首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
l. IntroductionLinear dynamics ls domlnant as a response to atmospheric forcing in the equatrialregion. In the mid-- to high--latitudes, ocean represents nonlinear phenomena such as strongcurrents and meso--scale eddies. Heat and water fluxes are also important. The resultantscales of the phenomena are rather small. We developed, for the mid-- to high--latitudes, anocean data assimilation system COMPASS--K: Comprehensive Ocean ModeIing, Prediction,Analysis and Synthesis System in the K…  相似文献   

2.
本文使用美国伍兹霍尔海洋研究所发布的客观分析海气通量项目数据集及日本海洋科学技术中心的Ishii次表层温盐数据,利用经验正交函数分析方法、小扰动展开、线性回归、海水热力学方程2010等方法,主要研究在增温停滞背景(1979~2000年,升温阶段;2001~2013年,停滞阶段)下,北半球两支西边界流区域即黑潮及其延伸区域(简称黑潮区域)和墨西哥湾流区域(简称湾流区域)海表潜热通量的年代际趋势转变和影响因子,以及内部热含量的年代际变化。结果表明,两支西边界流在增温停滞背景下都发生了年代际尺度的趋势反转,而反转的时间节点以及前后的反转趋势都不相同:黑潮区域潜热通量年代际趋势于2001年左右由正转负;而湾流区域潜热通量年代际趋势于1993年左右由负转正。其影响因子在前后阶段也有不同:通过影响海表饱和比湿进而影响海气比湿差,海表温度是影响黑潮区域全时间段以及湾流区域1993~2013年时间段潜热通量变化的主要因素;而风速通过直接的影响以及对空气湿度的影响也会对潜热通量变化产生间接影响,主要在湾流区域的1979~1992年时间段体现。黑潮及湾流区域0~1000 m海水热含量的年代际变化同样存在差异:黑潮区域表层热含量年代际变化同混合层一致;湾流区域表层热含量年代际变化同深层相异,而表层以下的变化较为一致;两个区域的深层热含量变化都体现了增温停滞的现象,黑潮区域可能存在下层至上层的影响;而湾流区域可能存在上层至下层的影响。黑潮与湾流区域表面的差异可以归结为海洋与大气因素的影响差异,而内部热含量年代际变化的垂直差异可能归结为两区域的结构差异。增温停滞对两区域的变化影响显著,而区域的变化可能存在对增温停滞的反馈。  相似文献   

3.
利用18年带通滤波的卫星高度计资料,通过引入黑潮延伸体中尺度涡能量(EKE)的面积指数,分析了黑潮延伸体中尺度涡EKE的强度和位置的年代际变化特征,并使用回归分析等方法分析了它们与北太平洋风暴轴之间的关系。结果表明,黑潮延伸体中尺度涡增强与北太平洋风暴轴的增强相对应,而EKE位置偏北(南)时对应的北太平洋风暴轴也偏北(南),同时当EKE的位置偏东(偏西)时北太平洋风暴轴则西退(东移)。此外,北太平洋风暴轴的变化对黑潮延伸体也可能有一定的反馈作用,黑潮延伸体中尺度涡EKE强度的变化与北太平洋风暴轴EOF第一和第三个模态(第二个模态)回归的海表面高度距平模态有明显的3~4年滞后的正(负)相关,而黑潮延伸体中尺度涡EKE位置的变化则相反。这种滞后相关可能是通过北太平洋风暴轴驱动的遥相关型环流改变海表面风应力旋度并强迫出的海表面高度距平的西传导致的。  相似文献   

4.
Frequency-dependent nudging is applied to a coarse resolution (nominal 1°) global ocean model to suppress its drift and bias, and the impact of the nudging on the skill of the model is assessed. The nudging is applied to temperature and salinity in frequency bands centred on 0 and 1 cycles per year. As expected, the nudging significantly reduces the biases in the long-term mean and annual cycle of temperature, salinity, and sea level. By comparing the simulated (i) sea surface temperature with operational analyses based on observations, (ii) vertical profiles of temperature and salinity with observations made by Argo floats, and (iii) sea level with altimeter observations, it is shown that the skill of the model in simulating variability about the annual cycle is also improved. The potential benefit of applying frequency-dependent nudging to the ocean component of a coupled atmosphere–ocean model is discussed.  相似文献   

5.
为准确描述黑潮延伸体的强度,突出其表面热量输送作用引起的海温调整,提出了纬向扰动海温的概念,基于对NOAA(National Oceanic and Atmospheric Administration)高分辨率海温资料和GODAS(Global Ocean Data Assimilation System)海洋再分析资料的分析表明,气候态的纬向扰动海温与洋流的表面热量输送分布高度一致;对纬向扰动海温年际演变的分析表明,相较于传统的海温异常,纬向扰动海温能够更好地体现出延伸体系统强度的年际振荡,标识出延伸体和亲潮的影响范围;对西北太平洋纬向扰动海温异常的经验模态分解结果的分析表明,前两模态主要反映不受亲潮交汇影响的延伸体收缩和扩张模态,而第三、四模态则反映北侧亲潮的强弱对延伸体扰动海温的影响。涡动动能作为标识延伸体区域的重要动力学指标,在延伸体系统的演变中,与纬向扰动海温通过海洋温度锋的强度和流轴的稳定性紧密联系:纬向扰动海温增大,表明洋流的热量输送作用增强,延伸体强度增强,海温梯度增大,此时海洋温度锋增强,流轴稳定,中尺度涡活动减弱,反之亦然。考虑到纬向扰动海温对延伸体表面热量输送作用具有较好的刻画能力,定义了延伸体热力指数Tp,对比分析表明该指数能较好地标识出延伸体的收缩和扩张状态,对延伸体的纬向伸展距离和流轴的南北振荡同样具有良好的指示作用。  相似文献   

6.
In this paper, a statistical method called Generalized Equilibrium Feedback Analysis(GEFA) is used to investigate the responses of the North Pacific Storm Track(NPST) in the cold season to the multi-scale oceanic variations of the Kuroshio Extension(KE) system, including its large-scale variation, oceanic front meridional shift, and mesoscale eddy activity.Results show that in the cold season from the lower to the upper troposphere, the KE large-scale variation significantly weakens the storm tr...  相似文献   

7.
Two types of cold-air outbreaks over the Yellow and East China Seas are investigated using a regional mesoscale model. Distinct patterns of surface turbulent heat fluxes and precipitation are identified between the two cases. The sea surface heat flux and frictional velocity are strongly influenced by mesoscale differences between high- and low-resolution datasets of sea surface temperature (SST). The influence of the SST difference on atmospheric water is spread to the downstream area of the outbreak with the phase transition of water. The air mass transformation around 800?hPa over the Kuroshio is partly influenced by the upstream SST difference. In particular, the SST difference near the mouth of the Yanzi River strongly modifies the air mass around Taiwan. Thus, in addition to the Kuroshio front, the mesoscale Chinese coastal SST structure is also important in the air mass transformation over the East China Sea.  相似文献   

8.
A 1-degree global model is used to investigate the skill of spectral nudging at coarse resolution by performing two numerical experiments, one with spectral nudging and the other without. In the spectral nudging experiment, the model temperature and salinity are nudged to an observed climatological monthly-mean field. The study compares the model mean state, as well as the interannual and decadal variability of oceanic quantities with observations, (e.g., sea surface height (SSH) and sea surface temperature (SST)). Spectral nudging is found to be effective in constraining model drift from the observed mean state of temperature and salinity in the global ocean, which has been reported in previous studies. The present study further shows that spectral nudging significantly improves the model skill of topostrophy (a measure of currents flowing along the topography) in water depth below 2000?m with no clear improvement elsewhere. Despite its known ability to damp oceanic variability at various time scales, spectral nudging can still represent the interannual and decadal variability of SSH and SST well, to a degree comparable to the other experiment.  相似文献   

9.
The objective of this work is to gain a general insight into the key mechanisms involved in the impact of nudging on the large scales and the small scales of a regional climate simulation. A “Big Brother experiment” (BBE) approach is used where a “reference atmosphere” is known, unlike when regional climate models are used in practice. The main focus is on the sensitivity to nudging time, but the BBE approach allows to go beyond a pure sensitivity study by providing a reference which model outputs try to approach, defining an optimal nudging time. Elaborating upon previous idealized studies, this work introduces key novel points. The BBE approach to optimal nudging is used with a realistic model, here the weather research and forecasting model over the European and Mediterranean regions. A winter simulation (1 December 1989–28 February 1990) and a summer simulation (1 June 1999–31 August 1999) with a 50 km horizontal mesh grid have been performed with initial and boundary conditions provided by the ERA-interim reanalysis of the European Center for Medium-range Weather Forecast to produce the “reference atmosphere”. The impacts of spectral and indiscriminate nudging are compared all others things being equal and as a function of nudging time. The impact of other numerical parameters, specifically the domain size and update frequency of the large-scale driving fields, on the sensitivity of the optimal nudging time is investigated. The nudged simulations are also compared to non-nudged simulations. Similarity between the reference and the simulations is evaluated for the surface temperature, surface wind and for rainfall, key variables for climate variability analysis and impact studies. These variables are located in the planetary boundary layer, which is not subject to nudging. Regarding the determination of a possible optimal nudging time, the conclusion is not the same for indiscriminate nudging (IN) and spectral nudging and depends on the update frequency of the driving large-scale fields τ a . For IN, the optimal nudging time is around τ = 3 h for almost all cases. For spectral nudging, the best results are for the smallest value of τ used for the simulations (τ = 1 h) for frequent update of the driving large-scale fields (3 and 6 h). The optimal nudging time is 3 for 12 h interval between two consecutive driving large-scale fields due to time sampling errors. In terms of resemblance to the reference fields, the differences between the simulations performed with IN and spectral nudging are small. A possible reason for this very similar performance is that nudging is active only above the planetary boundary layer where small-scale features are less energetic. As expected from previous studies, the impact of nudging is weaker for a smaller domain size. However the optimal nudging time itself is not sensitive to domain size. The proposed strategy ensures a dynamical consistency between the driving field and the simulated small-scale field but it does not ensure the best “observed” fine scale field because of the possible impact of incorrect driving large-scale field. This type of downscaling provides an upper bound on the skill possible for recent historical past and twenty-first century projections. The optimal nudging strategy with respect to dynamic downscaling could add skill whenever the parent global model has some level of skill.  相似文献   

10.
在51年(1958-2008)西北太平洋区域海洋再分析CORA1.0产品的基础上,改进了模式配置和同化方法,研制了2009-18年的CORA产品并对其进行以下检验:(1)温盐和海表高度异常均方根误差分布检验;(2)35°N处温度断面分布检验;(3)再分析流场和表漂浮标轨迹对比检验.结果显示,2009-18年的CORA产品可以再现海洋要素长时间序列,时空多尺度的变化特征,为研究特征海洋现象和过程提供背景信息.  相似文献   

11.
基于中尺度WRF模式,采用NCEP FNL最终分析资料作为初始场和侧边界条件,以2009年为例,对中国东海区风场进行了动力降尺度研究,旨在检验WRF模式长期积分的动力降尺度能力,并考察动力降尺度方法在东海区的适用情况,为东海区多年时间尺度的风场降尺度研究提供参考。结果表明,3种不同积分方式模拟的风场均能较好地描述东海区风场的季节变化,且整体在冬季的模拟,要优于夏季的模拟。5DAY试验模拟效果最优,其他两组试验稍差。说明每5 d更新一次初始场的积分方式能够最好地描述东海区风场。每10 d更新一次初始场比起1 a连续积分模拟效果并无优势,连续长期积分模拟虽会导致系统误差累积,但定期更新初始场的方法并不一定能有效改善东海区风场的模拟效果。对于加入谱逼近方案的3种积分方式模拟的风场,每10 d更新一次初始场的试验对加入谱逼近方案响应最为明显。但就总体试验效果,5DAYS试验模拟效果仍然是最好的。加入谱逼近方案使得1 a连续积分这种积分方式模拟效果变差。由此说明,加入谱逼近方案后,采用5 d更新一次初始场的方式驱动,每次积分时间较短,初始场的作用还较强,故其改善效果不如10 d更新一次初始场;对于1 a连续积分,谱逼近方案使得初始场的改变导致了连续积分的误差积累增大。  相似文献   

12.
Sensitivity experiments with atmospheric general circulation model CAM3 have been performed to investigate the atmospheric response to warm wintertime sea surface temperature anomalies in the Kuroshio Extension (KE). Mechanism for the sustaining abnormal atmospheric response to sea surface temperature anomaly (SSTA) is revealed. It is found that the warm wintertime SSTA in KE leads to soil moisture changes across the Asia continent. The abnormal soil moisture may possibly be one of the reasons for the sustaining of abnormal atmospheric response intrigued by SSTA. Oscillations of perturbations intrigued by warm wintertime SSTA in KE, which have similar frequencies with that of intrinsic atmospheric oscillations, are superposed on the atmospheric oscillations and propagate with primary periodic oscillation of the atmosphere. These SSTA-intrigued oscillations are coupled with natural atmospheric oscillation and finally become parts of it. This is probably another reason for the sustaining of abnormal atmospheric response to SSTA in KE.  相似文献   

13.
基于偏相关的强迫因子选取方法,以长江中下游6—7月降水为例,进行了降水变率的归因分析,并建立了相应的统计降尺度模型。结果表明,影响长江中下游6—7月降水的强迫因子主要有两个:西太平洋850 h Pa的位势高度(W_(PH8))和黑潮延伸区的海表温度(K_(SST))。W_(PH8)反映的是西太平洋副热带高压对长江中下游降水的影响;K_(SST)反映了黑潮延伸区的变率。基于这两个因子的线性降尺度模型能较好地拟合长江中下游6—7月的降水,在独立检验和模式检验阶段,模型体现出了可靠性,因而可用于长江中下游降水的季节预测。  相似文献   

14.
This study evaluates how statistical and dynamical downscaling models as well as combined approach perform in retrieving the space–time variability of near-surface temperature and rainfall, as well as their extremes, over the whole Mediterranean region. The dynamical downscaling model used in this study is the Weather Research and Forecasting (WRF) model with varying land-surface models and resolutions (20 and 50 km) and the statistical tool is the Cumulative Distribution Function-transform (CDF-t). To achieve a spatially resolved downscaling over the Mediterranean basin, the European Climate Assessment and Dataset (ECA&D) gridded dataset is used for calibration and evaluation of the downscaling models. In the frame of HyMeX and MED-CORDEX international programs, the downscaling is performed on ERA-I reanalysis over the 1989–2008 period. The results show that despite local calibration, CDF-t produces more accurate spatial variability of near-surface temperature and rainfall with respect to ECA&D than WRF which solves the three-dimensional equation of conservation. This first suggests that at 20–50 km resolutions, these three-dimensional processes only weakly contribute to the local value of temperature and precipitation with respect to local one-dimensional processes. Calibration of CDF-t at each individual grid point is thus sufficient to reproduce accurately the spatial pattern. A second explanation is the use of gridded data such as ECA&D which smoothes in part the horizontal variability after data interpolation and damps the added value of dynamical downscaling. This explains partly the absence of added-value of the 2-stage downscaling approach which combines statistical and dynamical downscaling models. The temporal variability of statistically downscaled temperature and rainfall is finally strongly driven by the temporal variability of its forcing (here ERA-Interim or WRF simulations). CDF-t is thus efficient as a bias correction tool but does not show any added-value regarding the time variability of the downscaled field. Finally, the quality of the reference observation dataset is a key issue. Comparison of CDF-t calibrated with ECA&D dataset and WRF simulations to local measurements from weather stations not assimilated in ECA&D, shows that the temporal variability of the downscaled data with respect to the local observations is closer to the local measurements than to ECA&D data. This highlights the strong added-value of dynamical downscaling which improves the temporal variability of the atmospheric dynamics with regard to the driving model. This article highlights the benefits and inconveniences emerging from the use of both downscaling techniques for climate research. Our goal is to contribute to the discussion on the use of downscaling tools to assess the impact of climate change on regional scales.  相似文献   

15.
The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.  相似文献   

16.
The sensitivity of a regional climate model (RCM) to cumulus parameterization (CUPA) schemes in modeling summer precipitation over East Asia has been investigated by using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (PSU-NCAR MM5). The feasibility of physical ensemble and the effect of interior (spectral) nudging are also assessed. The RCM simulations are evaluated against the NCEP/NCAR reanalysis data and NCEP/CPC precipitation data for three summers (JJA) in 1991, 1998, and 2003. The results show that the RCM is highly sensitive to CUPA schemes. Different CUPA schemes cause distinctive characteristics in the modeling of JJA precipitation and the intraseasonal (daily) variability of regional precipitation. The sensitivity of the RCM simulations to the CUPA schemes is reduced by adopting the spectral nudging technique, which enables the RCM to reproduce more realistic large-scale circulations at the upper levels of the atmosphere as well as near the surface, and better precipitation simulation in the selected experiments. The ensemble simulations using different CUPA schemes show higher skills than individual members for both control runs and spectral nudging runs. The physical ensemble adopting the spectral nudging technique shows the highest downscaling skill in capturing the general circulation patterns for all experiments and improved temporal distributions of precipitation in some regions.  相似文献   

17.
Accurate estimation of evapotranspiration is generally constrained due to lack of required hydrometeorological datasets. This study addresses the performance analysis of reference evapotranspiration (ETo) estimated from NASA/POWER, National Center for Environmental Prediction (NCEP) global reanalysis data before and after dynamical downscaling through the Weather Research and Forecasting (WRF) model. The state-of-the-art Hamon’s and Penman-Monteith’s methods were utilized for the ETo estimation in the Northern India. The performance indices such as bias, root mean square error (RMSE), and correlation (r) were calculated, which showed the values 0.242, 0.422, and 0.959 for NCEP data (without downscaling) and 0.230, 0.402, and 0.969 for the downscaled data respectively. The results indicated that after WRF downscaling, there was some marginal improvement found in the ETo as compared to the without downscaling datasets. However, a better performance was found in the case of NASA/POWER datasets with bias, RMSE, and correlation values of 0.154, 0.348, and 0.960 respectively. In overall, the results indicated that the NASA/POWER and WRF downscaled data can be used for ETo estimation, especially in the ungauged areas. However, NASA/POWER is recommended as the ETo calculations are less computationally expensive and easily available than performing WRF simulations.  相似文献   

18.
The signatures of mesoscale eddies induced surface and subsurface changes have not been comprehensively quantified for the Bay of Bengal (BoB) region. This study quantifies the statistical properties and three-dimensional (3D) eddy structures in the BoB. To accomplish this, the satellite altimetry data combined with automated eddy detection and tracking algorithm is used. Horizontal distribution of surface characteristics of eddies is analyzed by using 24 years (1993–2016) of AVHRR infrared satellite sea surface temperature (SST) and 7 years (2010–2016) of sea surface salinity (SSS) of SMOS satellite data. Surface eddy centric composite analysis reveals the existence of warm (cold) and diverse SSS anomalies for anticyclonic (cyclonic) eddies. During winter, it is important to note that the eddy induced SST and SSS anomalies show the dipole patterns show opposite phases for the cyclonic and anticyclonic eddies. Observed diploe structures are consistent with the eddy rotation and background large-scale meridional gradient of temperature and salinity fields. The 3D structure of eddies is investigated by using the ARMOR3D and Argo float profiles. The horizontal distribution of temperature and salinity anomalies from ARMOR3D signify the monopole structure of eddies in the subsurface layers. Further, the analysis of composite averages of 241 (200) Argo temperature profiles indicates the core of anticyclonic (cyclonic) eddies centered at about ∼140 m (∼100 m). However, salinity profiles depict the existence of core at ∼65 m (∼50 m). This study have practical relevance to a variety of stakeholders and finds profound importance in the validation of eddy-resolving ocean models for the BoB region.  相似文献   

19.
为了评估潜热对短临降水预报的影响,基于雷达反演潜热的基础上,以2014年3月30日的强降水个例和2013年5月的31天为样本,进行了初值有无引入潜热释放引起位温增量的批量试验。(1)强降水个例模拟试验发现,初值引进潜热后预报的12 h累积降水中心与实况一致,预报的前4 h雷达反射率从范围、强度上更接近观测的反射率,逐小时TS比无潜热试验要高。(2)诊断分析表明模式初值引进潜热后,调整降水区域上空大气的温度结构,订正或加强次级环流,触发对流不稳定能量释放,利于成云致雨。(3)批量对比试验反映初值潜热对前12 h逐时降水预报一直保持正影响。   相似文献   

20.
This study assesses the performance of spectral nudging methodology in dynamical regional climate downscaling for summer climate over East Asia. The regional climate model NCAR-MM5v3 was used to dynamically downscale the 2.5-degree NCEP/NCAR reanalysis (NNRP) data onto 50-km regional grids. The main focus is the model’s simulation of precipitation. The NCEP/CPC precipitation analysis data were used as the verification. Boreal summers (June, July, and August) in 1991, 1998, and 2003 and heavy floods that occurred in Eastern China were selected for the study. Compared to the control runs (CTLs) without spectral nudging (SN), experiments with SNs greatly reduced systematic errors in upper-level large-scale circulations and were in better agreement with the NNRP. At the same time, SNs outperformed CTLs in simulating model variables near the surface. In comparison with observational precipitation data, spectral nudging also improved the model’s simulation of precipitation in spatial and temporal distributions. SN-simulated precipitation field patterns, including the spatial distribution of monthly mean precipitation band, the seasonal march of major precipitation bands, and the daily variability of regional-averaged time series, show much more consistency with observations than those of the CTL runs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号