砂岩中形成大量浸染状石英、绢云母和少量黄铁矿;II:角砾化及硅化——形成含金热液角砾岩a,角砾为早期蚀变围岩,胶结物为烟灰色玉髓状石英、黄铁矿、毒砂和少量金矿物;III:角砾化及硅化——形成含金热液角砾岩b,角砾为热液角砾岩a和蚀变围岩,胶结物为细粒石英、黄铁矿、毒砂和少量金矿物;IV:方解石-重晶石阶段——形成大量粗大的方解石-重晶石脉。京希-伊尔曼德金矿成矿流体本身富集V、Cr、Ni、Cu、Sb,且其中的Mn、Co、Zn、Bi以及大离子亲石元素LILE主要来自火山岩围岩。从成矿早期到晚期,成矿流体轻稀土元素逐渐富集、氧化性增强。水-岩体系氢、氧同位素组成模拟计算表明,京希-伊尔曼德金矿成矿流体主要为与区内火山岩再平衡的岩浆水,其中金浓度为1×10-6~2×10-6,形成该矿需要约1×108~0.5×108t岩浆热液,蚀变围岩和矿石中黄铁矿富集轻稀土元素。角砾化作用及其伴随的氧逸度升高是导致金沉淀的主要机制。  相似文献   

8.
内蒙古白音哈尔金矿床矿石及金矿物特征   总被引:2,自引:0,他引:2  
内蒙古白音哈尔金矿床矿石类型以贫硫化物含Au石英脉型为主,深部见含Au破碎蚀变岩型,主要载金矿物是石英,黄铁矿和褐铁矿,金的赋存状态为包裹体金,裂隙金和晶隙金,金矿物主要以中粗粒以上颗粒为主,占面积比的91.21%。矿床的形成经历2个成矿期4个成矿阶段,即热液期的石英,多金属贫硫化物及碳酸盐阶段和表生期的氧化淋滤阶段。  相似文献   

9.
福建尤溪肖板金矿床金的赋存状态及金矿物特征   总被引:6,自引:0,他引:6  
肖板金矿床属受构造控制的中低温岩浆热液矿床,矿化类型为构造蚀变岩型。金多呈独立金矿物形式出现,少许呈分散状;金矿物以自然金为主,平均成色930,有少量银金矿和碲金矿。金矿物以包体金、裂隙金、连生金和粒间金等形式嵌布于黄铁矿、黄铜矿、石英、方铅矿及方解石等主要载金矿物中,且石英、方解石中较金属硫化物中占优势。金矿物形态各异,粒度以中细粒为主。  相似文献   

10.
四川省拉拉铜矿床含金性及金的赋存状态研究   总被引:6,自引:0,他引:6  
孙燕  冯祖杰 《矿物岩石》1994,14(2):67-73
根据对拉拉铜矿床的矿石结构、构造及矿物共生组合的研究,发现矿石中含有大量自然金和含铂族元素的碲化物。自然金的赋存状态为包裹休金、粒间金、裂隙金。主要的载金矿物有黄铜矿、黄铁矿、叶碲铋矿,含金性最好的岩石类型为只云母钠长片岩。金与成矿元素铜的关系最为密切。  相似文献   

11.
Ore mineralization and wall rock alteration of Crater Mountain gold deposit, Papua New Guinea, were investigated using ore and host rock samples from drill holes for ore and alteration mineralogical study. The host rocks of the deposit are quartz‐feldspar porphyry, feldspar‐hornblende porphyry, andesitic volcanics and pyroclastics, and basaltic‐andesitic tuff. The main ore minerals are pyrite, sphalerite, galena, chalcopyrite and moderate amounts of tetrahedrite, tennantite, pyrrhotite, bornite and enargite. Small amounts of enargite, tetradymite, altaite, heyrovskyite, bismuthinite, bornite, idaite, cubanite, native gold, CuPbS2, an unidentified Bi‐Te‐S mineral and argentopyrite occur as inclusions mainly in pyrite veins and grains. Native gold occurs significantly in the As‐rich pyrite veins in volcanic units, and coexists with Bi‐Te‐S mineral species and rarely with chalcopyrite and cubanite relics. Four mineralization stages were recognized based on the observations of ore textures. Stage I is characterized by quartz‐sericite‐calcite alteration with trace pyrite and chalcopyrite in the monomict diatreme breccias; Stage II is defined by the crystallization of pyrite and by weak quartz‐chlorite‐sericite‐calcite alteration; Stage III is a major ore formation episode where sulfides deposited as disseminated grains and veins that host native gold, and is divided into three sub‐stages; Stage IV is characterized by predominant carbonitization. Gold mineralization occurred in the sub‐stages 2 and 3 in Stage III. The fS2 is considered to have decreased from ~10?2 to 10?14 atm with decreasing temperature of fluid.  相似文献   

12.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

13.
Gold-bearing quartz lodes from the Egat gold mine, South Eastern Desert of Egypt, are associated with pervasively silicified, highly sheared ophiolitic metagabbro and island-arc metavolcanic rocks. The mineralized quartz veins and related alteration haloes are controlled by NNW-trending shear/fault zones. Microscopic and electron probe microanalyses (EPMA) data of the ore and gangue minerals reveal that fine-grained auriferous sulfarsenides represent early high-temperature (355–382 °C) phases, with formation conditions as (fS2?=??10, and fO2 around ?31). A late, low-temperature (302–333 °C) assemblage includes coarse pyrite, arsenopyrite, and free-milling gold grains (88–91 wt.% Au), with formation conditions as (fS2?=??8 and fO2 around ?30). Gold was impounded within early sulfarsenides, while free-milling gold blebs occur along microfractures in quartz veins and as inclusions in late sulfides. Infiltration of hydrothermal fluids under brittle–ductile shear conditions led to mobilization of refractory Au from early sulfarsenide phases and reprecipitated free gold, simultaneous with silicification of the host rocks. The positive correlation between Au and As favors and verifies the use of As as the best pathfinder for gold targets, along the NNW-trending shear zones.  相似文献   

14.
The Mesozoic Yangzhaiyu lode gold deposit is situated in the southern edge of the North China craton. Gold mineralization is hosted in Archean amphibolite facies metamorphic rocks, and consists mainly of auriferous quartz veins. Pyrite is the predominant sulfide mineral, with minor amounts of chalcopyrite, sphalerite, and galena. Based on morphology and paragenesis, there are three generations of pyrite, termed as first generation (G1), second generation (G2), and third generation (G3). They have distinct contents, occurrences, and distribution patterns of gold. The coarse-grained, euhedral G1 pyrite contains negligible to low levels of gold, whereas both invisible and visible gold are present in the fine- to medium-grained G2 pyrite that is characterized by abundance of microfractures and porosities, forming a foam-like texture. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) depth profiles indicate that invisible gold occurs either as solid solution or as nanoparticles of gold-bearing tellurides in the G2 pyrite. Visible gold is widespread and present as irregular grains and stringers of native gold mostly along grain boundaries or filling microfractures of pyrite, likely resulting from remobilization of invisible gold once locked in the G2 pyrite. The G3 pyrite, invariably intergrown with chalcopyrite, sphalerite, and galena, contains the highest levels of invisible gold. There is a positive correlation between Au, Ag, and Te, indicating that gold occurs as submicroscopic Au-bearing telluride inclusions in the host minerals. Whenever gold, either invisible or visible, is present, As is always below or only marginally higher than the detection limit of LA-ICP-MS. This indicates that As played an insignificant role in gold mineralization. Tellurides are widespread in the auriferous quartz veins, consisting mainly of petzite, calaverite, hessite, altaite, and tellurobismuthite. Native gold commonly occurs as intergrowths with tellurides. Textural evidence indicates a precipitation sequence, in a temporal order, of calcaverite, petzite, altaite, tellurobismuthite, and hessite. Little amount of sulfide phases has been found in association with the tellurides, indicating that tellurides were deposited under low S fugacity (fS 2 ) and/or high Te fugacity (fTe 2 ) conditions. The textural relationships, when combined with fluid inclusion microthermometric data of auriferous quartz veins and tellurides thermodynamic data, permit estimation for logfTe 2 during telluride formation, which are −6.8 to −10.8 at 300°C and −9.6 to −17.6 at 250°C. Available geochronological and geochemical data suggest that Te was most likely derived from the late Mesozoic magmatic rocks widespread in the Xiaoqinling district and other parts of the southern North China craton, which were emplaced broadly contemporaneous with gold mineralization at Yangzhaiyu. This study highlights the role of Te and tellurides as important gold scavengers in As-deficient ore fluids.  相似文献   

15.
Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper‐gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper‐gold deposit are enargite and luzonite, with significant presence of tennantite‐tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold‐silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper‐gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite‐luzonite‐pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite‐tennantite‐pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite‐digenite‐telluride assemblage caused the deposition of native gold/electrum and gold‐silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic‐argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate‐silica stages. The crosscutting and overprinting relationships of the Victoria quartz‐gold‐base metal veins on the Lepanto copper‐gold veins manifest the late introduction of near neutral pH hydrothermal fluids.  相似文献   

16.
Mineralogic studies of major ore minerals and fluid inclusion analysis in gangue quartz were carried out for the for the two largest veins, the Aginskoe and Surprise, in the Late Miocene Aginskoe Au–Ag–Te deposit in central Kamchatka, Russia. The veins consist of quartz–adularia–calcite gangue, which are hosted by Late Miocene andesitic and basaltic rocks of the Alnei Formation. The major ore minerals in these veins are native gold, altaite, petzite, hessite, calaverite, sphalerite, and chalcopyrite. Minor and trace minerals are pyrite, galena, and acanthine. Primary gold occurs as free grains, inclusions in sulfides, and constituent in tellurides. Secondary gold is present in form of native mustard gold that usually occur in Fe‐hydroxides and accumulates on the decomposed primary Au‐bearing tellurides such as calaverite, krennerite, and sylvanite. K–Ar dating on vein adularia yielded age of mineralization 7.1–6.9 Ma. Mineralization of the deposit is divided into barren massive quartz (stage I), Au–Ag–Te mineralization occurring in quartz‐adularia‐clays banded ore (Stage II), intensive brecciation (Stage III), post‐ore coarse amethyst (Stage IV), carbonate (Stage V), and supergene stages (Stage VI). In the supergene stage various secondary minerals, including rare bilibinskite, bogdanovite, bessmertnovite metallic alloys, secondary gold, and various oxides, formed under intensely oxidized conditions. Despite heavy oxidation of the ores in the deposit, Te and S fugacities are estimated as Stage II tellurides precipitated at the log f Te2 values ?9 and at log fS2 ?13 based on the chemical compositions of hypogene tellurides and sphalerite. Homogenization temperature of fluid inclusions in quartz broadly ranges from 200 to 300°C. Ore texture, fluid inclusions, gangue, and vein mineral assemblages indicate that the Aginskoe deposit is a low‐sulfidation (quartz–adularia–sericite) vein system.  相似文献   

17.
The Dungash historic gold mine is located in the South Eastern Desert of Egypt. The gold-bearing quartz veins are hosted by the metavolcanic and metavolcaniclastic rocks along an ENE–WSW trending shear zone. Alteration types recorded in the wall rocks are sericitization, silicification, carbonatization, chloritization, sulfidization, ferruginization, and listwanitization. The ore mineral assemblage comprises arsenopyrite, pyrite, native gold, pyrrhotite, sphalerite, chalcopyrite, and galena. The primary sulfide mineral assemblage formed during a hypogene hydrothermal stage whereas anglesite and goethite occur as secondary supergene phases. Microthermometric fluid inclusion analysis revealed that the auriferous quartz precipitated from a moderately saline (5 to 11.22 wt% NaClequiv) solution at temperatures above the recorded homogenization temperatures (T h), which range from 380 to 177 °C. The minimum pressures of trapping are between 350 and 400 bars. The fluid evolution during mineralization is explained by mixing of a magmatic fluid with meteoric waters. Initially, the high temperature and moderately saline magmatic fluid dominated and progressively became diluted with meteoric waters. Highest gold content is recorded in the carbonatized zone and the quartz veins. However, gold content in the carbonatized zone of the footwall exceeds several times its content in the quartz veins and the carbonatized zone of the hanging wall.  相似文献   

18.
The Laowangzhai gold deposit, located in the Ailaoshan gold belt (SW China), is hosted in various types of rocks, including in quartz porphyry, carbonaceous slate, meta‐sandstone, lamprophyre, and altered ultramafic rocks. In contrast to other wall rocks, the orebodies in altered ultramafic rocks are characterized by the occurrence of a large amount of Ni‐bearing minerals. The ore‐forming process of the orebodies hosted by altered ultramafic rocks can be divided into two stages: pyrite‐vaesite‐native gold and gersdorffite‐violarite stages. The contents of As and Sb increased during the evolution of ore‐forming fluid based on the mineral assemblages. Thermodynamic modeling of the Ni‐Cu‐As‐Fe‐S system using the SUPCRT92 software package with the updated database of slop16.dat indicates the fS2 in ore‐forming fluid decreases significantly from stage I to stage II. The decreases of fS2 due to crystallization of sulfides and fO2 due to fluid–rock reaction were responsible for ore formation in altered ultramafic rocks of the Laowangzhai gold deposit. Geological evidence, the in situ sulfur isotope values of pyrite, and the other published isotopic data suggest that the ore‐forming fluid for ultramafic rock ores was dominantly composed of evolved magmatic fluid with the important input of sediments.  相似文献   

19.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号