首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results from 44 simulations of late stage planetary accretion, focusing on the delivery of volatiles (primarily water) to the terrestrial planets. Our simulations include both planetary “embryos” (defined as Moon to Mars sized protoplanets) and planetesimals, assuming that the embryos formed via oligarchic growth. We investigate volatile delivery as a function of Jupiter's mass, position and eccentricity, the position of the snow line, and the density (in solids) of the solar nebula. In all simulations, we form 1-4 terrestrial planets inside 2 AU, which vary in mass and volatile content. In 44 simulations we have formed 43 planets between 0.8 and 1.5 AU, including 11 “habitable” planets between 0.9 and 1.1 AU. These planets range from dry worlds to “water worlds” with 100+oceans of water (1 ocean=1.5×1024 g), and vary in mass between 0.23M and 3.85M. There is a good deal of stochastic noise in these simulations, but the most important parameter is the planetesimal mass we choose, which reflects the surface density in solids past the snow line. A high density in this region results in the formation of a smaller number of terrestrial planets with larger masses and higher water content, as compared with planets which form in systems with lower densities. We find that an eccentric Jupiter produces drier terrestrial planets with higher eccentricities than a circular one. In cases with Jupiter at 7 AU, we form what we call “super embryos,” 1-2M protoplanets which can serve as the accretion seeds for 2+M planets with large water contents.  相似文献   

2.
Except the old Jack Hills zircon crystals, it does not exit direct record of the first 500 Ma of the Earth history. Consequently, the succession of events that took place during this period is only indirectly known through geochemistry, comparison with other telluric planets, and numerical modelling. Just after planetary accretion several episodes were necessary in order to make life apparition and development possible and to make the Earth surface habitable. Among these stages are: the core differentiation, the formation of a magma ocean, the apparition of the first atmosphere, oceans and continents as well as the development of magnetic field and of plate tectonics. In the same time, Earth has been subject to extraterrestrial events such as the Late Heavy Bombardment (LHB) between 3.95 and 3.8 Ga. Since 4.4–4.3 Ga, the conditions for pre-biotic chemistry and appearance of life were already met (liquid water, continental crust, no strong meteoritic bombardment, etc...). This does not mean that life existed as early, but this demonstrates that all necessary conditions assumed for life development were already present on Earth.  相似文献   

3.
The identification of hydrogen in a range of lunar samples and the similarity of its abundance and isotopic composition with terrestrial values suggest that water could have been present in the Moon since its formation. To quantify the effect of water on early lunar differentiation, we present new analyses of a high‐pressure, high‐temperature experimental study designed to model the mineralogical and geochemical evolution of the solidification material equivalent to 700 km deep lunar magma oceans first reported in Lin et al. (2017a). We also performed additional experiments to better quantify water contents in the run products. Water contents in the melt phases in hydrous run products spanning a range of crystallization steps were quantified directly using a secondary ion mass spectrometry (SIMS). Results suggest that a significant but constant proportion (68 ± 5%) of the hydrogen originally added to the experiments was lost from the starting material independent of run conditions and run duration. The volume of plagioclase formed during our crystallization experiments can be combined with the measured water contents and the observed crustal thickness on the Moon to provide an updated lunar interior hygrometer. Our data suggest that at least 45–354 ppm H2O equivalent was present in the Moon at the time of crust formation. These estimates confirm the inference of Lin et al. (2017a) that the Moon was wet during its magma ocean stage, with corrected absolute water contents now comparable to estimates derived from the water content in a range of lunar samples.  相似文献   

4.
系外类地行星是目前搜寻地外生命的主要目标.随着观测仪器的发展,现在已经能探测到低于10个地球质量的系外行星.该文简要回顾了系外类地行星的形成与演化,介绍了当前研究它们内部结构的模型和方法,以及由此得出的类地行星质量-半径关系.同时,对应不同的行星初始物质成分,讨论了各种可能的大气结构.最后介绍了未来的空间任务在相关方面的工作.  相似文献   

5.
Jade C. Bond  Dante S. Lauretta 《Icarus》2010,205(2):321-19170
No terrestrial planet formation simulation completed to date has considered the detailed chemical composition of the planets produced. While many have considered possible water contents and late veneer compositions, none have examined the bulk elemental abundances of the planets produced as an important check of formation models. Here we report on the first study of this type. Bulk elemental abundances based on disk equilibrium studies have been determined for the simulated terrestrial planets of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58]. These abundances are in excellent agreement with observed planetary values, indicating that the models of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58] are successfully producing planets comparable to those of the Solar System in terms of both their dynamical and chemical properties. Significant amounts of water are accreted in the present simulations, implying that the terrestrial planets form “wet” and do not need significant water delivery from other sources. Under the assumption of equilibrium controlled chemistry, the biogenic species N and C still need to be delivered to the Earth as they are not accreted in significant proportions during the formation process. Negligible solar photospheric pollution is produced by the planetary formation process. Assuming similar levels of pollution in other planetary systems, this in turn implies that the high metallicity trend observed in extrasolar planetary systems is in fact primordial.  相似文献   

6.
The cooling rates for a thin upper layer of impact-melted material on the surface of the growing Earth were calculated using the experimental data for convective heat transfer coefficient. The presence of an atmosphere on the Earth embryo leads to very high cooling rates of the surface layer of impact crater. We find that during Safronov's type of accretion more than 90% of the Earth's surface was below the freezing point of water and the blanketing effect of greenhouse gases was unable to maintain a global magma ocean on Earth.  相似文献   

7.
The early thermal evolution of Moon has been numerically simulated to understand the magnitude of the impact-induced heating and the initially stored thermal energy of the accreting moonlets. The main objective of the present study was to understand the nature of processes leading to core–mantle differentiation and the production and cooling of the initial convective magma ocean. The accretion of Moon was commenced over a time scale of 100 yr after the giant impact event around 30–100 million years in the early solar system. We studied the dependence of the planetary processes on the impact scenarios, the initial average temperature of the accreting moonlets, and the size of the protomoon that accreted rapidly beyond the Roche limit within the initial 1 yr after the giant impact. The simulations indicate that the accreting moonlets should have a minimum initial averaged temperature around 1600 K. The impacts would provide additional thermal energy. The initial thermal state of the moonlets depends upon the environment prevailing within the Roche limit that experienced episodes of extensive vaporization and recondensation of silicates. The initial convective magma ocean of depth more than 1000 km is produced in the majority of simulations along with the global core–mantle differentiation in case the melt percolation of the molten metal through porous flow from bulk silicates was not the major mode of core–mantle differentiation. The possibility of shallow magma oceans cannot be ruled out in the presence of the porous flow. Our simulations indicate the core–mantle differentiation within the initial 102 to 103 yr of the Moon accretion. The majority of the convective magma ocean cooled down for crystallization within the initial 103 to 104 yr.  相似文献   

8.
When planetary accretion proceeds in the gas disk-solar nebula, a protoplanet attracts surrounding gas to form a distended H2-He atmosphere. The blanketing effect of the atmosphere, hampering the escape of accretional energy, enhances the surface temperature of planets. Furthermore, evaporation of ice or reduction of surface silicate and metallic oxide can supply a huge amount of water vapor into the atmosphere, which would raise the temperature and promote evaporation. Evaporated materials can be efficiently conveyed outward by vigorous convection, and condensed dust particles should keep the atmosphere opaque during accretion. The size of this opaque atmosphere dust blob is defined by the gravitational radius, which exceeds 3 × 108 m when the planetary mass is the Earth's mass (5.97 × 1024 kg). This is larger than the radii of present Jovian planets and so-called brown dwarfs. The expected lifetime of dust blobs is 106–107 yr, which is longer than that of the later gas accreting and cooling stages of Jovian planets. The number of dust blobs could exceed that of Jovian planets. If the gas disk is rather transparent, the possibility of observing such objects with a distended atmosphere may be higher than that of detecting Jovian planets. Contamination of the gas disk by the dust from primary atmospheres is negligible.Paper presented at the Conference on Planetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

9.
Protoatmospheres and surface environment of terrestrial protoplanets during the oligarchic accretion phase and the giant impacts phase are discussed from theoretical points of view. Mars-sized protoplanets form during the stage of the oligarchic growth. Since protoplanets are formed from more or less ‘local’ planetesimals, the surface environment of the accreting protoplanets depends on availability of volatile material in planetesimals. Even if no volatile-bearing planetesimals are available, a gravitationary captured solar composition atmosphere is formed during accretion. In such cases the surface temperature is always kept under the melting temperature of mantle silicate and only a subsurface magma ocean is formed. Core formation proceeds under dry conditions, and volatile elements are not partitioned into metallic iron. Accretion of water-bearing planetesimals results in impact degassing. A surface hydrous magma ocean forms in response to the thermal blanketing effect of the proto-atmosphere. Then, some volatile materials dissolve into the magma ocean. If we consider reaction with metallic iron, the proto-atmosphere is likely to be rich in hydrogen. In addition, a large amount of hydrogen may be partitioned into metallic iron under high pressure, and delivered to the core. In the stage of giant impacts, both dry and water-bearing protoplanets collide on the proto-Earth. Substantial amount of proto-atmosphere (including water vapor) survives giant impacts. Moreover, giant impacts on protoplanets with oceans result in relative concentration of water against other gases.  相似文献   

10.
Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100–2500 km. These icy bodies include trans‐Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy‐rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact‐induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.  相似文献   

11.
The early evolution of the asteroid Vesta has been extensively studied because of the availability of relevant data, especially important new studies of HED meteorites which originated from Vesta and the Dawn mission to Vesta in 2011–2012. These studies have concluded that an early melting episode led to the differentiation of Vesta into crust, mantle, and core. This melting episode is attributed to the decay of 26Al, which has a half‐life of 7.17 × 105 yr. This heating produced a global magma ocean. Surface cooling of this magma ocean will produce a solid crust. In this paper, we propose a convective heat‐transfer mechanism that effectively cools the asteroid when the degree of melting reaches about 50%. We propose that a cool solid surface crust, which is gravitationally unstable, will founder into the solid–liquid mix beneath and will very effectively transfer heat that prevents further melting of the interior. In this paper, we quantify this process. If Vesta had a very early formation, melting would commence at an age of about 1,30,000 yr, and solidification would occur at an age of about 10 Myr. If Vesta formed with a time delay greater than about 2 Myr, no melting would have occurred. An important result of our model is that the early melting episode is restricted to the first 10 Myr. This result is in good agreement with the radiometric ages of the HED meteorites.  相似文献   

12.
We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses \(\ge 0.5 M_\mathrm{Earth}\) before the gas in the disk disappeared, primordial atmospheres consisting mainly of H\(_2\) form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary \(\hbox {N}_2\) atmospheres. The buildup of atmospheric \(\hbox {N}_2\), \(\hbox {O}_2\), and the role of greenhouse gases such as \(\hbox {CO}_2\) and \(\hbox {CH}_4\) to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event \(\approx \) 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.  相似文献   

13.
Knowledge of the earliest evolution of Earth and Venus is extremely limited, but it is obvious from their dramatic contrasts today that at some point in their evolution conditions on the two planets diverged. In this paper we develop a geophysical systems box model that simulates the flux of carbon through the mantle, atmosphere, ocean, and seafloor, and the degassing of water from the mantle. Volatile fluxes, including loss to space, are functions of local volatile concentration, degassing efficiency, tectonic plate speed, and magnetic field intensity. Numerical results are presented that demonstrate the equilibration to a steady state carbon cycle, where carbon and water are distributed among mantle, atmosphere, ocean, and crustal reservoirs, similar to present-day Earth. These stable models reach steady state after several hundred million years by maintaining a negative feedback between atmospheric temperature, carbon dioxide weathering, and surface tectonics. At the orbit of Venus, an otherwise similar model evolves to a runaway greenhouse with all volatiles in the atmosphere. The influence of magnetic field intensity on atmospheric escape is demonstrated in Venus models where either a strong magnetic field helps the atmosphere to retain about 60 bars of water vapor after 4.5 Gyr, or the lack of a magnetic field allows for the loss of all atmospheric water to space in about 1 Gyr. The relative influences of plate speed and degassing rate on the weathering rate and greenhouse stability are demonstrated, and a stable to runaway regime diagram is presented. In conclusion, we propose that a stable climate-tectonic-carbon cycle is part of a larger coupled geophysical system where a moderate surface climate provides a stabilizing feedback for maintaining surface tectonics, the thermal cooling of the deep interior, magnetic field generation, and the shielding of the atmosphere over billion year time scales.  相似文献   

14.
In this paper we estimate the likelihood to find habitable Earth-like planets on stable orbits for 86 selected extrasolar planetary systems, where luminosity, effective temperature and stellar age are known. For determining the habitable zone (HZ) an integrated system approach is used taking into account a variety of climatological, biogeochemical, and geodynamical processes. Habitability is linked to the photosynthetic activity on the planetary surface. We find that habitability strongly depends on the age of the stellar system and the characteristics of a virtual Earth-like planet. In particular, the portion of land/ocean coverages plays an important role. We approximated the conditions for orbital stability using a method based on the Hill radius. Almost 60% of the investigated systems could harbour habitable Earth-like planets on stable orbits. In 18 extrasolar systems we find even better prerequisites for dynamic habitability than in our own solar system. In general our results are comparable to those with an HZ determination based only on climatic constraints. However, there are remarkable differences for land worlds and for systems older than about 7 Gyr.  相似文献   

15.
We report results of systematic experimental simulation of fractional crystallization of a lunar magma ocean (LMO) with the Lunar Primitive Upper Mantle bulk composition. These results complement prior work that simulated equilibrium crystallization. In contrast to previous numerical models for investigating magma ocean solidification processes and implications, our combined program simulates these processes directly using petrologic experimentation. Our experiments mimic LMO crystallization that is fractional throughout the process, rather than switching from initially equilibrium to fractional crystallization partway through. To do this, we adopted an iterative approach in which the starting material for each run is synthesized using the composition of the melt phase from the prior run. We compare our results to those from long-standing numerical models of LMO crystallization and show that although some features of those models are broadly reproduced, there are key differences in liquid lines of descent and the cumulate lithologies generated. Our results can be used to estimate the possible thickness of a primordial lunar crust formed from flotation of plagioclase during magma ocean solidification. Our estimate is greater than that from the recent Gravity Recovery and Interior Laboratory (GRAIL) mission, but consistent with the criteria on which the starting bulk composition was originally calculated. It assumes perfectly efficient separation of all plagioclase formed from the crystallizing magma ocean, which is likely not the case. We also demonstrate that a non-chondritic bulk composition, with respect to trace elements, is not required in order to generate a KREEP (potassium, rare earth elements, and phosphorus) signature from magma ocean crystallization.  相似文献   

16.
Melt inclusions in igneous minerals can provide constraints on magma compositions, especially for planetary samples where mass is severely limited. Small inclusions (<15 μm diameter) are more abundant than large ones, but have been used little from concern that they did not entrap average magma, but are rich in melt of a diffusional layer against the host mineral. We compared bulk compositions and calculated original compositions of small and large melt inclusions in the Martian basalt meteorite (shergottite) Tissint. Small and large melt inclusions are consistent with the same line of igneous differentiation, have the same abundance ratios for incompatible elements (P, Ti, Al, K, Na), and are consistent with derivation from the bulk composition of Tissint (inferred to represent its parent melt composition). For Tissint, then, small melt inclusions show no evidence of entrapping diffusional boundary layers, and appear to have entrapped bulk magma. Thus, its small inclusions can be as useful as larger ones; this may be so for other planetary samples, and thus provides an additional tool for investigating planetary magmas.  相似文献   

17.
The origin of water in the inner Solar System is not well understood. It is believed that temperatures were too high in the accretion disk in the region of the terrestrial planets for hydrous phases to be thermodynamically stable. Suggested sources of water include direct adsorption of hydrogen from the nebula into magma oceans after the terrestrial planets formed, and delivery of asteroidal or cometary material from beyond the zone of the terrestrial planets. We explore a new idea, direct adsorption of water onto grains prior to planetary accretion. This hypothesis is motivated by the observation that the accretion disk from which our planetary system formed was composed of solid grains bathed in a gas dominated by hydrogen, helium, and oxygen. Some of that hydrogen and oxygen combined to make water vapor. We examine quantitatively adsorption of water onto grains in the inner Solar System accretion disk by exploring the adsorption dynamics of water molecules onto forsterite surfaces via kinetic Monte Carlo simulations. We conclude that many Earth oceans of water could be adsorbed.  相似文献   

18.
The eruptive plumes and large heat flow (~15 GW) observed by Cassini in the South Polar Region of Enceladus may be expressions of hydrothermal activity inside Enceladus. We hypothesize that a subsurface ocean is the heat reservoir for thermal anomalies on the surface and the source of heat and chemicals necessary for the plumes. The ocean is believed to contain dissolved gases, mostly CO2 and is found to be relatively warm (~0 °C). Regular tidal forces open cracks in the icy crust above the ocean. Ocean water fills these fissures. There, the conditions are met for the upward movement of water and the dissolved gases to exsolve and form bubbles, lowering the bulk density of the water column and making the pressure at its bottom less than that at the top of the ocean. This pressure difference drives ocean water into and up the conduits toward the surface. This transportation mechanism supports the thermal anomalies and delivers heat and chemicals to the chambers from which the plumes erupt. Water enters these chambers and there its bubbles pop and loft an aerosol mist into the ullage. The exiting plume gas entrains some of these small droplets. Thus, nonvolatile chemical species in ocean water can be present in the plume particles. A CO2 equivalent-gas molar fraction of ~4 × 10?4 for the ocean is sufficient to support the circulation. A source of heat is needed to keep the ocean warm at ~0 °C (about two degrees above its freezing point). The source of heat is unknown, but our hypothesis is not dependent on any particular mechanism for producing the heat.  相似文献   

19.
Christopher Oze  Mukul Sharma 《Icarus》2007,186(2):557-561
The near-surface inorganic synthesis of molecular hydrogen (H2) is a fundamental process relevant to the origins and to the sustenance of early life on Earth and potentially other planets. Hydrogen production through the decomposition of water is thought to be a principal reaction that occurs during hydrothermal alteration of olivine, an iron-magnesium silicate abundant near planetary surfaces. We demonstrate that copious amounts of H2 are produced only when the olivine undergoing alteration (serpentinization) contains 1 to 50 mol% iron over a variety of planetary surface P-T conditions. This suggests that extrasolar Earth-like planets that are hosted by a star with iron contents up to two times the solar value could support life provided they are hydrothermally active and fall within the habitable zone around the star.  相似文献   

20.
C.C. Reese  V.S. Solomatov 《Icarus》2006,184(1):102-120
The evolution of a melt region produced by a large impact during Mars formation is addressed. While some impact induced melt is redistributed during crater excavation, sufficiently large impacts (much larger than basin forming impacts) generate an intact melt region which is retained beneath the excavation zone, i.e., a local magma ocean. Local magma ocean evolution depends on the effective rheology controlling large scale deformation of the solid part of the planet, mechanism of crystallization, and melt region size. Within the uncertainties of various parameters, two scenarios are possible. For sufficiently weak rheology or large melt region size, evolution is characterized by rapid extrusion and formation of a global magma ocean. For sufficiently strong rheology or small melt region size, in situ crystallization to a partially molten solid state occurs prior to isostatic adjustment. Subsequent to in situ crystallization, local magma ocean evolution depends on melt region size and efficiency of lateral redistribution compared to bulk conductive cooling. For large melt regions, lateral spreading occurs via plastic deformation and results in an asymmetric, global, partial melt layer. For small melt region size, viscous spreading viscous can result in bulk cooling below the solidus prior to formation of a global layer. A hypothesis for the origin of the hemispherical crustal dichotomy and Tharsis rise is suggested. The dichotomy is associated with a global partial melt layer produced by evolution of a large, local magma ocean. After dichotomy formation, evolution of a second, smaller, local magma ocean is related to Tharsis development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号