首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comprehensive utilization of floating breakwaters, specially acting as a supporting structure for offshore marine renewable energy explorations, has received more and more attention recently. Based on linear water-wave theory, the hydrodynamic performance of a T-shaped floating breakwater is semi-analytically investigated through the matched eigenfunction expansion method (MEEM). Auxiliary functions, to speed up the convergence and improve the accuracy in the numerical computations, are introduced to represent the singular behavior of fluid field near the lower salient corners of the structure. The effects of the height and installation position of the vertical screen on the reflection and transmission coefficients, dynamic response and wave forces are examined. It is found that the presence of the screen shifts the resonance frequency of RAO for both surge and pitch modes to the low-frequency area, while has no effect on heave mode. The identical added masses, damping and transmission coefficients can be obtained in the cases where the screen holds the same distance away from the longitudinal central axis of the upper box-type structure. Moreover, a relatively small pitch response can be achieved in a wide wave–frequency range, when the breakwater is Γ-shaped.  相似文献   

2.
This work presents a simple method to evaluate the performance of a porous breakwater when it is impinged with normal incidence by a non-breaking monochromatic wave train. It is based on: 1) a potential flow model for wave interaction with permeable structures and 2) a set of experimental tests on a rectangular porous structure with uniform granular distribution. A characteristic friction diagram is obtained considering wave energy balance in a control volume, minimising the error between the numerical model and the experimental results for the wave transmission coefficient. Results show that, for large breakwater widths, the reflection process reaches a saturation regime before the waves exit the structure at a distance from the seaside between the interval 0.2 < x/< 0.45. For larger breakwater widths, the reflection coefficient is almost constant (except for “resonant” conditions) and wave transmission decreases exponentially. Under such conditions, the wave propagation through the porous medium depends on the relative diameter D/L and the porosity of the material; the dependence on the relative breakwater width B/L and the ratio diameter wave height D/H is weak. This diagram intends to be useful for preliminary engineering studies of breakwater's efficiency and performance and as an adequate selection criteria of the experimental stone diameter to minimize scale effects in laboratory studies.  相似文献   

3.
部分反射直墙前潜堤水动力特性研究   总被引:1,自引:0,他引:1  
刘勇  何士艳 《海洋学报》2012,34(6):210-216
基于线性势流理论,对部分反射直墙前潜堤的水动力特性进行了理论研究。利用匹配特征函数展开法给出了潜堤透射系数和反射系数的计算方法,计算结果与边界元方法的计算结果一致。利用数值算例分析了潜堤透射系数和反射系数的主要影响因素。增大部分反射直墙的反射系数,将加大潜堤的透射系数。随着潜堤相对宽度或潜堤与直墙之间相对间距的增加,潜堤透射系数和反射系数呈周期性变化,但变化规律相反。  相似文献   

4.
Wave interaction with a wave absorbing double curtain-wall breakwater   总被引:3,自引:0,他引:3  
Yong Liu  Yu-cheng Li 《Ocean Engineering》2011,38(10):1237-1245
This study examines the hydrodynamic performance of a wave absorbing double curtain-wall breakwater. The breakwater consists of a seaward perforated wall and a shoreward impermeable wall. Both walls extend from above the seawater to some distance above the seabed. Then the below gap allows the seawater exchange, the sediment transport and the fish passage. By means of the eigenfunction expansion method and a least square approach, a linear analytical solution is developed for the interaction of water waves with the breakwater. Then the reflection coefficient, the transmission coefficient and the wave forces acting on the walls are calculated. The numerical results obtained for limiting cases agree very well with previous predictions for a single partially immersed impermeable wall, the double partially immersed impermeable walls and the bottom-standing Jarlan-type breakwater. The predicted reflection coefficients for the present breakwater also agree reasonable with previous experimental results. Numerical results show that with appropriate structure parameters, the reflection and transmission coefficients of the breakwater may be both below 0.5 at a wide range of the relative water depth. At the same time, the magnitude of wave force acting on each wall is small. This is significant for practical engineering.  相似文献   

5.
A floating breakwater produces less environmental impact, but is easily destroyed by large waves. In this paper, the spar buoy floating breakwater is introduced with a study on the wave reflection and transmission characteristics and mooring line tension induced by the waves. Mei (The Applied Dynamics of Ocean Surface Waves, Wiley, New York (1983) 740 p) proposed a theoretical solution for the reflection and transmission coefficients as the wave propagates through a one-layer slotted barrier. For a multiple-layer fence system, the analytical solution is proposed linearly. The results show that the theoretical computations agree well with the experimental trends. For a multiple-layer fence system, the transmission coefficients become maximal as the layer spacing to wavelength ratio moves to 1/2. Conversely, the coefficients become minimal, as the ratio moves to 0.3. To estimate the maximum tension of the mooring line, both numerical calculations and laboratory experiments were executed. The numerical calculation results were similar to the experimental results.  相似文献   

6.
Yong Liu  Bin Teng 《Ocean Engineering》2008,35(16):1588-1596
This study examines the hydrodynamic performance of a modified two-layer horizontal-plate breakwater. The breakwater consists of an upper submerged horizontal porous plate and a lower submerged horizontal solid plate. By means of the matched eigenfunction expansion method, a linear analytical solution is developed for the interaction of water waves with the structure. Then the reflection coefficient, the transmission coefficient, the energy-loss coefficient and the wave forces acting on the plates are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a single submerged horizontal solid plate and a single submerged horizontal porous plate. Numerical results show that with a suitable geometrical porosity of the upper plate, the uplift wave forces on both plates can be controlled at a low level. Numerical results also show that the transmission coefficient will be always small if the dimensionless plate length (plate length versus incident wavelength) exceeds a certain moderate value. This is rather significant for practical engineering, as the incident wavelength varies over a wide range in practice. Moreover, it is found that the hydrodynamic performance of the present structure may be further enhanced if the lower plate is also perforated.  相似文献   

7.
Comprehensive experimental and numerical studies have been undertaken to investigate wave energy dissipation performance and main influencing factors of a lower arc-plate breakwater. The numerical model, which considers nonlinear interactions between waves and the arc-plate breakwater, has been constructed by using the velocity wave- generating method, the volume of fluid (VOF) method and the finite volume method. The results show that the relative width, relative height and relative submergence of the breakwater are three main influencing factors and have significant influence on wave energy dissipation of the lower arc-plate open breakwater. The transmission coefficient is found to decrease with the increasing relative width, and the minimum transmission coefficient is 0.15 when the relative width is 0.45. The reflection coefficient is found to vary slightly with the relative width, and the maximum reflection coefficient is 0.53 when the relative width is 0.45. The transmission and reflection coefficients are shown to increase with the relative wave height for approximately 85% of the experimental tests when the relative width is 0.19 0.45. The transmission coefficients at relative submergences of 0.04, 0.02 and 0 are clearly shown to be greater than those at relative submergences of 0.02 and 0.04, while the reflection coefficient exhibits the opposite relationship. After the wave interacts with the lower arc-plate breakwater, the wave energy is mainly converted into transmission, reflection and dissipation energies. The wave attenuation performance is clearly weakened for waves with greater heights and longer periods.  相似文献   

8.
This paper presents numerical solutions for the wave reflection from submerged porous structures in front of the impermeable vertical breakwater. A new time-dependent mild-slope equation involves the parameters of the porous medium including the porosity, the friction factor and the inertia coefficient, etc. is derived for solving the boundary value problem. A comprehensive comparison between the present model and the existing analytical solution for the case of simple rectangular geometries of the submerged structure is performed first. Then, more complicated cases such as the inclined and trapezoidal submerged porous structures in front of the vertical breakwater with sloping bottom are considered. This study also examines the effects of the permeable properties and the geometric configurations of the porous structure to the wave reflection. It is found that the submerged porous structure with trapezoidal shape has more efficiency to reduce the wave reflection than that of triangular shape. The numerical results show that the minimum wave reflection is occurred when the breakwater is located at the intermediate water depth.  相似文献   

9.
Breakwaters are often built in coastal waters to facilitate navigation and recreation, both inside and outside regions of the breakwater. This requires that the reflection and transmission characteristics of the structure be both minimized at the same time. This is achieved by a design that will allow dissipation of wave energy by multiple reflection. Such structures will need the knowledge of these characteristics in their design. Model tests were performed on a shallow water breakwater concept of this type to determine the reflection and transmission coefficients. The concept of the breakwater was to reduce both the reflection and transmission of waves. It was found that the breakwater design was effective at certain wave characteristics. Nondimensional loads and local pressures on the breakwater panels are also reported which will facilitate the structural design of such breakwaters.  相似文献   

10.
Based on the idea of disturbing the water motion in the upright direction, a new kind of multiple-layer breakwater is proposed in this article, which mainly consists of several horizontal plates. The breakwater's performance of dissipating waves has been investigated in detail in the regular wave tests. The factors identified with the characteristics of the breakwater are discussed, such as the relative width, the wave steepness and the models geometrical parameters (the width and the gap). The comparison and analysis of the transmission and reflection coefficients with respect to different factors are presented. The model test results indicate that the multiple-layer breakwater has the good characteristic of dissipating waves. Further more, only in a little extent can it reflect the waves. The multiple-layer breakwater proposed in the paper is very significative to promote the open type breakwater to be the permanent wave attenuator in the application.  相似文献   

11.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

12.
《Coastal Engineering》2004,51(3):223-236
A computational model is developed to investigate the wave damping characteristics of a periodic array of porous bars. The transmission and reflection coefficients as well as the wave energy dissipation are evaluated relating to the physical properties and geometric factors of bars. It is shown that the porosity, number, width and height of bars all play important roles in the wave damping characteristics, compared to other factors such as the intrinsic permeability. It is observed that like impermeable bars, permeable bars display Bragg phenomenon. However, Bragg reflection produced by permeable bars is smaller than that by impermeable bars. Permeable bars reflect smaller waves, transmit smaller waves and dissipate more wave energy. It is indicated that if the porosity increases, both the reflection and transmission coefficients decrease and more wave energy is dissipated. Further, it is found that the porosity controls the magnitude, but not the oscillation frequency of the reflection coefficient, which depends only on the number of bars.  相似文献   

13.
In the present study, wave interaction with a fixed, partially immersed breakwater of box type with a plate attached (impermeable-permeable) at the front part of the structure is investigated numerically and experimentally. The large scale laboratory experiments on the interaction of regular waves with the special breakwater were conducted in the wave flume of Laboratori d’Enginyeria Marνtima (LIM) at Universitat Politecnica de Catalunya (UPC) in Barcelona. Experimental results are compared with numerical results obtained with the use of the Cornell breaking Wave and Structures (COBRAS) wave model. The effects of an impermeable as well as a permeable plate attached to the bottom of the breakwater on its hydrodynamic characteristics (wave transmission, reflection, dissipation, velocity and turbulence kinetic energy) are investigated. Computed velocities and turbulence kinetic energy in the vicinity of the structure indicate the effects of the breakwater with the attached (impermeable/permeable) plate on the flow pattern and the turbulence structure. The attached impermeable plate at the front part of the breakwater enhances significantly the efficiency of the structure in attenuating the incident waves. The permeable plate reduces the efficiency of the structure since wave energy is transmitted through the porous body of the plate. Based on the hydrodynamic characteristics it is inferred that the breakwater with an impermeable plate attached to its bottom is more efficient. The comparison of horizontal and vertical forces acting on the breakwater for all cases examined reveals that plate porosity influences slightly vertical force and severely horizontal force acting on the structure, reducing maximum values in both cases.  相似文献   

14.
In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.  相似文献   

15.
于珍  李雪艳  程志  孟钰婕 《海洋工程》2023,41(2):132-143
鉴于双弧板式透空堤的消浪性能仍不理想,提出了一种潜堤—双弧板组合结构,并基于OpenFOAM软件建立了波浪与该结构相互作用的数值模型,采用试验结果对所建数值模型进行验证。在此基础上,讨论了该新型结构的消浪特性、波压力分布特征以及所受波浪力的影响因素。结果表明,透射系数随相对板宽的增大而减小,反射系数则相反。透射与反射系数随相对潜深的变化较为显著。当结构位于静水位上方(即相对潜深为-0.05)时,透射系数最小而反射系数最大;当结构位于静水位下方(即相对潜深为0.05)时,透射系数最大而反射系数最小。该组合结构两块弧板上下表面的正负压力变化关于横轴近似对称,不同测点处的压力值差异显著。水平波浪力与垂直波浪力的变化趋势大致相似,但垂直波浪力远大于水平波浪力。研究结果可为其工程应用提供理论指导与技术支撑。  相似文献   

16.
Experiments on wave transmission coefficients of floating breakwaters   总被引:1,自引:0,他引:1  
To find a simple, inexpensive, and effective type of floating breakwater for deep-sea aquaculture, we studied three types of structures: the single box, the double box, and the board net. We conducted two-dimensional physical model tests in a wave-current flume in the laboratory to measure the wave transmission coefficients of the three types of breakwaters under regular waves with or without currents. Based on the initial comparison of the wave transmission coefficients, we proposed the use of the board-net floating breakwater for use with fish cages; we then conducted detailed experiments to examine how wave transmission coefficients are affected by several factors, including the width of the board, the row number of the net, the rigidity of the board, and the current velocity. The experimental results show that the board-net floating breakwater, which is a simple and inexpensive type of structure, can effectively protect fish and fish cages and may be adopted for aquaculture engineering in deep-water regions.  相似文献   

17.
双消浪室局部开孔沉箱防波堤具有低反射、结构受力小、适宜较大水深和工程造价低等优点。为明确双消浪室局部开孔沉箱水动力特性的主要影响因素,采用理论分析和物理模型试验相结合的方法,对规则波和不规则波作用下双消浪室局部开孔沉箱防波堤的反射特性进行研究。基于势流理论,建立规则波和不规则波对局部开孔沉箱防波堤作用的三维解析解,采用二次压力损失边界条件考虑沉箱开孔墙对波浪运动的影响,利用周期性边界条件考虑防波堤结构沿长度方向的周期性变化。开展相应规则波和不规则波物理模型试验,验证理论模型的合理性。通过算例分析,研究不同波浪要素和结构参数对防波堤反射特性的影响。研究表明:双消浪室局部开孔沉箱相对消浪室宽度取值为0.08~0.20,沉箱前墙开孔率大于后墙开孔率时,防波堤在较大波浪频率范围内消波效果显著;当前后墙的开孔率相等时,防波堤反射系数的最小值随着开孔率增大而减小。  相似文献   

18.
The characteristics of wave damping for the vertically stratified porous breakwaters are investigated under oblique wave action. It is found that for common angles of incidence, the wave damping efficiency of a vertically stratified porous structure behaves very similar to a simple structure. The reflection coefficient decreases with increasing angle of incidence while the transmission coefficient only slightly increases as the angle of incidence increases. It is shown that the wave energy loss is in direct proportional to the structure thickness and its porosity regardless of the angle of incidence. Considering small transmission coefficient as a basic requirement and if a moderate reflection coefficient is accepted, a structure thickness of b/h=1 is proposed. In this situation, since the structure does not have a very large thickness, adopting a vertically stratified structure is not an effective way to improve its wave damping efficiency.  相似文献   

19.
圆弧板透空式防波堤消波性能试验研究   总被引:1,自引:1,他引:0  
提出了一种由多层圆弧板组成的新型透空式防波堤结构,并对其在二维规则波浪作用下的消波性能进行了物理模型试验研究。在不同入射波高条件下,对圆弧板和水平板透空结构的消波性能进行了比较分析,探讨了圆弧板间距和层数对圆弧板透空式结构消波性能的影响。研究结果表明,圆弧板透空式结构的消波效果优于水平板式透空结构,在相对宽度为0.2时,可以使透射系数达0.5以下。随着圆弧板间距从0.15 m减小到0.05 m时,消波效果逐步提升,而圆弧板的层数对结构的消波性能也有一定影响。  相似文献   

20.
波浪反射系数谱的特征分析   总被引:3,自引:1,他引:2  
应用斜向不规则波反射系数的改进两点法(MTPM),用模型试验研究了混凝土护面堤和块石护面堤波浪反射系数的频率谱和方向谱,结果表明,分析的反射系数随入射波频率的增加、结构坡度的减小和入射角的加大而减小.给出了波浪反射系数频率谱及其随Iribarren数变化的规律,提出了反射系数三维谱的经验公式,由此可定量地描述斜向不规则波的反射系数随无量纲特征参数Iribarren数和入射波角度的变化规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号