首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Based on the astronomical ephemerides DE-406, theoretical calculations have been performed of the interannual variability of the Earth’s insolation related to celestial-mechanical processes for 365 points of a tropical year in the time period from 1900 to 2050. It has been determined that the average amplitude of variations of the interannual insolation is 0.310 W/m2 (0.023% of the solar constant). The calculated variations are characterized by strict periodicity that corresponds with the length of a synodic month. Connection between the extreme values of the calculated insolation variability and syzygies has been defined. The average amplitude of the calculated variability exceeds by 1.7 times (0.01% of the solar constant) the amplitude of the interannual variability in the 11-year variation of the total Earth’s insolation.  相似文献   

2.
The eleven-year sunspot cycles are considered to represent one of the solar activities. The daily observations of the sunspots in the KAAU Solar Observatory (KAAUSO) have been utilised to reduce a period of the present solar cycle, using Fourier technique. The highest peak in the amplitude spectrum was for a frequency of 0.00029 day–1, for which the maximum occurred mid 1990.  相似文献   

3.
The solar spectral irradiance (SSI) dataset is a key record for studying and understanding the energetics and radiation balance in Earth’s environment. Understanding the long-term variations of the SSI over timescales of the 11-year solar activity cycle and longer is critical for many Sun–Earth research topics. Satellite measurements of the SSI have been made since the 1970s, most of them in the ultraviolet, but recently also in the visible and near-infrared. A limiting factor for the accuracy of previous solar variability results is the uncertainties for the instrument degradation corrections, which need fairly large corrections relative to the amount of solar cycle variability at some wavelengths. The primary objective of this investigation has been to separate out solar cycle variability and any residual uncorrected instrumental trends in the SSI measurements from the Solar Radiation and Climate Experiment (SORCE) mission and the Thermosphere, Mesosphere, Ionosphere, Energetic, and Dynamics (TIMED) mission. A new technique called the Multiple Same-Irradiance-Level (MuSIL) analysis has been developed, which examines an SSI time series at different levels of solar activity to provide long-term trends in an SSI record, and the most common result is a downward trend that most likely stems from uncorrected instrument degradation. This technique has been applied to each wavelength in the SSI records from SORCE (2003?–?present) and TIMED (2002?–?present) to provide new solar cycle variability results between 27 nm and 1600 nm with a resolution of about 1 nm at most wavelengths. This technique, which was validated with the highly accurate total solar irradiance (TSI) record, has an estimated relative uncertainty of about 5% of the measured solar cycle variability. The MuSIL results are further validated with the comparison of the new solar cycle variability results from different solar cycles.  相似文献   

4.
Duration of the extended solar cycles is taken into the consideration. The beginning of cycles is counted from the moment of polarity reversal of large-scale magnetic field in high latitudes, occurring in the sunspot cycle n till the minimum of the cycle n + 2. The connection between cycle duration and its amplitude is established. Duration of the “latent” period of evolution of extended cycle between reversals and a minimum of the current sunspot cycle is entered. It is shown, that the latent period of cycles evolution is connected with the next sunspot cycle amplitude and can be used for the prognosis of a level and time of a sunspot maximum. The 24th activity cycle prognosis is made. The found dependences correspond to transport dynamo model of generation of solar cyclicity, it is possible with various speed of meridional circulation. Long-term behavior of extended cycle's lengths and connection with change of a climate of the Earth is considered. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
From the viewpoint of dynamical topology, planetary magnetospheres are classified into three: Types 1, 2 and 3. When the rotation vector and dipole moment of a planet and the velocity vector of the solar wind are denoted as Ω, M, and V, respectively, the planetary magnetosphere with ΩMV is called Type 1. The magnetospheres of the present Earth, Jupiter, and Uranus at its equinoctial points belong to this type. The magnetosphere with ΩMV is called Type 2, which includes the Uranian magnetosphere at its solstitial points. The magnetosphere with ΩM and ΩV is called Type 3. The Earth's palaeomagnetosphere is considered to have experienced Type 3 during excursions and transition stages of palaeomagnetic polarity reversals. In the Type 3 magnetosphere, drastic diurnal variations are expected in configurations of the dayside cusps, tail axis, neutral sheet, polar caps, and so on. A possible relation between the Type 3 palaeomagnetosphere and palaeoclimate of the Earth during polarity reversals and geomagnetic excursions is suggested. It is also suggested that the heliomagnetosphere during polarity reversals of the general field of the Sun exhibits a drastic configuration change similar to the Type 3 palaeomagnetosphere of the Earth. A relation between the perpendicular condition ΩM and magnetic variable stars and pulsars is briefly discussed.  相似文献   

6.
The irradiation solar fluxes between 120 and 400 nm are reviewed and discussed. The disagreements between the recent observations are pointed out, emphasizing the future needs in this wavelength range for aeronomic purposes. Interpretation of the available data as function of the solar activity cannot explain their discrepancies, showing that the solar variability during the eleven-year cycle is still unknown.  相似文献   

7.
太阳总辐照是指在地球大气层顶接收到的太阳总辐射照度,也叫"太阳常数",但它实际上并非常数。太阳总辐照随波长的分布即为太阳分光辐照。太阳辐照变化的研究,对理解太阳表面及内部活动的物理过程、机制,研究地球大气、日地关系,解决人类面临的全球气候变暖的挑战等,都具有重要意义。首先简单介绍了太阳辐照,回顾了太阳辐照的空间观测;接着介绍了观测数据的并合,以及对合成数据的一些研究;然后讨论了太阳辐照变化的原因,简述了太阳总辐照的重构及其在气候研究上的一些应用,并进行必要的评论;最后对未来的研究方向提出了一些看法。  相似文献   

8.
Long-term data on the evolution of the parameters of motion of 15 artificial satellites of the Earth in orbits with minimal heights of 400–1100 km were used to study the density variations in the upper atmosphere at minimums of four cycles of solar activity. It was found that the density at these heights considered increased by about 7% at the minimum of solar cycle 20 as compared to solar cycle 19. Later, the density fell rather linearly at the minimums of cycles 21 and 22. The statistical processing of the data for solar cycles 20–22 demonstrated that the density decreased by 4.6% over ten years and by 9.9% over 20 years. Analyzing the density variations during the four cycles of solar activity, we found that the long-term decrease in density observed at the minimums of cycles 20–22 is caused mainly by specific variations of the solar activity parameters (namely, the solar radio flux and the level of geomagnetic disturbance).__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 2, 2005, pp. 177–183.Original Russian Text Copyright © 2005 by Volkov, Suevalov.  相似文献   

9.
The time series of total solar irradiance (TSI) satellite observations since 1978 provided by ACRIM and PMOD TSI composites are studied. We find empirical evidence for planetary-induced forcing and modulation of solar activity. Power spectra and direct data pattern analysis reveal a clear signature of the 1.09-year Earth-Jupiter conjunction cycle, in particular during solar cycle 23 maximum. This appears to suggest that the Jupiter side of the Sun is slightly brighter during solar maxima. The effect is observed when the Earth crosses the Sun-Jupiter conjunction line every 1.09 years. Multiple spectral peaks are observed in the TSI records that are coherent with known planetary harmonics such as the spring, orbital and synodic periods among Mercury, Venus, Earth and Jupiter: the Mercury-Venus spring-tidal cycle (0.20 year); the Mercury orbital cycle (0.24 year); the Venus-Jupiter spring-tidal cycle (0.32 year); the Venus-Mercury synodic cycle (0.40 year); the Venus-Jupiter synodic cycle (0.65 year); and the Venus-Earth spring tidal cycle (0.80 year). Strong evidence is also found for a 0.5-year TSI cycle that could be driven by the Earth’s crossing the solar equatorial plane twice a year and may indicate a latitudinal solar-luminosity asymmetry. Because both spring and synodic planetary cycles appear to be present and the amplitudes of their TSI signatures appear enhanced during sunspot cycle maxima, we conjecture that on annual and sub-annual scales both gravitational and electro-magnetic planet-sun interactions and internal non-linear feedbacks may be modulating solar activity. Gravitational tidal forces should mostly stress spring cycles while electro-magnetic forces could be linked to the solar wobbling dynamics, and would mostly stress the synodic cycles. The observed statistical coherence between the TSI records and the planetary harmonics is confirmed by three alternative tests.  相似文献   

10.
Studies on the periodic variation and the phase relationship between different solar activity indicators are useful for understanding the long-term evolution of solar activity cycles.Here we report the statistical analysis of grouped solar flare(GSF) and sunspot number(SN) during the time interval from January 1965 to March 2009.We find that,(1) the significant periodicities of both GSF and SN are related to the differential rotation periodicity,the quasi-biennial oscillation(QBO),and the eleven-year Schwabe cycle(ESC),but the specific values are not absolutely identical;(2) the ESC signal of GSF lags behind that of SN with an average of 7.8 months during the considered time interval,which implies that the systematic phase delays between GSF and SN originate from the inter-solar-cycle signal.Our results may provide evidence about the storage of magnetic energy in the corona.  相似文献   

11.
The solar Mgii core-to-wing ratio is a useful index of UV variability throughout the solar cycle because it has been measured since 1978 in a series of successive satellite missions: Nimbus 7, Solar Mesosphere Explorer (SME), the NOAA 9–14 series, Upper Atmosphere Research Satellite (UARS), and ERS-2. Eventual construction of a single time series from 1978 to the present by combining these measurements will give a long record of almost daily UV variability to serve as a surrogate for estimating both UV and EUV solar radiation. Here we address the effect of spectral resolution on determination of both long-term and short-term solar variability from this index. We use UARS/SOLSTICE measurements of the Mgii line from October 1991 to December 1996 to study the effect of two spectral resolution regimes characteristic of existing measurements, 0.20 to 0.25 nm and 1.10 to 1.15 nm, on determination of the amplitude of 27-day rotational modulation and the more gradual change in chromospheric radiation in the declining phase of solar cycle 22. The two Mgii indices give solar variations that differ by a scaling factor of 2× for both the solar cycle change from 1992 to 1997 and the amplitude of 27-day modulation over the same period. Both types of measurements appear to yield solar signal equally well except at solar minimum when the solar changes become quite small.  相似文献   

12.
We have extended our long-term study of coronal holes, solar wind streams, and geomagnetic disturbances through the rising phase of sunspot cycle 21 into the era of sunspot maximum. During 1978 and 1979, coronal holes reflected the influence of differential rotation, and existed within a slowly-evolving large-scale pattern despite the relatively high level of sunspot activity. The long-lived 28.5-day pattern is not produced by a rigidly-rotating quasi-stationary structure on the Sun, but seems to be produced by a non-stationary migratory process associated with solar differential rotation. The association between coronal holes and solar wind speed enhancements at Earth continues to depend on the latitude of the holes (relative to the heliographic latitude of Earth), but even the best associations since 1976 have speeds of only 500–600 km s-1 rather than the values of 600–700 km s-1 that usually occurred during the declining phase of sunspot cycle 20.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

13.
A summary of major solar proton events   总被引:9,自引:0,他引:9  
Solar proton events have been routinely detected by satellites since the 20th solar cycle; however, before that time only very major proton events were detected at the Earth. Even though the detection thresholds differed between the 19th and more recent cycles, more than 200 solar proton events with a flux of over 10 particles (cm2 s ster)–1 above 10 MeV have been recorded at the Earth in the last three solar cycles. At least 15% of these events had protons with energies greater than 450 MeV detected at the Earth. Other than an increase in solar proton event occurrence with increasing solar cycle, no recognizable pattern could be identified between the occurrence of solar proton events and the solar cycle. The knowledge we have gained from the data acquired over the past 40 years illustrates the difficulty in extrapolating back in time to infer the number and intensity of major solar proton events at the Earth.The U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.  相似文献   

14.
The analysis of the thermoluminescence (TL) profile of the GT14 recent sea sedimentary core shows the existence of four main periodicities of 137.7, 59,12.06, and 10.8 years. Here we discuss the affinity of these waves to the known cycles of solar variability. The beats of the two high frequency components produce a modulated wavetrain with a carrier wave of 11.4 years and an amplitude modulation with period 206 years. The minima of this squared amplitude modulation fall in 1810 and 1913 A.D. and closely correspond to the periods of lowest solar activity as indicated by the sunspot series. The sum of the two low frequency waves can in turn be rewritten as a component with period 82.6 years which is amplitude modulated by a second component with period of 206 years. The 82.6-yr wave has the period commonly attributed to the Gleissberg cycle of solar activity. The maxima of the 82.6-yr wave occur in agreement with the dates of maximum solar radius as suggested by Gilliland (1981).  相似文献   

15.
The correlation between various parameters of solar cycles 1–23 is investigated. The derived regressions are used to make predictions of solar cycles 24 and 25. It is expected that solar cycle 24 will reach its maximum amplitude of 110.2 ± 33.4 in April–June 2012 and the next minimum will occur in December 2018–January 2019. The duration of solar cycle 24 will be about 11.1 years. Solar cycle 25 will reach its maximum amplitude of 112.3 ± 33.4 approximately in April–June 2023.  相似文献   

16.
In the previous study (Hiremath, Astron. Astrophys. 452:591, 2006a), the solar cycle is modeled as a forced and damped harmonic oscillator and from all the 22 cycles (1755–1996), long-term amplitudes, frequencies, phases and decay factor are obtained. Using these physical parameters of the previous 22 solar cycles and by an autoregressive model, we predict the amplitude and period of the present cycle 23 and future fifteen solar cycles. The period of present solar cycle 23 is estimated to be 11.73 years and it is expected that onset of next sunspot activity cycle 24 might starts during the period 2008.57±0.17 (i.e., around May–September 2008). The predicted period and amplitude of the present cycle 23 are almost similar to the period and amplitude of the observed cycle. With these encouraging results, we also predict the profiles of future 15 solar cycles. Important predictions are: (i) the period and amplitude of the cycle 24 are 9.34 years and 110 (±11), (ii) the period and amplitude of the cycle 25 are 12.49 years and 110 (±11), (iii) during the cycles 26 (2030–2042 AD), 27 (2042–2054 AD), 34 (2118–2127 AD), 37 (2152–2163 AD) and 38 (2163–2176 AD), the sun might experience a very high sunspot activity, (iv) the sun might also experience a very low (around 60) sunspot activity during cycle 31 (2089–2100 AD) and, (v) length of the solar cycles vary from 8.65 years for the cycle 33 to maximum of 13.07 years for the cycle 35.  相似文献   

17.
An approximation of the 11-year solar cycles by a function with five fitting parameters is proposed. Three parameters are determined individually for each cycle. Their values correspond to the date of the cycle onset, its amplitude and duration of the rise in activity. The combination of two other parameters is unique for all cycles and it is chosen in advance. By varying the values of these dimensionless parameters, a good approximation can be achieved. It can be used in estimating quantitative characteristics of the cycle.  相似文献   

18.
We propose a new technique for the optimal prediction of the peak of the next 11-year activity cycle prior to the cycle beginning and of the peaks of several succeeding cycles on the basis of long-term variations in the solar radius or solar constant. The method is based on the already established fact that the long-term cyclic variations of the activity, radius, and solar constant are correlated in both phase and amplitude, since they are caused by some common processes in the Sun. The peak of the succeeding cycle 24 is expected to have the height W max = 70 ± 10 (in units of relative sunspot number). The subsequent cycles 25 and 26, which will be formed during the descent of the current secular cycle, will have still lower peaks with the heights W max = 50 ± 15 and W max = 35 ± 20.  相似文献   

19.
We found an evidence that the solar cycle luminosity modulation of the Sun deduced from the total irradiance modulation which was measured by the Earth Radiation Budget (ERB) experiment on board of Nimbus 7 from November 16, 1978 to December 13, 1993 was not in phase with the solar cycle magnetic oscillation when we used the sunspot relative number as its index. The modulation was delayed in time behind the solar cycle magnetic oscillation by an amount of about 10.3 years on the order of length of one solar cycle. In order to quantitatively evaluate the correlation between the two quantities, we devised a method to extract characteristics which were proper to a particular solar cycle by defining a new index of the correlation called multiplied correlation index (MCI). We found that the characteristics of the ERB data time profile between solar cycles 21 and 22 were more similar to those of the solar cycle magnetic oscillation between solar cycles 20 and 21 than those between solar cycles 21 and 22 and thus the time profile of the luminosity modulation from the maximum phase of solar cycle 21 to the declining phase of the solar cycle 22 corresponded to the solar cycle magnetic oscillation from the maximum phase of solar cycle 20 to the declining phase of solar cycle 21. We interpret this phenomenon as an evidence that main features of the modulation is not caused by dark sunspots and bright faculae and plages on the surface of the Sun that should instantaneously affect the luminosity modulation but is caused by time-delayed modulation of global convection by the Lorentz force of the magnetic field of the solar cycle. The delay time of about 10.3 years is the time needed for the force to modify the flows of the convection and to modulate heat flow. Thus the delay time is a function of the strength of the magnetic field oscillation of the solar cycle which is represented by amplitude of the solar cycle. Accordingly, the delay time for other time intervals of the solar cycle magnetic oscillation with different amplitudes can be different from 10.3 years for the interval of the present analysis.  相似文献   

20.
Correlations are investigated between the pattern of solar activity described by the smoothed monthly relative sunspot numbers (Wolf numbers) near the minimum of a solar cycle and the cycle amplitude. The closest correlation is found between the amplitude of a solar cycle and the sum of the decrease in activity over two years prior to the cycle minimum and the increase in activity over two years after the minimum; the correlation coefficient between these parameters is 0.92. This parameter is used as a precursor to predict the amplitude of solar cycle 24, which is expected to reach its maximum amplitude (85 ± 12) in February 2014. Based on the correlations between the mean parameters of solar cycles, cycle 24 is expected to last for approximately 11.3 years and the minimum of the next cycle 25 is predicted for May 2020.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号