首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Blue Dot gold deposit, located in the Archean Amalia greenstone belt of South Africa, is hosted in an oxide (± carbonate) facies banded iron formation (BIF). It consists of three stratabound orebodies; Goudplaats, Abelskop, and Bothmasrust. The orebodies are flanked by quartz‐chlorite‐ferroan dolomite‐albite schist in the hanging wall and mafic (volcanic) schists in the footwall. Alteration minerals associated with the main hydrothermal stage in the BIF are dominated by quartz, ankerite‐dolomite series, siderite, chlorite, muscovite, sericite, hematite, pyrite, and minor amounts of chalcopyrite and arsenopyrite. This study investigates the characteristics of gold mineralization in the Amalia BIF based on ore textures, mineral‐chemical data and sulfur isotope analysis. Gold mineralization of the Blue Dot deposit is associated with quartz‐carbonate veins that crosscut the BIF layering. In contrast to previous works, petrographic evidence suggests that the gold mineralization is not solely attributed to replacement reactions between ore fluid and the magnetite or hematite in the host BIF because coarse hydrothermal pyrite grains do not show mutual replacement textures of the oxide minerals. Rather, the parallel‐bedded and generally chert‐hosted pyrites are in sharp contact with re‐crystallized euhedral to subhedral magnetite ± hematite grains, and the nature of their coexistence suggests that pyrite (and gold) precipitation was contemporaneous with magnetite–hematite re‐crystallization. The Fe/(Fe+Mg) ratio of the dolomite–ankerite series and chlorite decreased from veins through mineralized BIF and non‐mineralized BIF, in contrast to most Archean BIF‐hosted gold deposits. This is interpreted to be due to the effect of a high sulfur activity and increase in fO2 in a H2S‐dominant fluid during progressive fluid‐rock interaction. High sulfur activity of the hydrothermal fluid fixed pyrite in the BIF by consuming Fe2+ released into the chert layers and leaving the co‐precipitating carbonates and chlorites with less available ferrous iron content. Alternatively, the occurrence of hematite in the alteration assemblage of the host BIF caused a structural limitation in the assignment of Fe3+ in chlorite which favored the incorporation of magnesium (rather than ferric iron) in chlorite under increasing fO2 conditions, and is consistent with deposits hosted in hematite‐bearing rocks. The combined effects of reduction in sulfur contents due to sulfide precipitation and increasing fO2 during progressive fluid‐rock interactions are likely to be the principal factors to have caused gold deposition. Arsenopyrite–pyrite geothermometry indicated a temperature range of 300–350°C for the associated gold mineralization. The estimated δ34SΣS (= +1.8 to +2.5‰) and low base metal contents of the sulfide ore mineralogy are consistent with sulfides that have been sourced from magma or derived by the dissolution of magmatic sulfides from volcanic rocks during fluid migration.  相似文献   

2.
The Dongping gold deposit is located near the center of the northern margin of the North China Craton. It is hosted in the Shuiquangou syenite and characterized by large amounts of tellurides. Numerous studies have addressed this deposit; the mineral paragenesis and ore‐forming processes, however, are still poorly studied. In this contribution, a new mineral paragenesis has been evaluated to further understand ore formation, including sulfides (pyrite, chalcopyrite, galena, sphalerite, molybdenite, and bornite), tellurides (altaite, calaverite, hessite, muthmannite, petzite, rucklidgeite, sylvanite, tellurobismuthite, tetradymite, and volynskite), and native elements (tellurium and gold). Molybdenite, muthmannite, rucklidgeite, and volynskite are reported for the first time in this deposit. We consider the Dongping gold deposit mainly formed in the Devonian, and the ore‐forming processes and the physicochemical conditions for ore formation can be reconstructed based on our newly identified ore paragenesis, that is, iron oxides → (CO2 effervescence) → sulfides → (fTe2/fS2 ratio increase) → Pb‐Bi‐tellurides → (condensation of H2Te vapor) → Au‐Ag‐tellurides → (mixing with oxidizing water) → carbonate and microporous gold → secondary minerals → secondary minerals. The logfO2 values increase from the early to late stages, while the fH2S and logfS2 values increase initially and then decrease. CO2 effervescence is the main mechanism of sulfides precipitation; this sulfidation and condensation of H2Te vapor lead to deposition of tellurides. The development of microporous gold indicates that the deposit might experience overprint after mineralization. The Dongping gold deposit has a close genetic relationship with the Shuiquangou syenite, and tellurium likely originated from Shuiquangou alkaline magmatic degassing.  相似文献   

3.
新疆托里萨I金矿床产于托里蛇纹岩套的超镁铁岩相内,与超镁铁岩的蚀变交代作用有关.矿床地球化学研究表明该矿床的形成与海底热泉活动有关,是一种新的金矿床类型.  相似文献   

4.
陕西略阳煎茶岭金矿矿集区中的张家山金矿主要由破碎蚀变岩型、角砾岩型和含金石英黄铁矿脉型矿石组成。含金石英-黄铁矿脉型矿石产于断层下盘的石英菱镁岩中。黄铁矿发育富As黄铁矿边,环边受As含量的变化呈现一定的韵律变化,自然金赋存在富As黄铁矿中。在断裂发育形成断层角砾岩的过程中,流体充填破碎石英菱镁岩的裂隙中形成热液矿物,包括硫化物、硒化物以及自然金。石英菱镁岩发生破碎形成的网状裂隙被含金石英-方解石-黄铁矿脉充填。破碎蚀变岩型矿石中,自然金主要分布在含金石英-黄铁矿脉的石英之中或靠近热液脉的菱镁矿或石英间隙。随着大量方解石脉沿裂隙贯入,进一步促进石英菱镁岩的破碎及岩石角砾的分离,形成由石英菱镁岩碎屑、石英和褐铁矿组成的复成分角砾岩,自然金和硒化物呈浸染状分布在角砾岩中。笔者在角砾岩型矿石中发现了灰硒汞矿、直硒镍矿、硒铅矿等硒化物,这些硒化物往往与自然金密切共生。结合矿物组合以及相关化学反应关系,通过热力学计算,构建了该矿床在不同温度条件下的热力学相平衡关系图,限定了硒化物与其他相关矿物稳定存在的物理化学条件。硒化物一般与自然金和石英共生,高的f(Se2)值和f(Se2)/f(S2)比值是控制硒化物形成的关键因素。  相似文献   

5.
Mineralogic studies of major ore minerals and fluid inclusion analysis in gangue quartz were carried out for the for the two largest veins, the Aginskoe and Surprise, in the Late Miocene Aginskoe Au–Ag–Te deposit in central Kamchatka, Russia. The veins consist of quartz–adularia–calcite gangue, which are hosted by Late Miocene andesitic and basaltic rocks of the Alnei Formation. The major ore minerals in these veins are native gold, altaite, petzite, hessite, calaverite, sphalerite, and chalcopyrite. Minor and trace minerals are pyrite, galena, and acanthine. Primary gold occurs as free grains, inclusions in sulfides, and constituent in tellurides. Secondary gold is present in form of native mustard gold that usually occur in Fe‐hydroxides and accumulates on the decomposed primary Au‐bearing tellurides such as calaverite, krennerite, and sylvanite. K–Ar dating on vein adularia yielded age of mineralization 7.1–6.9 Ma. Mineralization of the deposit is divided into barren massive quartz (stage I), Au–Ag–Te mineralization occurring in quartz‐adularia‐clays banded ore (Stage II), intensive brecciation (Stage III), post‐ore coarse amethyst (Stage IV), carbonate (Stage V), and supergene stages (Stage VI). In the supergene stage various secondary minerals, including rare bilibinskite, bogdanovite, bessmertnovite metallic alloys, secondary gold, and various oxides, formed under intensely oxidized conditions. Despite heavy oxidation of the ores in the deposit, Te and S fugacities are estimated as Stage II tellurides precipitated at the log f Te2 values ?9 and at log fS2 ?13 based on the chemical compositions of hypogene tellurides and sphalerite. Homogenization temperature of fluid inclusions in quartz broadly ranges from 200 to 300°C. Ore texture, fluid inclusions, gangue, and vein mineral assemblages indicate that the Aginskoe deposit is a low‐sulfidation (quartz–adularia–sericite) vein system.  相似文献   

6.
安芳  朱永峰 《岩石学报》2010,26(8):2275-2286
京希-伊尔曼德金矿位于新疆北天山吐拉苏盆地的西北缘,赋存于泥盆纪-早石炭世火山-沉积地层底部的凝灰岩、凝灰质砂岩中,围岩经历了绢云母化、黄铁矿化、多期硅化和角砾化、碳酸盐化和重晶石化,金矿化与硅化围岩紧密伴生。矿体呈透镜状、层状和似层状,产状与围岩基本一致,主要由热液角砾岩型矿石组成,其热液演化期由四个阶段组成:I:硅化及绢云母化——在围岩凝灰岩和凝灰质砂岩中形成大量浸染状石英、绢云母和少量黄铁矿;II:角砾化及硅化——形成含金热液角砾岩a,角砾为早期蚀变围岩,胶结物为烟灰色玉髓状石英、黄铁矿、毒砂和少量金矿物;III:角砾化及硅化——形成含金热液角砾岩b,角砾为热液角砾岩a和蚀变围岩,胶结物为细粒石英、黄铁矿、毒砂和少量金矿物;IV:方解石-重晶石阶段——形成大量粗大的方解石-重晶石脉。京希-伊尔曼德金矿成矿流体本身富集V、Cr、Ni、Cu、Sb,且其中的Mn、Co、Zn、Bi以及大离子亲石元素LILE主要来自火山岩围岩。从成矿早期到晚期,成矿流体轻稀土元素逐渐富集、氧化性增强。水-岩体系氢、氧同位素组成模拟计算表明,京希-伊尔曼德金矿成矿流体主要为与区内火山岩再平衡的岩浆水,其中金浓度为1×10-6~2×10-6,形成该矿需要约1×108~0.5×108t岩浆热液,蚀变围岩和矿石中黄铁矿富集轻稀土元素。角砾化作用及其伴随的氧逸度升高是导致金沉淀的主要机制。  相似文献   

7.
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite - sericite - quartz zone and an outer seicite - chlorite - calcite - epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from –1.67 to +0.49‰ with average of –0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66–17.75, 15.50–15.60, and 37.64–38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.  相似文献   

8.
The Jianchaling nickel deposit in the Bikou Terrane (Shaanxi Province, China) occurs along the boundaries between granite porphyry and carbonated ultramafic rocks (carbonated serpentinite, talc–carbonate rocks, and listwaenite). Serpentine– magnetite, serpentine– magnesite– magnetite, and magnesite– talc– quartz– pyrite– violarite– millerite– chalcopyrite assemblage formed in carbonated ultramafic rocks during hydrothermal activities. Ni-bearing sulphides, coexisting with magnesite, postdated magnetite in carbonated ultramafic rocks. Compared with serpentinite, Ni, Co, Cu, Mn, and Pb concentrate in talc–carbonate rocks. The fact that the NiO contents of magnetite decrease with progressive carbonation of serpentinite suggests that Ni from magnetite concentrated in fluid and contributed to the formation of the Jianchaling nickel deposit. Sulphides precipitated from fluid with log fO2 value varying from −34.5 to −31.8 and log fS2 value varying from −10.3 to −9.2. High pH and HS activities triggered by transformation of serpentine into magnesite–talc–quartz assemblage promoted precipitation of Ni-bearing sulphides, and finally formed the Jianchaling hydrothermal nickel deposit.  相似文献   

9.
Ore mineralization and wall rock alteration of Crater Mountain gold deposit, Papua New Guinea, were investigated using ore and host rock samples from drill holes for ore and alteration mineralogical study. The host rocks of the deposit are quartz‐feldspar porphyry, feldspar‐hornblende porphyry, andesitic volcanics and pyroclastics, and basaltic‐andesitic tuff. The main ore minerals are pyrite, sphalerite, galena, chalcopyrite and moderate amounts of tetrahedrite, tennantite, pyrrhotite, bornite and enargite. Small amounts of enargite, tetradymite, altaite, heyrovskyite, bismuthinite, bornite, idaite, cubanite, native gold, CuPbS2, an unidentified Bi‐Te‐S mineral and argentopyrite occur as inclusions mainly in pyrite veins and grains. Native gold occurs significantly in the As‐rich pyrite veins in volcanic units, and coexists with Bi‐Te‐S mineral species and rarely with chalcopyrite and cubanite relics. Four mineralization stages were recognized based on the observations of ore textures. Stage I is characterized by quartz‐sericite‐calcite alteration with trace pyrite and chalcopyrite in the monomict diatreme breccias; Stage II is defined by the crystallization of pyrite and by weak quartz‐chlorite‐sericite‐calcite alteration; Stage III is a major ore formation episode where sulfides deposited as disseminated grains and veins that host native gold, and is divided into three sub‐stages; Stage IV is characterized by predominant carbonitization. Gold mineralization occurred in the sub‐stages 2 and 3 in Stage III. The fS2 is considered to have decreased from ~10?2 to 10?14 atm with decreasing temperature of fluid.  相似文献   

10.
The Morro Velho gold deposit, Quadrilátero Ferrífero region, Minas Gerais, Brazil, is hosted by rocks at the base of the Archean Rio das Velhas greenstone belt. The deposit occurs within a thick carbonaceous phyllite package, containing intercalations of felsic and intermediate volcaniclastic rocks and dolomites. Considering the temporal and spatial association of the deposit with the Rio das Velhas orogeny, and location in close proximity to a major NNW-trending fault zone, it can be classified as an orogenic gold deposit. Hydrothermal activity was characterized by intense enrichment in alteration zones of carbonates, sulfides, chlorite, white mica±biotite, albite and quartz, as described in other Archean lode-type gold ores. Two types of ore occur in the deposit: dark gray quartz veins and sulfide-rich gold orebodies. The sulfide-rich orebodies range from disseminated concentrations of sulfide minerals to massive sulfide bodies. The sulfide assemblage comprises (by volume), on average, 74% pyrrhotite, 17% arsenopyrite, 8% pyrite and 1% chalcopyrite. The orebodies have a long axis parallel to the local stretching lineation, with continuity down the plunge of fold axis for at least 4.8 km. The group of rocks hosting the Morro Velho gold mineralization is locally referred to as lapa seca. These were isoclinally folded and metamorphosed prior to gold mineralization. The lapa seca and the orebodies it hosts are distributed in five main tight folds related to F1 (the best examples are the X, Main and South orebodies, in level 25), which are disrupted by NE- to E-striking shear zones. Textural features indicate that the sulfide mineralization postdated regional peak metamorphism, and that the massive sulfide ore has subsequently been neither metamorphosed nor deformed. Lead isotope ratios indicate a model age of 2.82 ± 0.05 Ga for both sulfide and gold mineralization. The lapa seca are interpreted as the results of a pre-gold alteration process and may be divided into carbonatic, micaceous and quartzose types. The carbonatic lapa seca is subdivided into gray and brown subtypes. Non-mineralized, gray carbonatic lapa seca forms the hanging wall to the orebodies, and is interpreted as the product of extreme CO2 metasomatism during hydrothermal alteration. This dolomitic lapa seca ranges in composition from relatively pure limestone and dolomite to silty limestone and dolomite. The brown carbonatic and micaceous lapa secas are the host rocks to gold. These units are interpreted to correspond to the sheared and hydrothermal products of metamorphosed volcaniclastic and/or volcanic rocks of varying composition from dacitic to andesitic, forming various types of schists and phyllites. The high-grade, massive sulfide orebodies occur at the base of the gray carbonatic lapa seca. Both disseminated mineralization and quartz veins are hosted by micaceous lapa seca. The data are consistent with a model of epigenetic mineralization for the lapa seca, from a hydrothermal fluid derived in part from the Archean basement or older crust material.  相似文献   

11.
The Dayingezhuang gold deposit, hosted mainly by Late Jurassic granitoids on Jiaodong Peninsula in eastern China, contains an estimated 170 t of gold and is one of the largest deposits within the Zhaoping fracture zone. The orebodies consist of auriferous altered pyrite–sericite–quartz granites that show Jiaojia-type (i.e., disseminated and veinlet) mineralization. Mineralization and alteration are structurally controlled by the NE- to NNE-striking Linglong detachment fault. The mineralization can be divided into four stages: (K-feldspar)–pyrite–sericite–quartz, quartz–gold–pyrite, quartz–gold–polymetallic sulfide, and quartz–carbonate, with the majority of the gold being produced in the second and third stages. Based on a combination of petrography, microthermometry, and laser Raman spectroscopy, three types of fluid inclusion were identified in the vein minerals: NaCl–H2O (A-type), CO2–H2O–NaCl (AC-type), and pure CO2 (PC-type). Quartz crystals in veinlets that formed during the first stage contain mainly AC-type fluid inclusions, with rare PC-type inclusions. These fluid inclusions homogenize at temperatures of 251°C–403°C and have low salinities of 2.2–9.4 wt% NaCl equivalent. Quartz crystals that formed in the second and third stages contain all three types of fluid inclusions, with total homogenization temperatures of 216°C–339°C and salinities of 1.8–13.8 wt% NaCl equivalent for the second stage and homogenization temperatures of 195°C–321°C and salinities of 1.4–13.3 wt% NaCl equivalent for the third stage. In contrast, quartz crystals that formed in the fourth stage contains mainly A-type fluid inclusions, with minor occurrences of AC-type inclusions; these inclusions have homogenization temperatures of 106°C–287°C and salinities of 0.5–7.7 wt% NaCl equivalent. Gold in the ore-forming fluids may have changed from Au(HS)0 as the dominant species under acidic conditions and at relatively high temperatures and fO2 in the early stages, to Au(HS)2– under neutral-pH conditions at lower temperatures and fO2 in the later stages. The precipitation of gold and other metals is inferred to be caused by a combination of fluid immiscibility and water–rock interaction.  相似文献   

12.
The Sawuershan region, one of the important gold metallogenic belts of Xinjiang, is located in the western part of the Kalatongke island arc zone of north Xinjiang, NW China. There are two gold deposits in mining, namely the Kuoerzhenkuola and the Buerkesidai deposits. Gold ores at the Kuoerzhenkuola deposit occur within Carboniferous andesite and volcanic breccias in the form of gold‐bearing quartz–pyrite veins and veinlet groups containing native gold, electrum, pyrite, pyrrhotite and chalcopyrite. Gold ores at the Buerkesidai deposit occur within Carboniferous tuffaceous siltstones in the form of gold‐bearing quartz veinlet groups and altered rocks, with electrum, pyrite and arsenopyrite as major metallic minerals. Both gold deposits are hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite–sericite zone and an outer chlorite–calcite–epidote zone between orebodies and wall rocks. δ34S values (0.3–1.3‰) of pyrite of ores from Kuoerzhenkuola deposit are similar to those (0.4–2.9‰) of pyrite of ores from Buerkesidai deposit. δ34S values (1.1–2.8‰) of pyrite from altered rocks are similar to δ34S values of magmatic or igneous sulfide sulfur, but higher than those from ores. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb data of sulfide from ores range within 17.72–18.56, 15.34–15.61, and 37.21–38.28, respectively. These sulfur and lead isotope compositions imply that ore‐forming materials might originate from multiple, mainly deep sources. He and Ar isotope study on fluid inclusions of pyrites from ores of Kuoerzhenkuola and Buerkesidai gold deposits produces 40Ar/36Ar and 3He/4He ratios in the range of 282–525 and 0.6–9.4 R/Ra, respectively, indicating a mixed source of deep‐seated magmatic water (mantle fluid) and shallower meteoric water. In terms of tectonic setting, the gold deposits in the Sawuershan region can be interpreted as epithermal. These formations resulted from a combination of protracted volcanic activity, hydrothermal fluid mixing, and a structural setting favoring gold deposition. Fluid mixing was possibly the key factor resulting in Au deposition in the gold deposits in Sawuershan region.  相似文献   

13.
黔西南泥堡金矿围岩与矿石的对比及其成矿机制研究   总被引:1,自引:0,他引:1  
泥堡金矿的矿体主要赋存在构造蚀变体及逆冲断层破碎带中,受地层和断裂的双重控制。本文在岩相学研究的基础上应用X射线粉晶衍射分析(XRD)结合电子探针分析(EMPA)确定和量化了围岩和矿石的蚀变矿物及载金砷黄铁矿,对比了围岩和矿石的特点,并利用主微量元素分析矿化过程中围岩与矿石之间的元素带入带出通量,探讨了泥堡金矿蚀变矿物与成矿的关系及成矿机制问题。分析结果表明,黄铁矿(主要的载金矿物)与石英呈负相关,与伊利石呈正相关;矿石发生了去碳酸盐化作用,矿石中的黄铁矿大多具有环带结构,部分围岩也发生了去碳酸盐化作用,而围岩中的黄铁矿一般不具有环带结构;Au明显加入到构造蚀变体的矿石中,而CaO、MgO、S、Ba、Be等从其围岩中带出;Au、Sc、As和Fe_2O_3明显加入到逆冲断层破碎的矿石中,SiO_2、CaO、Sr、W、Be等则显示从其围岩中带出。综合分析认为,去碳酸盐化和硫化作用是泥堡金矿的主要成矿机制。在矿化前,去碳酸盐化作用为成矿提供了有利的环境;在成矿过程中,矿化通过硫化作用形成了黄铁矿的载金含砷边缘。  相似文献   

14.
The Songligou gold‐telluride deposit, located in Songxian County, western Henan Province, China, is one of many gold‐telluride deposits in the Xiaoqinling‐Xiong'ershan district. Gold orebodies occur within the Taihua Supergroup and are controlled by the WNW F101 Fault, and the fault was cut across by a granite porphyry dike. Common minerals in gold orebodies include quartz, chlorite, epidote, K‐feldspar, calcite, fluorite, sericite, phlogopite, bastnasite, pyrite, galena, chalcopyrite, sphalerite, tellurides, gold, bismuthinite, magnetite, and hematite, and pyrite is the dominant sulfide. Four mineralization stages are recognized, including pyrite‐quartz stage (I), quartz‐pyrite stage (II), gold‐telluride stage (III), and quartz‐calcite stage (IV). This work reports the Rb–Sr age of gold‐telluride‐bearing pyrite and zircon U–Pb age of granite porphyry, as well as S isotope data of pyrite and galena. The pyrite Rb–Sr isochron age is 126.6 ± 2.3 Ma (MSWD = 1.8), and the average zircon U–Pb age of granite porphyry is 166.8 ± 4.1 Ma (MSWD = 4.9). (87Sr/86Sr) i values of pyrite and δ34S values of sulfides vary from 0.7104 to 0.7105 and ?11.84 to 0.28‰, respectively. The obtained Rb–Sr isochron age represents the ore formation age of the Songligou gold‐telluride deposit, which is much younger than the zircon U–Pb age of the granite porphyry. Strontium and S isotopes, together with the presence of bastnaesite, suggest that the ore‐forming fluid was derived from felsic magmas with input of a mantle component and subsequently interacted with the Taihua Supergroup. Tellurium was derived from metasomatized mantle and was related to the subduction of the Shangdan oceanic crust and Izanagi plate beneath the North China Craton (NCC). This deposit is a part of the Early Cretaceous large‐scale gold mineralization in east NCC and formed in an extensional tectonic setting.  相似文献   

15.
The Bulong gold deposit, located in the southwest Tianshan in China, occurs in the Upper Devonian finegrained clastic rocks. The gold orebodies are controlled by an gently inclined interlayer fractured zone. They are hosted only in quartz-barite veins though there are barite veins and quartz veins in the ore district. The δ34S values of pyrite in the ores range from 14.6‰ to 19.2‰ and those of barite from 35.0‰ to 39.6‰, indicating that the sulfur was derived from the strata. 3He/4He ratios of fluid inclusions in pyrite are 0.24-0.82 R/Ra, approximating to that of the crust. The 40Ar/39Ar ratios range from 338 to 471, slightly higher than that of the atmosphere. 40Ar /4He ratios of ore fluids range from 0.015 to 0.412 with a mean of 0.153. Helium and argon isotope compositions of fluid inclusions show that the ore fluids of the Bulong gold deposit were mainly derived from the crust.  相似文献   

16.
The Sanshandao Au deposit is located in the famous Sanshandao metallogenic belt, Jiaodong area. To date, accumulative Au resources of 1000 t have been identified from the belt. Sanshandao is a world-class gold deposit with Au mineralization hosted in Early Cretaceous Guojialing-type granites. Thus, studies on the genesis and ore-forming element sources of the Sanshandao Au deposit are crucial. He and Ar isotopic analyses of fluid inclusions from pyrite(the carrier of Au) indicate that the fluid inclusions have 3 He/4 He=0.043–0.21 Ra with an average of 0.096 Ra and 40 Ar/36 Ar=488–664 with an average of 570.8. These values represent the initial He and Ar isotopic compositions of ore-forming fluids for trapped fluid inclusions. The comparison of H–O isotopic characteristics combined with deposit geology and wall rock alteration reveals that the ore-forming fluids of the Sanshandao Au deposit show mixed crust–mantle origin characteristics, and they mainly comprise crust-derived fluid mixed with minor mantle-derived fluid and meteoric water during the uprising process. The ore-forming elements were generally sourced from pre-Cambrian meta-basement rocks formed by Mesozoic reactivation and mixed with minor shallow crustal and mantle components.  相似文献   

17.
The recent deep prospecting results in the Jiaojia area of Eastern Shandong Province indicate that the Jiaojia ore field composed of several individual gold deposits as previously suggested is actually an ultra-large gold deposit. This deposit covers an area of ~40 km2, and shows a structural control by the Jiaojia fault and its secondary faults. Gold orebodies generally occur along the same mineralization-alteration belt, and the main orebodies intersect with each other or exhibit a parallel or overlapping distribution. This deposit's reserves are estimated to be 1, 200t of gold, being the first gold deposit of more than 1000t gold reserves in China. The No. I-1 orebody in the Shaling-deep Sizhuang ore blocks holds gold reserves greater than 350 t, or 29 percent of the total reserves, followed by the No. I orebody in Matang-Jiaojia ore blocks with exceeding 150t gold reserves. This deposit mainly occurs in the footwall of the Jiaojia fault, and presents zoned patterns in mineralization, alteration and structures. The strongly mineralized zones agree with strongly altered and tectonically fractured zones. These orebodies display strataform-like, veinlike or lenticular shapes, and generally show characteristics of pinching out and reappearing, branching and converging, expanding and shrinking. The orebodies commonly occur along positions where the fault strike changes and in gentle locations with dips changing from steep to gentle. The main orebodies are parallel to the main plane of the orecontrolling fault, and tend to be gentle from the surface to the deep. The orebodies mainly plunge to the southwest, with plunge angle of 45°–60°. Orebodies near the main plane of the ore-controlling fault have more gold resource than those away from main fault zone. The slant depth of orebodies is generally larger than the length along its strike direction; orebodies become thick and gold grades become low from the shallow area to the deep area. Ore-forming fluids are H2O-CO2-NaCl±CH4 type with medium-temperature and moderate to low salinity. Sulfur isotopic values(δ34SCDT) for gold ores range between 11.08‰ and 12.58‰, indicating mixed sulfur sources; hydrogen isotopic values(δDVSMOW) range from-83.68‰ to-116.95‰ and oxygen isotopic values(δ18OV-SMOW) range between 12.04‰ and 16.28‰. The hydrogen and oxygen isotopes suggest that ore-forming fluids originated from primary magma, and mixing with a large amount of atmospheric water during the late stage. The Eastern Shandong Province gold deposits are associated with magmatic activities which have mantlecrust-mixed source, and also share some similarities with orgenic and epithermal hydrothermal gold deposits. Because Eastern Shandong Province gold deposits with unique metallogenic features and formation setting which are different from other gold deposit types in the world, we call it the Jiaojiatype gold deposits. The kiloton class Jiaojia gold deposit is related to fluid activities, extension and detachment resulted from thermal upwelling of magmas. The strong magmatic activities in the middle to late stage of early Cretaceous in Eastern Shandong Province lead to active fluids, and provided abundant ore-forming materials for gold depsoits. Moreover, many extensional structures resulting from crustal extension provided favourable space for orebody positioning.  相似文献   

18.
The Zimudang gold deposit is a large Carlin‐type gold deposit in the Southwest Guizhou Province, China, with an average Au content of 6.2 g/t. Gold is mainly hosted in the fault zone and surrounding strata of the F1 fault and Permian Longtan Formation, and the ore bodies are strictly controlled by both the faults and strata. Detailed mineralogy and geochemistry studies are conducted to help judge the nature of ore‐forming fluids. The results indicate that the Au is generally rich in the sulfides of both ores and wall rocks in the deposit, and the arsenian pyrite and arsenopyrite are the main gold‐bearing sulfides. Four subtypes of arsenian pyrite are found in the deposit, including the euhedral and subhedral pyrite, framboidal pyrite, pyrite aggregates and pyrite veins. The euhedral and subhedral pyrite, which can take up about 80% of total pyrite grains, is the dominant type. Au distributed unevenly in the euhedral and subhedral pyrite, and the content of the Au in the rim is relatively higher than in the core. Au in the pyrite veins and pyrite aggregates is lower than the euhedral and subhedral pyrite. No Au has been detected in the points of framboidal pyrites in this study. An obvious highly enriched As rim exists in the X‐ray images of euhedral pyrites, implying the ore‐forming fluids may be rich in As. The relationship between Au and As reveals that the Au may host as a solid solution (Au+) and nanoparticles of native gold (Au0) in the sulfides. The high Co/Ni ratio (>1) of sulfides and the enrichment of W in the ores all reflect that the gold‐bearing minerals and ore‐forming process were mainly related to the hydrothermal fluids, but the magmatic and volcanic activities cannot be neglected. The general existence of Au and As in the sulfides of both ores and wall rocks and the REE results suggest that the ore‐forming fluids may mainly be derived from the basin itself. The enrichment of Tl suggests that the ore‐forming fluids may be enriched in Cl. The Ce and Eu show slightly or apparently negative anomalies, which means the ore fluids were probably formed under reducing environment. The Y/Ho ratios of ore samples fluctuate around 28, implying the bicarbonate complexation and fluorine were both involved in the ore‐forming process. Combined with the previous studies and our results, we infer that the ore‐forming fluids enriched Au, As, HS? and halogen (F, Cl) were derived from the mixture of reducing basinal fluids and magmatic or volcanic hydrothermal fluids.  相似文献   

19.
In the Raposos orogenic gold deposit, hosted by banded iron-formation (BIF) of the Archean Rio das Velhas greenstone belt, the hanging wall rocks to BIF are hydrothermally-altered ultramafic schists, whereas metamafic rocks and their hydrothermal schistose products represent the footwall. Planar and linear structures at the Raposos deposit define three ductile to brittle deformational events (D1, D2 and D3). A fourth group of structures involve spaced cleavages that are considered to be a brittle phase of D3. The orebodies constitute sulfide-bearing D1-related shear zones of BIF in association with quartz veins, and result from the sulfidation of magnetite and/or siderite. Pyrrhotite is the main sulfide mineral, followed by lesser arsenopyrite and pyrite. At level 28, the hydrothermal alteration of the mafic and ultramafic wall rocks enveloping BIF define a gross zonal pattern surrounding the ore zones. Metabasalt comprises albite, epidote, actinolite and lesser Mg/Fe–chlorite, calcite and quartz. The incipient stage includes the chlorite and chlorite-muscovite alteration zone. The least-altered ultramafic schist contains Cr-bearing Mg-chlorite, actinolite and talc, with subordinate calcite. The incipient alteration stage is subdivided into the talc–chlorite and chlorite–carbonate zone. For both mafic and ultramafic wall rocks, the carbonate–albite and carbonate–muscovite zones represent the advanced alteration stage.Rare earth and trace element analyses of metabasalt and its alteration products suggest a tholeiitic protolith for this wall rock. In the case of the ultramafic schists, the precursor may have been peridotitic komatiite. The Eu anomaly of the Raposos BIF suggests that it was formed proximal to an exhalative hydrothermal source on the ocean floor. The ore fluid composition is inferred by hydrothermal alteration reactions, indicating it to having been H2O-rich containing CO2 + Na+ and S. Since the distal alteration halos are dominated by hydrated silicate phases (mainly chlorite), with minor carbonates, fixation of H2O is indicated. The CO2 is consumed to form carbonates in the intermediate alteration stage, in halos around the chlorite-dominated zones. These characteristics suggest variations in the H2O to CO2-ratio of the sulfur-bearing, aqueous-carbonic ore fluid, which interacted at varying fluid to rock ratios with progression of the hydrothermal alteration.  相似文献   

20.
《Ore Geology Reviews》2008,33(3-4):511-542
The Morro Velho gold deposit, Quadrilátero Ferrífero region, Minas Gerais, Brazil, is hosted by rocks at the base of the Archean Rio das Velhas greenstone belt. The deposit occurs within a thick carbonaceous phyllite package, containing intercalations of felsic and intermediate volcaniclastic rocks and dolomites. Considering the temporal and spatial association of the deposit with the Rio das Velhas orogeny, and location in close proximity to a major NNW-trending fault zone, it can be classified as an orogenic gold deposit. Hydrothermal activity was characterized by intense enrichment in alteration zones of carbonates, sulfides, chlorite, white mica±biotite, albite and quartz, as described in other Archean lode-type gold ores. Two types of ore occur in the deposit: dark gray quartz veins and sulfide-rich gold orebodies. The sulfide-rich orebodies range from disseminated concentrations of sulfide minerals to massive sulfide bodies. The sulfide assemblage comprises (by volume), on average, 74% pyrrhotite, 17% arsenopyrite, 8% pyrite and 1% chalcopyrite. The orebodies have a long axis parallel to the local stretching lineation, with continuity down the plunge of fold axis for at least 4.8 km. The group of rocks hosting the Morro Velho gold mineralization is locally referred to as lapa seca. These were isoclinally folded and metamorphosed prior to gold mineralization. The lapa seca and the orebodies it hosts are distributed in five main tight folds related to F1 (the best examples are the X, Main and South orebodies, in level 25), which are disrupted by NE- to E-striking shear zones. Textural features indicate that the sulfide mineralization postdated regional peak metamorphism, and that the massive sulfide ore has subsequently been neither metamorphosed nor deformed. Lead isotope ratios indicate a model age of 2.82 ± 0.05 Ga for both sulfide and gold mineralization. The lapa seca are interpreted as the results of a pre-gold alteration process and may be divided into carbonatic, micaceous and quartzose types. The carbonatic lapa seca is subdivided into gray and brown subtypes. Non-mineralized, gray carbonatic lapa seca forms the hanging wall to the orebodies, and is interpreted as the product of extreme CO2 metasomatism during hydrothermal alteration. This dolomitic lapa seca ranges in composition from relatively pure limestone and dolomite to silty limestone and dolomite. The brown carbonatic and micaceous lapa secas are the host rocks to gold. These units are interpreted to correspond to the sheared and hydrothermal products of metamorphosed volcaniclastic and/or volcanic rocks of varying composition from dacitic to andesitic, forming various types of schists and phyllites. The high-grade, massive sulfide orebodies occur at the base of the gray carbonatic lapa seca. Both disseminated mineralization and quartz veins are hosted by micaceous lapa seca. The data are consistent with a model of epigenetic mineralization for the lapa seca, from a hydrothermal fluid derived in part from the Archean basement or older crust material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号