首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2‐time‐level finite difference atmospheric general circulation model based on the semi‐Lagrangian advection of pseudo potential vorticity (which becomes potential vorticity in that part of the domain where the hybrid vertical coordinate becomes isentropic) has been formulated. At low levels, the hybrid vertical coordinate is terrain following. The problem of isentropic potential vorticity possibly becoming ill‐defined in the regions of planetary boundary layer is thus circumvented. The divergence equation is a companion to the (pseudo) potential vorticity equation and the model is thus called a PV‐D model. Many features of a previously developed shallow water PV‐D model are carried over: a modification of the PV equation needed to give computational stability of long Rossby waves; a semi‐Lagrangian semi‐implicit treatment of both the linear and the nonlinear terms; the use of an unstaggered grid in the horizontal; the use of a nonlinear multigrid technique to solve the nonlinear implicit equations. A linear numerical stability analysis of the model's gravity–inertia waves indicates that the potential temperature needs to be separated into horizontal mean and perturbation parts. This allows an implicit treatment of the vertical advection associated with the mean in the thermodynamic equation. Numerical experiments with developing baroclinic waves have been carried out and give realistic results.  相似文献   

2.
Dynamics of western boundary currents in the subtropical and subpolar gyres are studied as a source-sink flow of barotropic fluid by means of numerical integration of the time-dependent non-linear vorticity equation. The bottom topography consists of a continental shelf of uniform slope (120 km wide) parallel to the straight western coast and a flat bottom of uniform depth. The steady solution in the case of low Reynolds number (Re≦100) shows the vorticity balance of the western boundary current between theβ-, diffusion-, and bottom relief terms. The cuspidated flow of the western boundary current in the subpolar gyre is observed as a compensating flow for the subtropical western boundary current separating from the western coast. In the case of Re=350, the zonal current separating from the coast meanders with the wave length of the stationary Rossby waves. It is shown that in the present model the separation of the boundary current is controlled by the planetary vorticity (f) of the fluid particle in the boundary flow, with which the same particle flows out the eastern wall at the corresponding latitude. The decrease of the efflux width increases the intensity of the non-linear overshooting of the boundary current separating from the western coast.  相似文献   

3.
An analysis of mechanisms for submesoscale vertical motion at ocean fronts   总被引:8,自引:1,他引:8  
We analyze model simulations of a wind-forced upper ocean front to understand the generation of near-surface submesoscale, O(1 km), structures with intense vertical motion. The largest vertical velocities are in the downward direction; their maxima are situated at approximately 25 m depth and magnitudes exceed 1 mm/s or 100 m/day. They are correlated with high rates of lateral strain, large relative vorticity and the loss of geostrophic balance. We examine several mechanisms for the formation of submesoscale structure and vertical velocity in the upper ocean. These include: (i) frontogenesis, (ii) frictional effects at fronts, (iii) mixed layer instabilities, (iv) ageostrophic anticyclonic instability, and (v) nonlinear Ekman effects. We assess the role of these mechanisms in generating vertical motion within the nonlinear, three-dimensionally evolving flow field of the nonhydrostatic model. We find that the strong submesoscale down-welling in the model is explained by nonlinear Ekman pumping and is also consistent with the potential vorticity arguments that analogize down-front winds to buoyancy-forcing. Conditions also support the formation of ageostrophic anticyclonic instabilities, but the contribution of these is difficult to assess because the decomposition of the flow into balanced and unbalanced components via semigeostrophic analysis breaks down at O(1) Rossby numbers. Mixed layer instabilities do not dominate the structure, but shear and frontogenesis contribute to the relative vorticity and strain fields that generate ageostrophy.  相似文献   

4.
南海西部风驱离岸急流次中尺度锋面的动力学分析   总被引:1,自引:0,他引:1  
本文利用卫星观测资料和500 m分辨率数值模拟结果,结合理论分析,对南海西部夏季风场驱动的离岸急流海域次中尺度锋面及其不稳定对背景流场的动力学影响进行了研究。卫星观测和模拟结果表明,南海西部(WSCS)存在侧向尺度为O(1-10)km的次中尺度锋面,在地转和非地转运动的共同作用下,次中尺度密度锋面具有一阶Rossby(Ro)和Richardson(Ri)数。锋面诊断结果显示,沿锋面急流方向的风场强迫引起了显著的跨锋面Ekman净输送,有效地在跨锋面方向将表层冷水平流输送至暖水侧,导致海表浮力损失。减弱的垂向层结和增强的水平浮力梯度使得锋面海域出现负Ertel位涡(PV),表明该密度锋面易受次中尺度对称不稳定(SI)的影响。次中尺度锋面不稳定引起的跨锋面次级环流能够显著增强垂向速度,其最大值可达100 m·d-1。能量评估结果表明,次中尺度湍流的两个主要能量源,即地转剪切项(GSP)和垂向浮力通量(BFLUX)在锋面海域显著增强表明在沿锋面急流方向的风场强迫作用下,大尺度地转流的地转剪切动能和锋面有效位能能有效地通过锋面不稳定向次中尺度过程传递。因此,次中尺度锋面及其不稳定有助于增强局地垂向交换和正向串级地转能量,可以为夏季WSCS高叶绿素浓度的相干结构和锋面地转能量的正向传递提供新的动力解释。  相似文献   

5.
The flow induced by the two-dimensional line vortex moving in a rotating fluid is discussed. The governing vorticity equation is linearized adopting the Oseen approximation.First, the problem is considered on a constantf-plane. The solution shows that the Stewartson E1/4 layer is transformed into the Oseen wake as the role of the advection becomes important.Second, the problem is considered on a-plane. When the line vortex moves westward, the solution shows a pattern of Rossby lee waves decaying downstream of the vortex and alternating flows far upstream. When the line vortex moves eastward, the inviscid solution shows definite alternating jets downstream. In a viscous case, however, the jets become less definite and identical with the above mentioned alternating flows in the far field. Far upstream, there are no disturbances because of the special propagation characteristics of Rossby waves.  相似文献   

6.
In order to reconstruct the circulation in the northern Greenland Sea, between 77°N and 81°N, and the exchanges with the Arctic Ocean through Fram Strait, a variational inverse model is applied to the density field observed in summer 1984 during the MIZEX 84 experiment. An estimate of the three-dimensional large-scale pressure field is obtained in which the solution is decomposed into a limited number of vertical modes and the mode amplitudes are described by piece-wise polynomials on a finite-element grid. The solution should be consistent with a frictional depth-integrated vorticity balance and with the density data. The global model parameters are tuned to ensure agreement between the retrieved geostrophic velocity and independent currentmeter data. In a companion paper (Schlichtholz and Houssais, 1999b), the same method, but without dynamical constraint, is applied to the same hydrographic dataset to perform a detailed water mass analysis and to estimate individual water mass transports.A comprehensive picture of the summer geostrophic circulation in Fram Strait is obtained in which northward recirculations in the East Greenland Current (EGC) and various recirculations from the West Spitsbergen Current (WSC) to the EGC are identified. It is suggested that the branch of the WSC following the upper western slope of the Yermak Plateau turns westward beyond 81°N and recirculates southward along the lower slope, then merging with a westward recirculating branch south of 79°N. At 79°N, a southward net transport of 6.5 Sv is found in the EGC which, combined with a northward net transport of only 1.5 Sv in the WSC, results in a fairly large outflow of 5 Sv from the Arctic Ocean to the Greenland Sea.The inverse solutions show that, in summer, the local induction of vorticity by the wind stress curl or by meridional advection of planetary vorticity should be small, so that, in the EGC and in the WSC, the vorticity balance is mainly achieved between the bottom pressure torque and dissipation of vorticity through bottom friction. A substantial barotropic flow associated with along-slope potential energy gradients is indeed identified on both sides of the strait.  相似文献   

7.
利用1998~2003年6~8月的NCEP/NCAR再分析资料(1.0°×1.0°经纬度网格),以对流层中部500 hPa高度层为重点,利用北半球夏季(6~8月)低纬度(0°~30°N)太平洋地区(160°E-120°W)各物理量(水平速度u,v,P-坐标垂直速度ω等)计算了水平运动方程中各分量的大小,通过比较对热带大尺度运动方程进行了简化,并给出了相应的简化方程,认为纬向风在除了赤道这一奇异带以外都是满足地转平衡的,而经向风则在离开赤道30°以外达到地转.由于热带太平洋地区是台风的重要发源地之一,因此弄清此地区的大气运动基本平衡关系有助于台风形成机制的研究.  相似文献   

8.
The hydrographic observations in the vicinity of a seamount, the Tosa-Bae, southeast of Shikoku have been carried out two times in summer of 1991 and 1992. The temperature, salinity fields are observed by CTD and velocity fields are measured by ADCP. Results of these observation are presented in this paper. It is shown that salinity maximum water at a depth of 100 m is confined to a southeastern are of the Tosa-Bae, however, salinity minimum water is found in northern side of the Tosa-Bae. This indicates the westward intrusion of less saline water over northern slope. A positive correlation is detected between the estimated Rossby height (fL/N) and the observed height of Taylor Column estimated from the vertical change in the isotherms and isohalines. Almost both heights give smaller value than representative depth of bottom topography of the Tosa-Bae, it is indicated that the topographic effect of the Tosa-Bae is not fully reached to the surface. From the correlations between the vertical difference of geostrophic flow and that of ADCP velocity, ageostrophic flow component is detected.  相似文献   

9.
A reduced-gravity primitive equation eddy resolving model is used to study the interaction of a typhoon-induced eddy and a wind-driven general circulation. A typhoon-induced eddy is characterized by a core with a relative vorticity of the same order as the local Coriolis parameter. This eddy is neutrally stable relative to a disturbance induced by the westward advection of the eddy, due to the planetary β-effect. Hence, its evolution in the open ocean is similar to the classical frontal geostrophic eddy. Within the western boundary flow regime, the eddy is entrained northward by the mean circulation. This northward eddy advection and the mean-vorticity advection due to eddy flow induce another disturbance with a north-south asymmetry into the circular eddy. Together with the zonal asymmetric disturbance, associated with the planetary β-effect, the original circular eddy becomes unstable. The nonlinear eddy-flow interactions in the eastern flank of a western boundary current causes the eddy to deform quickly into an ellipse and lose its waters and energy into the mean circulation.  相似文献   

10.
Schemes of surface flows near northwestern Kamchatka are shown, compiled from in situ observation data, numerical-model-derived data, satellite altimetry measurement data, and results calculated by the dynamic method. The flow characteristics obtained by various methods are compared. No statistically significant linear dependence of the velocities of absolute and geostrophic currents were detected. A linear dependence was observed between the directions of geostrophic flows calculated by the standard dynamic method and from satellite altimetry data, as well as between directions measured by the Argonaut MD and the calculated model. We have estimated the fraction of the ageostrophic component in currents. According to geostrophic current calculations by different methods, it ranged from 86 to 93%. A significant limitation of this data is the difficulty of their interpretation. They may not always give a perfect representation of stable water circulation in the studied area under.  相似文献   

11.
Current Nature of the Kuroshio in the Vicinity of the Kii Peninsula   总被引:1,自引:0,他引:1  
The Kuroshio flows very close to Cape Shionomisaki when it takes a straight path. The detailed observations of the Kuroshio were made both on board the R/V Seisui-maru of Mie University and on board the R/V Wakayama of the Wakayama Prefectural Fisheries Experimental Station on June 11–14, 1996. It was confirmed that the current zone of the Kuroshio touches the coast and bottom slope just off Cape Shionomiaki, and that the coastal water to the east of the cape was completely separated from that to the west. The relatively high sea level difference between Kushimoto and Uragami could be caused by this separation of the coastal waters when the Kuroshio takes a straight path. This flow is rather curious, as the geostrophic flow, which has a barotropic nature and touches the bottom, would be constrained to follow bottom contours due to the vorticity conservation law. The reason why the Kuroshio leaves the bottom slope to the east of Cape Shionomisaki is attributed to the high curvature of the bottom contours there: if the current were to follow the contours, the centrifugal term in the equation of motion would become large and comparablee to the Coriolis (or pressure gradient) term, and the geostrophic balance would be destroyed. This creates a current-shadow zone just to the east of the cape. As the reason why the current zone of the Kuroshio intrudes into the coastal region to the west of the cape, it is suggested that the Kii Bifurcation Current off the southwest coast of the Kii Peninsula, which is usually found when the Kuroshio takes the straight path, has the effect of drawing the Kuroshio water into the coastal region. The sea level difference between Kushimoto and Uragami is often used to monitor the flow pattern of the Kuroshio near the Kii Peninsula. It should be noted that Uragami is located in the current shadow zone, while Kushimoto lies in the region where the offshore Kuroshio water intrudes into the coastal region. The resulting large sea level difference indicates that the Kuroshio is flowing along the straight path.  相似文献   

12.
The vorticity generation around a coastal promontory is examined using a transport vorticity equation. The complete vorticity balance analysis is made for the transient and residual vorticity generations around an idealized, symmetric promontory. The topographic vorticity tendency is found to be the dominant forcing term in the production of transient tidal vorticities. This result is different from the previous works which emphasized the effects of lateral and bottom frictions. The residual vorticity balance is between advection and topographic vorticity tendency. The model results are consistent with the observations off Gay Head, Massachusetts. Also, the stability of a promontory as well as the offshore sand bank formation are studied by examining the sand transport pattern around the promontory. Strong deposition occurs off the tip of the promontory while erosion occurs along the upstream slope of the promontory suggesting that an originally symmetric promontory tends to incline cyclonically from the axis normal to the tidal stream. Such tendency is indeed found among coastal promontories.  相似文献   

13.
Some numerical experiments by the barotropic nonlinear two dimensional models are performed to study the water circulations in Lake Biwa, especially to study the large anticlockwise gyre in the north basin. The wind fields used in the experiments have no rotational component. This gyre is induced by the southerly wind and is approximately on the geostrophic balance. The vorticity of this gyre is contributed from the vertical stretching of the vortex tube by the variable bottom topography and the inertia term. But the latter term does not become effective if the bottom profile of the basin is flat. Therefore the horizontal circulation in the barotropic closed basin is the “topographic gyres”. The bottom stress has a little contribution to the vorticity balance of the gyre.  相似文献   

14.
From September to December 1995, three hydrographic surveys were carried out in the eastern Cantabrian Sea (Bay of Biscay). Changes in the water masses pattern were examined to study the variability and main energetic features in the area. At the beginning of December, an intense Poleward Current (PC), which had come from Portuguese slopes, entered the eastern Cantabrian Sea. This current was the most energetic event in this area in winter. The PC waters increased temperature by about 2 °C (subsurface layers) and salinity by 0.2 (surface layers) in the pattern of water masses in the eastern Cantabrian Sea in winter. The core current was approximately 10 km width and 120 m depth and the water transport, estimated from geostrophic current profiles, was of about 1.3 Sv.A well-defined wavelike front with two significant ridges in the western and eastern sampling area, was observed. The variability and meandering flow of the PC were driven by dominantly baroclinic instabilities, which are due to strong vertical velocity shear. In this synoptic-scale system, the potential vorticity advection, the differential vorticity advection, and the geopotential tendency have shown to be the cause of the ageostrophic motion and the main baroclinic disturbances.One important consequence of the entrance of the PC in the eastern Cantabrian Sea was the profound effect on the pattern of nutrients. The current-induced stratification pattern drives the distribution of nutrients in the different layers and the instabilities and meandering pattern of the PC was an important mechanism of fertilisation offshore.  相似文献   

15.
The seasonal cycle of submesoscale flows in the upper ocean is investigated in an idealised model domain analogous to mid-latitude open ocean regions. Submesoscale processes become much stronger as the resolution is increased, though with limited evidence for convergence of the solutions. Frontogenetical processes increase horizontal buoyancy gradients when the mixed layer is shallow in summer, while overturning instabilities weaken the horizontal buoyancy gradients as the mixed layer deepens in winter. The horizontal wavenumber spectral slopes of surface temperature and velocity are steep in summer and then shallow in winter. This is consistent with stronger mixed layer instabilities developing as the mixed layer deepens and energising the submesoscale. The degree of geostrophic balance falls as the resolution is made finer, with evidence for stronger non-linear and high-frequency processes becoming more important as the mixed layer deepens. Ekman buoyancy fluxes can be much stronger than surface cooling and are locally dominant in setting the stratification and the potential vorticity at fronts, particularly in the early winter. Up to 30% of the mixed layer volume in winter has negative potential vorticity and symmetric instability is predicted inside mesoscale eddies as well as in the frontal regions outside of the vortices.  相似文献   

16.
TOPEX/POSEIDON altimeter data are analyzed for the 8.5-year period November 1992 to May 2001 to investigate the sea surface height (SSH) and geostrophic velocity signatures of quasi-annual equatorially trapped Rossby waves in the Pacific. The latitudinal structures of SSH and both components of geostrophic velocity are found to be asymmetric about the equator across the entire Pacific with larger amplitude north of the equator. The westward phase speeds are estimated by several different methods to be in the range 0.5-0.6 m s−1. These observed characteristics are inconsistent with the classical theory for first vertical, first meridional mode equatorially trapped Rossby waves, which predicts a phase speed of about 0.9 m s−1 with latitudinally symmetric structures of SSH and zonal velocity and antisymmetric structure of meridional velocity. The observations are even less consistent with the latitudinal structures of SSH and geostrophic velocity components for other modes of the classical theory.The latitudinal asymmetries deduced here have also been consistently observed in past analyses of subsurface thermal data and altimeter data and have been variously attributed to sampling errors in the observational data, a superposition of multiple meridional Rossby wave modes, asymmetric forcing by the wind, and forcing by cross-equatorial southerly winds in the eastern Pacific. We propose a different mechanism to account for the observed asymmetric latitudinal structure of low-frequency equatorial Rossby waves. From the free-wave solutions of a simple 1.5-layer model, it is shown that meridional shears in the mean equatorial current system significantly alter the potential vorticity gradient in the central and eastern tropical Pacific. The observed asymmetric structures of sea surface height and geostrophic velocity components are found to be a natural consequence of the shear modification of the potential vorticity gradient. The mean currents also reduce the predicted westward phase speed of first meridional mode Rossby waves, improving consistency with the observations.  相似文献   

17.
Large-scale dense bottom currents are geostrophic to leading order, with the main flow direction along the continental slope. Bottom friction makes the water descend to greater depths, but only at a small angle to the horizontal. Here the effect of a submarine ridge that intersects the slope is considered. It is shown that the presence of a submarine ridge greatly enhances the downward transport. By leaning against the ridge it is possible for the dense water to flow downhill, perpendicular to the depth contours, even though the first-order dynamics are geostrophic. The requirement for downward flow next to the ridge is that the frictional transport that it induces is sufficiently large to counteract geostrophic advection along the isobaths and out of the ridge region. The dynamics are similar to those of downward flow in submarine canyons, but ridges appear to be more effective in channeling the dense water downhill, in particular for narrow ridges/canyons with small seaward slope of the ridge/canyon axis. The downward flow is analyzed using a simplified analytical model and the results are compared to data from the Filchner Overflow, which agree qualitatively with the model.  相似文献   

18.
Investigated is a possibility of two-dimensional model in the study of the dynamics of the western boundary current by a numerical experiment. Emphasis is laid on the effect of bottom barrier corresponding to the Izu Ridge.The western boundary current in the model is formed by source and sink of the water prescribed at an artificial eastern wall (600 km offshore). The bottom topographyconsists of a continental slope parallel to the straight western coast, and a ridge protruding from the western coast to 500 km offshore (1,500 m deep and 400 km wide). The grid size of 12 km× 25 km (offshore and longshore directions, respectively) resolves both the western boundary current and the bottom topography.The assumption of homogeneity of the water density makes the western boundary current detour along the isobath of the ridge.A steady state solution is obtained under the assumptions that the horizontal velocity does not change direction vertically (equivalent barotropic), and that the geostrophic relationship holds at the bottom. Homogeneity of the water density is not assumed. The solution shows that most of the volume transport of the western boundary current cross the ridge and the current has cyclonic vorticity near the summit of the ridge. It seems to suggest that the investigation by three-dimensional models is neccesary in order to study the complete dynamics of the western boundary current crossing the ridge.  相似文献   

19.
A complication of finite-volume triangular C-grid methods is the numerical emergence of horizontal divergence errors that lead to grid-scale oscillations in vertical velocity. Nonlinear feedback via advection of momentum can lead to numerical instability in velocity modes via positive feedback with spurious vertical velocities induced by horizontal divergence truncation error. Existing strategies to mitigate divergence errors such as direct divergence averaging and increased diffusion do not completely mitigate horizontal vertical velocity oscillations. We present a novel elliptic filtering approach to mitigate this spurious error and more accurately represent vertical velocities via improved calculation of horizontal divergences. These results are applied to laminar curved channel flows, demonstrating the applicability of the method to reproduce secondary flow features.  相似文献   

20.
Interannual variations of the Hawaiian Lee Countercurrent (HLCC) in the 2000s were investigated using satellite and Argo profiling float observations. The satellite-observed sea surface height shows that the geostrophic eastward current was anomalously strong to the west away from Hawaii in 2003 and 2005. However, the trade winds and the orographic wind curl dipole in the lee of Hawaii that drives the climatological mean HLCC were not particularly strong in these years, suggesting that the accelerations of the HLCC were not caused by the wind stress curl forcing around Hawaii and subsequent Rossby wave propagation. Using Argo observations, we found negative potential vorticity (PV) anomalies in the subsurface north of the HLCC in these 2 years. The pycnocline is lifted northward as low PV waters of different densities stack up in the vertical, and the HLCC is then accelerated via the thermal wind. The intensification and/or southward intrusion of the eastern subtropical mode water and subtropical mode water seem to have induced negative PV anomalies in 2003 and 2005, respectively. Using high-resolution ocean simulations, we confirmed the migrations of PV anomalies and their contributions to the HLCC accelerations. Although the HLCC is located away from the cores of major mode waters, our results suggest that interannual variations of the HLCC are affected by those of mode waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号