首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fukujin Seamount is a large, active, submarine volcano on thevolcanic front in the northernseamount province (NSP) of theMariana island arc (MIA). Five dredge hauls from the summitand upper flanks of Fukujin recovered mainly highly porphyriticbasaltic andesites. A few nearly aphyric samples are medium-Ksiliceous andesites (SiO2 = 62%, K2O = 1•5%). Fukujin andmost other large arc-front volcanoes of the northern MIA havetholeiitic (iron-enrichment) fractionation trends. This contrastswith the calc-alkaline trends of many smaller seamounts. A negativecorrelation of modal plagioclase content with bulk-rock SiO2,as well as bulk-rock major and trace element variation trends,and glass analyses, suggests that lavas with >30 vol.% phenocrystsand <55 wt.% SiO2 are partial cumulates. The presence ofbimodal phenocryst populations along with reversed to normalzoning of phenocrysts is explained by magma mixing of andesiticand basaltic liquids. Hybrid basaltic andesites probably formedby the accumulation of plagioclase in a tholeiitic magma chamberundergoing replenishment and mixing at a shallow crustal level.A petrogenetic model is presented for the origin of basalticandesite by combined magma mixing and fractional crystallization.Aphyric siliceous andesites can be modelled by simple fractionationof basaltic andesite. The early fractionating assemblage consistedmainly of plagioclase and clinopyroxene, with lesser olivineand minor magnetite, but plagioclase remained suspended in themelt. The later fractionating assemblage was dominated by plagioclasewith orthopyroxene instead of olivine. *Present address: 2260 rue Panet, Montreal, Quebec, H2L 3A6, Canada.  相似文献   

2.
Boninitic rocks and associated high-magnesian basalt and high-iron tholeiite in the Xiangcheng area constitute the basal horizon of the arc volcanic sequence in the Triassic Yidun Island-Arc, southwestern China. The boninite occurs as pillow, massive and ocellar lavas; the last one possesses well-developed globular structure and alternates with the former two. The boninite is characterized by the absence of phenocrysts of olivine and low-Ca pyroxenes and by low CaO/Al2O3 ratios (<0.67) and high Cr (>1000 ppm) and Ni (>250 ppm). The normalized abundance patterns (NAP) of trace elements to primitive mantle are similar to the NAP of low-Ca modern boninites and SHMB in the Archaean and Proterozoic.As a mechanism of ocellar texture, liquid immiscibility in boninite is supported by the following lines of evidence: (a) sharp contact between ocelli and matrix, (b) constant volumetric ratios of ocelli/matrix and common coalescence of ocelli in ocellar rocks, (c) identical micro-spinifex textures and mineral asse  相似文献   

3.
Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization.The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%).Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 453223. It is suggested that the most primitive olivine basalts can be derived from a pristine mantle composition by approximately 17% equilibrium partial melting. Although distinguished by its higher Zr/Nb ratio and lower NiO content of phenocryst phases, the magma parental to the picritic basalts can be derived from a similar source composition by approximately 27% equilibrium partial melting. It is suggested that the parental magma to the plagioclase-pyroxene and plagioclase phyric basalts might have been derived from greater depth resulting in the fractionation of the Zr/Nb ratio by equilibration with residual garnet.C.O.B. Contribution No. 722  相似文献   

4.
Chichi-jima, Bonin Islands, consists of dominant Eocene submarine volcanic rocks, comprising boninites, andesites and dacites, and subordinate sedimentary rocks. The dacites occur frequently in breccias and pillows overlying a boninite pillow lava sequence. The boninite pillows are intruded by a multiple dike, in which a core boninite is chilled against outer dacites. A density-stratified chamber may have been capped by a dacite magma. The dacites, which can be divided into quartz dacite and quartz-free dacite, are differentiates from the boninite-forming magmas, because they vary continuously in composition from boninites through andesites. The quartz dacites, corresponding to rhyolite in SiO2, are lower in Na2O and K2O than most orogenic dacites. Some of the dacites are characterized by ferropigeonite (Wo7–16En23–39Fs68-54) phenocrysts and are clearly ferrodacite, producing variable amounts of Fs-rich normative pyroxenes. The relation of SiO2 to total FeO/MgO ratio indicates that many of both types of dacites, with glasses in boninites, are enriched in total FeO despite the strong calc-alkalic affinity of boninites. The crystallization temperature of ferropigeonite with Mg value 30 in a quartz dacite is estimated to be 900° C and that in a quartz-free dacite to be 1050° C, which are unusually high for differentiated silicic rocks. Some Chichi-jima rocks are fresh, having a low ratio of Fe2O3 to FeO. On the basis of the experimental study of magmatic ferric-ferrous equilibria at 1 bar, the oxygen fugacities are calculated as 10–13.6 bars at 900° C for a ferropigeonite quartz dacite and 10–8.9 bars at 1200° C for a boninite with the lowest Fe3+/Fe2+. Both values lie below the quartz-fayalite-magnetite buffer line. The boninite series volcanic rocks have preserved low oxygen fugacities as well as high temperatures until the latest differentiation stage. The ferropigeonite phenocrysts have crystallized from the dacite magmas under the conditions of moderately high temperatures, very low oxygen fugacities and high total FeO and SiO2 concentrations.  相似文献   

5.
The Miocene Karamağara volcanics (KMV) crop out in the Saraykent region (Yozgat) of Central Anatolia. The KMV include four principal magmatic components based on their petrography and compositional features: basaltic andesites (KMB); enclaves (KME); andesites (KMA); and dacites (KMD). Rounded and ellipsoidal enclaves occur in the andesites, ranging in diameter from a few millimetres to ten centimetres. A non‐cognate origin for the enclaves is suggested due to their mineralogical dissimilarity to the enclosing andesites. The enclaves range in composition from basaltic andesite to andesite. Major and trace element data and primitive mantle‐normalized rare‐earth element (REE) patterns of the KMV exhibit the effects of fractional crystallization on the evolution of the KME which are the product of mantle‐derived magma. The KMA contain a wide variety of phenocrysts, including plagioclase, clinopyroxene, orthopyroxene, hornblende and opaque minerals. Comparison of textures indicates that many of the hornblende phenocrysts within the KMA were derived from basaltic andesites (KMB) and are not primary crystallization products of the KMA. Evidence of disequilibrium in the hybrid andesite includes the presence of reacted hornblendes, clinopyroxene mantled by orthopyroxene and vice versa, and sieve‐texture and inclusion zones within plagioclase. The KMV exhibit a complex history, including fractional crystallization, magma mixing and mingling processes between mantle and crust‐derived melts. Textural and geochemical characteristics of the enclaves and their hosts require that mantle‐derived basic magma intruded the deep continental crust followed by fractional crystallization and generation of silicic melts from the continental material. Hybridization between basic and silicic melts subsequently occurred in a shallow magma chamber. Modelling of major element geochemistry suggests that the hybrid andesite represents a 62:38 mix of dacite and basaltic andesite. The implication of this process is that calc‐alkaline intermediate volcanic rocks in the Saraykent region represent hybrids resulting from mixing between basic magma derived from the mantle and silicic magma derived from the continental crust. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The Bonin archipelago represents an uplifted fore-arc terrainwhich exposes the products of Eocene supra-subduction zone magmatism.Chichijima, at the centre of the chain, represents the typelocality for the high-Mg andesitic lava termed boninite. Therange of extrusives which constitute the boninite series volcanicsare present on Chichijima, and are disposed in the sequenceboninite-andesite-dacite with increasing height in the volcano-stratigraphy.Progression to evolved compositions within the Chichijima boniniteseries is controlled by crystal fractionation from a boniniteparental magma containing 15% MgO. Olivine and clinoenstatiteare the initial liquidus phases, but extraction of enstatiticorthopyroxene, followed by clinopyroxene and plagioclase, isresponsible for the general evolution from boninite, throughandesite, to dacite. Some andesites within the overlying MikazukiyamaFormation are petrographically distinct from the main boniniteseries in containing magnetite phenocrysts and a high proportionof plagioclase. As such, these andesites have affinities withthe calc-alkaline series. Major and trace element data for 74 boninitic series rocks fromChichijima are presented. Although major element variation isdominantly controlled by high-level crystal fractionation, thelarge variations in incompatiable trace element concentrationsat high MgO compositions cannot be explained by this mechanism.Nd, Pb, and Sr isotopic data indicate the following: (1) a strongoverprint on 87Sr/86Sr by seawater alteration; (2) Pb isotopeslie above the northern hemisphere reference line (NHRL) andare thus similar to the <30-Ma are and basin lavas of theIzu—Bonin system, and (3) Nd(40 Ma) ranges between 2.8and 6.8 within the boninite series volcanics. Differences inrare-earth elements (REE), Zr, Ti, and 143Nd/144Nd at similardegrees of fractionation can be explained by the addition ofa component of fixed composition from the down-going oceaniccrustal slab to a variably depleted source region within theoverlying wedge. Data presented for Sm/Zr and Ti/Zr indicatethat boninite series volcanics are characterized by low valuesfor both of these ratios. In particular, boninites appear tohave uniquely low Sm/Zr ratios. These characteristics may bethe result of slab melting in the presence of residual amphibole;the resultant melt could combine with typical slab dehydrationfluids and infiltrate the overlying mantle wedge. Such a fluid—meltcomponent could mix either with shallow mantle or directly withprimitive melts from depleted mantle. Trace elements, REE, andisotope data thus point to a model for boninite genesis whichrequires tightly constrained pressure—temperature conditionsin the slab combined with melting of a variably depleted sourcein the overlying wedge. Such constraints are rarely met exceptduring the subduction of juvenile oceanic crust beneath a young,hot overriding plate.  相似文献   

7.
The lavas of Nisyros were erupted between about 0?2 m.y B.P.and 1422 A.D., and range in composition from basaltic andesiteto rhyodacite. Most were erupted prior to caldera collapse (exactdate unknown), and the post-caldera lavas are petrographically(presence of strongly resorbed phenocrysts) and chemically (lowerTiO2 K2O, P2O5, and LIL elements) distinct from the pre-calderalavas. The pre-caldera lavas do not form a continuous seriessince lavas with SiO2 contents between 60 and 66 wt.% are absent.Nevertheless, major element variations demonstrate that fractionalcrystalliz ation (involving removal of olivine, dinopyroxene,plagioclase, and Fe-Ti oxide from the basaltic andesites andandesites and plagioclase, clinopyroxene, hypersthene, Ti-magnetite,ilmenite, apatite, and zircon from the dacites and rhyodacites)played a major role in the evolution of the pre-caldera lavas.Several lines of evidence indicate that other processes werealso important in magma evolution: (1) Quantitative modelingof major element data shows that phenocryst phases of unlikelycomposi tion or unrealistic assemblages of phenocryst phasesare required to relate the dacites and rhyodacites to the basalticandesites and andesites; (2) The proportions of olivine andclinopyroxene required in quantitative models for the initialstages of evolution differ from those observed petrographicallyand this is not likely to reflect either differential ratesof crystal settling or the curvature of cotectics along whichliquids of basaltic andesite to andesite composition lie; (3)The concentrations of Rb, Cs, Ba, La, Sm, Eu, and Th in therhyod.acites are too high for these lavas to be related to thedacites by fractional crystallization alone; and (4) 87Sr/86Srratios for the andesites and rhyodacites are higher than thosefor the basaltic andesites and dacites, respectively. It isshown that fractional crystallization was accompanied by assimilation,and that magma mixing played a minor role (if any) in the evolutionof the pre-caldera lavas. Trace element and isotopic data indicatethat the andesites evolved from the basaltic andesites by AFCinvolving average crust or upper crust, whereas the rhyodacitesevolved from the dacites by AFC involving lower crust. Additionalevidence for polybaric evolution is provided by the occurrenceof distinct Ab-rich cores of plagioclase phenocrysts in thedacites and rhyodacites, which record a period of high pressurecrystallization, and by the occurrence of both normal and reverse-zonedphenocrysts in the basaltic andesites and andesites. Furthermore,calculated pressures of crystallization are {small tilde}8 kbfor the dacites and rhyodacites and 3?5–4 kb for the basalticandesites and andesites. It is concluded that the dacites andrhyodacites evolved via AFC from basaltic andesites and andesiteslargely in chambers sited near the base of the crust whereasthe basaltic andesites and andesites mostly evolved in chamberssited at mid-crustal levels. Eruption from different chambersexplains the compositional gap in the chemistry of the pre-calderalavas since eruptive products represent a more or less randomsampling of residual liquids which separate (via filter pressing)from bodies of crystallizing magma at various depths. Magmamixing was important in the evolution of the post-caldera lavas,but geochemical data require that these magmas evolved fromparental magmas which were derived from a more refractory sourcethan the parental magmas to the pre-caldera lavas. *Present address: Netherlands Energy Research Foundation (ECN), P.O. Box 1, 1755 ZG Petten, The Netherlands  相似文献   

8.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

9.
Rabaul caldera is a large volcanic depression at the north-east tip of New Britain, Papua New Guinea. The lavas range in composition from basalt to rhyolite and have a calc-alkalic affinity but also display features typical of tholeiites, including moderate absolute iron enrichment in flows cropping out around the caldera. The basalts contain phenocrysts of plagioclase and clinopyroxene with less abundant olivine and titanomagnetite. In the basaltic andesites olivine is rare, while orthopyroxene and titanomagnetite are common along with plagioclase and clinopyroxene. Orthopyroxene is also found mantling olivine in some of the basalts while in both rock types pigeonitic augite is a fairly common constituent of the groundmass. Plagioclase in both basalt and basaltic andesite often exhibits sieve texture and analysis of the glass blebs show them to be of similar composition to the bulk rock. Phenocrystic clinopyroxene is a diopsidic augite in both basalt and basaltic andesite. Al2O3 content of the clinopyroxene is moderately high (4%) and often shows considerable variation in any one grain. Calculations show that the microphenocrysts probably crystallised near the surface, while phenocrysts crystallised at around 7 kb (21 km). Neither the basalts nor the basaltic andesites would have been in equilibrium at any geologically reasonable P and T with quartz eclogite. Equilibration between mantle peridotite and a. typical Rabaul basaltic liquid could have occurred around 35 kb and 1270 °C. A basaltic andesite liquid yields a temperature of 1263 °C and a pressure of 28 kb for equilibration with mantle peridotite.Partial melting of sufficient volumes of mantle peridotite at these P's and T's requires about 15% H2O, but there is no evidence that these magmas ever contained large amounts of water. It is proposed that the Rabaul magmas were initially generated by partial melting of subducted lithosphere and subsequently modified by minor partial melting as they passed through the overlying mantle peridotite.  相似文献   

10.
Fresh basalts from the Oceanographer Fracture Zone are petrographically and chemically similar to typical abyssal tholeiites, but are somewhat enriched in large ion lithophile elements, with consistent differences among separate dredge hauls. Olivine compositions are in equilibrium with host basalt for reasonable K D values, but some plagioclases are anomalously calcic (e.g., a rock highly differentiated in Mg/Mg+Fe bears some plagioclase of An86). Ti/Al in clinopyroxene is approximately constant at 1/6, but Ti+Al abundance decreases in the sequence basalt groundmass cpx, basalt phenocryst+microphenocryst cpx, gabbro cpx (samples from adjacent dredges), an effect that may be related to decrease in cooling rate. Least-squares calculations indicate that 45% of magma with the composition of the more primitive sample must be removed as plagioclase, clinopyroxene and olivine (in the ratio 4.42.71, respectively) to obtain the composition of the more differentiated sample. Both samples have excess plagioclase on the liquidus, however, which should not be the case for the differentiated composition if it is produced by fractionation of all three phases. The excess of plagioclase and the anomalous plagioclase compositions indicate that the samples cannot be related solely by fractional crystallization. Additional processes such as magma mixing or plagioclase accumulation (or both) must have effected these differences.  相似文献   

11.
The Cayconi district of the Cordillera de Carabaya, SE Peru, exposes a remnant of an upper Oligocene–Lower Miocene (22.2–24.4 Ma) volcanic field, comprising a diverse assemblage of S-type silicic and calc-alkaline basaltic to andesitic flows, members of the Picotani Group of the Central Andean Inner Arc. Basaltic flows containing olivine, plagioclase, clinopyroxene, ilmenite and glass, and glassy rhyolitic agglutinates with phenocrystic quartz, cordierite, plagioclase, sanidine, ilmenite and apatite, respectively exhibit mineralogical and geochemical features characteristic of medium-K mafic and Lachlan S-type silicic lavas. Cordierite-bearing dacitic agglomerates and lavas, however, are characterized by dispersed, melanocratic micro-enclaves and phenocrysts set in a fine-grained quartzo-feldspathic matrix. They contain a bimodal mica population, comprising phlogopite and biotite, as well as complexly zoned, sieve-textured plagioclase grains, sector-zoned cordierite, sanidine, quartz, irregular patches of replaced olivine, clinopyroxene and orthopyroxene and accessory phases including zircon, monazite, ilmenite and chromite. The coexistence of minerals not in mutual equilibrium and the growth/dissolution textures exhibited by plagioclase are features indicative of magmatic commingling and mixing. Trachytic-textured andesite flows interlayered with olivine+plagioclase–glomerophyric, calc-alkaline basalts have a phenocrystic assemblage of resorbed orthopyroxene and plagioclase and exhibit melanocratic groundmass patches of microphenocrystic phlogopite, Ca-rich sanidine, ilmenite and aluminous spinel. The mineralogical and mineral chemical relationships in both the dacites and the trachytic-textured andesites imply subvolcanic mixing between distinct ultrapotassic mafic melts, not represented by exposed rock types, and both the S-type silicic and calc-alkaline mafic magmas. Such mixing relationships are commonly observed in the Oligo-Miocene rocks of the Cordillera de Carabaya, suggesting that the S-type rocks in this area and, by extension, elsewhere derive their unusually high K2O, Ba, Sr, Cr and Ni concentrations from commingling and mixing with diverse, mantle-derived potassic mafic magmas.  相似文献   

12.
The Medicine Lake shield volcano is part of the Oregon high alumina plateau basalt petrologic province, as defined by Waters (1962) and Higgins (1973). The early eruptions are basaltic andesites and they constitute a significant portion of the shield-forming lavas. These lavas are characterized by a mild iron enrichment trend produced by fractionation of plagioclase and olivine, together with lesser amounts of clinopyroxene. Siliceous andesites of less areal extent form the shield-capping lavas. Their formation is initiated by the appearance of titanomagnetite as a liquidus phase which prevents further iron enrichment. Additional fractionation of plagioclase, clinopyroxene, orthopyroxene, and minor olivine continued during this interval.An origin for the basaltic andesites which involves the derivation of a liquid by partial melting of lithosphere composed of low Sr87/Sr86 material previously subducted along the continental margin is favored. This magma subsequently fractionated under low pressure conditions, a conclusion supported by least squares mixing calculations.  相似文献   

13.
The Lower Unit of the ophiolitic sequence of Northern Argolis comprises turbiditic sediments and olistostromes, both containing ophiolitic clasts, mainly crystal fragments (clinopyroxene, plagioclase, Cr-spinel, amphibole) in the turbidites and cumulitic intrusives (quartz noritic amphibole-bearing gabbros), subvolcanic rocks (dolerites) and various effusive lithologies (mainly Si-rich basalts to basaltic andesites) in the olistostromes. The volcanic rocks belong to three groups. In rare cases the lavas are mineralogically and chemically comparable with MORB; most of them, and the subvolcanic rocks, contain primary quartz and amphibole, orthopyroxene, Ca-rich plagioclase and clinopyroxene±Cr-spinels. All rocks are Si- and Mg-rich and have high concentrations of ‘compatible’ and very low concentrations of ‘incompatible’ elements. The REE profiles are characteristically U-shaped. Many of the observed features are comparable with those of subduction-related lavas and, in particular, with present day boninites and ophiolitic boninitic rocks. The gabbroic rocks have mineralogical and chemical analogies with the dolerites and lavas, thus it may be argued that the gabbros represent the intrusive counterparts of the ‘boninitic’ volcanic clasts. The mineral clasts occurring in the turbidites are chemically comparable with those analysed in the ophiolitic clasts of the overlying olistostrome. It may be concluded that the ophiolitic clasts of both olistostromes and turbidites were derived from a subduction-related sequence. An island arc–back-arc system might explain the occurrence of both boninitic and MORB-type lithologies in the olistostrome of Angelokastron. This may support the hypothesis of the onset of compressive tectonics along the Pindos Ocean during the Jurassic. © 1996 John Wiley & Sons, Ltd.  相似文献   

14.
Approximately 150 km west of Mexico City in the central part of the Mexican Volcanic Belt (MVB) near Zitácuaro, Mexico, young volcanism has produced shield volcanoes, large volume silicic deposits, and fault-related basalt and andesite lava flows and cinder cones. This paper concerns a small cluster of Pleistocene andesite cones and flows which can be separated into two distinct groups: high-magnesium andesites (>6% MgO, 57–59% SiO2), conveniently called basaltic andesites, with phenocrysts of orthopyroxene and augite, or augite and olivine; and andesites (60–62% SiO2, <4.6% MgO), which have phenocrysts of orthopyroxene and augite, and ghosts of relict hornblende. Remarkably, plagioclase phenocrysts are absent, and evenly distributed but sparse (0.5–3.5%) quartz xenocrysts are present in all the lavas. In order to establish the conditions under which early crystallizing plagioclase is suppressed in these lavas, water saturated experiments up to 3 kbars were performed on one of the basaltic andesites. The conditions required to reproduce the phenocryst assemblages (either olivine + augite or opx + augite) are temperatures in excess of 1000 °C, with water saturated liquids (>3 wt%) at pressures of about 1 kbar. Compared to basaltic andesites of western Mexico, the Zitácuaro basaltic andesites have ∼2 wt% lower Al2O3 concentrations, which causes plagioclase to precipitate at significantly lower temperatures, and it therefore follows the crystallization sequence: olivine, augite, and orthopyroxene. Based on ubiquitous quartz xenocrysts, with glassy rhyolitic inclusions, a reasonable conclusion is that substantial mixing of a quartz-bearing rhyolitic magma with a parental basaltic andesite has occurred at low pressure (shallow depth), and this would account for the low Al2O3 concentrations in the Zitácuaro basaltic andesites. Whatever the mechanism of incorporation, the quartz xenocrysts are evidence of contamination of basaltic magma with more siliceous material, thus making it difficult to use these magmas as indicators of mantle melting processes. Received: 29 July 1997 / Accepted: 29 January 1998  相似文献   

15.
Quaternary basalts, andesites and dacites from the Abu monogenetic volcano group, SW Japan, (composed of more than 40 monogenetic volcanoes) show two distinct chemical trends especially on the FeO*/MgO vs SiO2 diagram. One trend is characterized by FeO*/MgO-enrichment with a slight increase in SiO2 content (Fe-type trend), whereas the other shows a marked SiO2-enrichment with relatively constant FeO*/MgO ratios (Si-type trend). The Fe-type trend is explained by fractional crystallization with subtraction of olivine and augite from a primitive alkali basalt magma. Rocks of the Si-type trend are characterized by partially melted or resorbed quartz and sodic plagioclase phenocrysts and/or fine-grained basaltic inclusions. They are most likely products of mixing of a primitive alkali basalt magma containing olivine phenocrysts with a dacite magma containing quartz, sodic plagioclase and hornblende phenocrysts. Petrographic variation as well as chemical variation from basalt to dacite of the Si-type trend is accounted for by various mixing ratios of basalt and dacite magmas. Pargasitic hornblende and clinopyroxene phenocrysts in andesite and dacite may have crystallized from basaltic magma during magma mixing. Olivine and spinel, and quartz, sodic plagioclase and common hornblende had crystallized in basaltic and dacitic magmas, respectively, before the mixing. Within a lava flow, the abundance of basaltic inclusions decreases from the area near the eruptive vent towards the perimeter of the flow, and the number of resorbed phenocrysts varies inversely, suggesting zonation in the magma chamber.The mode of mixing changes depending on the mixing ratio. In the mafic mixture, basalt and dacite magmas can mix in the liquid state (liquid-liquid mixing). In the silicic mixture, on the other hand, the basalt magma was quenched and formed inclusions (liquid-solid mixing). During mixing, the disaggregated basalt magma and the host dacite magma soon reached thermal equilibrium. Compositional homogenization of the mixed magma can occur only when the equilibrium temperature is sufficiently above the solidus of the basalt magma. The Si-type trend is chemically and petrographically similar to the calc-alkalic trend. Therefore, a calc-alkalic trend which is distinguished from a fractional crystallization trend (e.g. Fe-type trend) may be a product of magma mixing.  相似文献   

16.
Lavas from Medicine Lake volcano, Northern California have been examined for evidence of magma mixing. Mixing of magmas has produced basaltic andesite, andesite, dacite and rhyolite lavas at the volcano. We are able to identify the compositional characteristics of the components that were mixed and to estimate the time lag between the mixing event and eruption of the mixed magma. Compositional data from pairs of phenocrysts identify a high alumina basalt (HAB) and a silicic rhyolite as endmembers of mixing. Mg-rich olivine or augite and Ca-rich plagioclase are associated with the HAB component, and Fe-rich orthopyroxene and Na-rich plagioclase are associated with the rhyolitic component. Some lavas contain multiple phenocryst assemblages suggesting the incorporation of several magmas intermediate between the HAB and silicic components. Glass inclusions trapped in Mg-rich olivine and Na-rich plagioclase are similar in composition to the proposed HAB and rhyolite end members and provide supportive evidence for mixing. Textural criteria are also consistent with magma mixing. Thermal curvature of the liquidus surfaces in the basalt-andesite-rhyolite system allows magmas produced by mixing to be either supercooled or superheated. Intergranular textures of basaltic andesites and andesites result from cooling initiated below the liquidus. The trachytic textures of silicic andesites form from cooling initiated above the liquidus. Reversed compositional zoning profiles in olivine crystals were produced by the mixing event, and the homogenization of the compositional zoning has been used to estimate the time interval between magma mixing and eruption. Time estimates are on the order of 80 to 90 h, suggesting that the mixing event triggered eruption.  相似文献   

17.
New petrologic and geochemical data are presented for a suite of rocks from the Papuan Ultramafic Belt (PUB), Papua New Guinea. Tectonite harzburgites at the base of the ophiolite have extremely refractory, uniform mineralogy, and are exceptionally depleted in lithophile elements. These features are consistent with the proposed origin of these rocks as depleted upper mantle, residual after extraction of a basaltic melt. The tectonite peridotites are overlain by a thick sequence of layered ultramafic and mafic cumulates containing olivine, orthopyroxene, clinopyroxene and plagioclase as the major cumulus phases. Early cumulates are characterized by magnesian olivine Mg90, orthopyroxene Mg90 and calcic plagioclase An86, and exhibit cryptic variation towards more iron-rich and sodic compositions. Abundances of incompatible elements in the cumulates are extremely low which, together with the nature of the cumulus phases, points to a magnesian olivine-poor tholeiite or magnesian quartz tholeiite parent magma(s) strongly depleted in incompatible elements. Highly fractionated iron-rich products of this parent magma type are represented by the LREE-depleted lavas in the overlying basalt sequence which, although resembling the most depleted mid-ocean ridge basalts (MORB) in terms of their low abundances of incompatible elements, have higher abundances of transition metals and lower abundances of Ti, HREE and other high valence cations compared to common MORB of similar Mg/(Mg+Fe) ratio.Eocene tonalites intruding the PUB are genetically unrelated to the ophiolites, and appear to be related to the Ti-poor high-Mg andesites of Cape Vogel and similar andesites and dacites at the northern end of the PUB. These rocks are considered to represent the early stages of island-arc magmatism associated with a northeastward-dipping subduction zone in the early Eocene immediately prior to emplacement of the PUB.  相似文献   

18.
Primitive andesites from the Taupo Volcanic Zone formed by magma mixing   总被引:1,自引:0,他引:1  
Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand’s Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.  相似文献   

19.
The Talasea Peninsula is composed of a chain of Quaternary volcanoes whose lavas range from basalt to rhyolite. The peninsula is situated in an orogenic environment and the lavas, while essentially calc-alkaline, show some differences from other orogenic suites on the Pacific rim. The most distinctive feature of the Talasea series is absolute iron enrichment in some lavas. Mineralogically, the andesites are characterized by phenocrysts of plagioclase, orthopyroxene, clinopyroxene and titanomagnetite, while the basalts lack titanomagnetite phenocrysts but contain olivine. The acid rocks have a mineralogy similar to that of the andesites, but also contain quartz, amphibole, biotite and ilmenite. The compositions of coexisting titanomagnetite and ilmenite in the acid lavas indicate equilibration temperatures in the range 920° to 860° C and oxygen fugacities ( ) above those of the fayalitemagnetite-quartz buffer assemblage. The mineralogical evidence supports the hypothesis of a crystal fractionation origin for this series and there is a possibility that the was more or less constant during the early stages of its evolution. The iron enriched lavas may be an offshoot from the main line of descent, resulting from near-surface fractionation, with the dominance of plagioclase in the crystal residuum producing an iron-rich liquid.  相似文献   

20.
The layered sequence from Niagara Icefalls (northern Victoria Land, Antarctica) is related to the Cambrian-Early Ordovician Ross Orogeny. The sequence consists of dunites, harzburgites, orthopyroxenites, melagabbronorites and gabbronorites of cumulus origin. The Mg# of olivine, spinel, orthopyroxene and clinopyroxene from these rocks yields positive correlations, thus indicating formation from melts that mainly evolved through fractional crystallisation. The following fractionation sequence was identified: olivine (up to 94 mol% forsterite) + Cr-rich spinel → olivine + orthopyroxene ± spinel → orthopyroxene → orthopyroxene + anorthite-rich plagioclase ± clinopyroxene. Clinopyroxenes retain the peculiar trace element signature of boninite melts, such as extremely low concentrations of HREE and HFSE, and LILE enrichment over REE and HFSE. U–Pb isotope data on zircons separated from a gabbronorite have allowed us to constrain the age of emplacement of the Niagara Icefalls sequence at ∼514 Ma. The occurrence of inherited zircons dated at ∼538 Ma indicates that the boninitic melts experienced, at least locally, crustal contamination. The Niagara Icefalls sequence can be related to a regional scale magmatic event that affected the eastern margin of the Gondwana supercontinent in the Middle Cambrian. We propose that the formation of the sequence was associated with the development of an embryonic back-arc basin in an active continental margin. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号