首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have experimentally studied the formation of diamonds in alkaline carbonate–carbon and carbonate–fluid–carbon systems at 5.7–7.0 GPa and 1150–1700 °C, using a split-sphere multi-anvil apparatus (BARS). The starting carbonate and fluid-generating materials were placed into Pt and Au ampoules. The main specific feature of the studied systems is a long period of induction, which precedes the nucleation and growth of diamonds. The period of induction considerably increases with decreasing P and T, but decreases when adding a C–O–H fluid to the system. In the range of P and T corresponding to the formation of diamonds in nature, this period lasts for tens of hours. The reactivity of the studied systems with respect to the diamond nucleation and growth decreases in this sequence: Na2CO3–H2C2O4·2H2O–C>K2CO3–H2C2O4·2H2O–C>>Na2CO3–C>K2CO3–C. The diamond morphology is independent of P and T, and is mainly governed by the composition of the crystallization medium. The stable growth form is a cubo-octahedron in the Na2CO3 melt, and an octahedron in the K2CO3 melt. Regardless of the composition of the carbonate melt, only octahedral diamond crystals formed in the presence of the C–O–H fluid. The growth rates of diamond varied in the range from 1.7 μm/h at 1420 °C to 0.1–0.01 μm/h at 1150 °C, and were used to estimate, for the first time, the possible duration of the crystallization of natural diamonds. From the analysis of the experimental results and the petrological evidence for the formation of diamonds in nature, we suggest that fluid-bearing alkaline carbonate melts are, most likely, the medium for the nucleation and growth of diamonds in the Earth's upper mantle.  相似文献   

2.
Three types of fluid inclusions have been identified in olivine porphyroclasts in the spinel harzburgite and lherzolite xenoliths from Tenerife: pure CO2 (Type A); carbonate-rich CO2–SO2 mixtures (Type B); and polyphase inclusions dominated by silicate glass±fluid±sp±silicate±sulfide±carbonate (Type C). Type A inclusions commonly exhibit a “coating” (a few microns thick) consisting of an aggregate of a platy, hydrous Mg–Fe–Si phase, most likely talc, together with very small amounts of halite, dolomite and other phases. Larger crystals (e.g. (Na,K)Cl, dolomite, spinel, sulfide and phlogopite) may be found on either side of the “coating”, towards the wall of the host mineral or towards the inclusion center. These different fluids were formed through the immiscible separations and fluid–wall-rock reactions from a common, volatile-rich, siliceous, alkaline carbonatite melt infiltrating the upper mantle beneath the Tenerife. First, the original siliceous carbonatite melt is separated from a mixed CO2–H2O–NaCl fluid and a silicate/silicocarbonatite melt (preserved in Type A inclusions). The reaction of the carbonaceous silicate melt with the wall-rock minerals gave rise to large poikilitic orthopyroxene and clinopyroxene grains, and smaller neoblasts. During the metasomatic processes, the consumption of the silicate part of the melt produced carbonate-enriched Type B CO2–SO2 fluids which were trapped in exsolved orthopyroxene porphyroclasts. At the later stages, the interstitial silicate/silicocarbonatite fluids were trapped as Type C inclusions. At a temperature above 650 °C, the mixed CO2–H2O–NaCl fluid inside the Type A inclusions were separated into CO2-rich fluid and H2O–NaCl brine. At T<650 °C, the residual silicate melt reacted with the host olivine, forming a reaction rim or “coating” along the inclusion walls consisting of talc (or possibly serpentine) together with minute crystals of NaCl, KCl, carbonates and sulfides, leaving a residual CO2 fluid. The homogenization temperatures of +2 to +25 °C obtained from the Type A CO2 inclusions reflect the densities of the residual CO2 after its reactions with the olivine host, and are unrelated to the initial fluid density or the external pressure at the time of trapping. The latter are restricted by the estimated crystallization temperatures of 1000–1200 °C, and the spinel lherzolite phase assemblage of the xenolith, which is 0.7–1.7 GPa.  相似文献   

3.
Status report on stability of K-rich phases at mantle conditions   总被引:1,自引:0,他引:1  
George E. Harlow  Rondi Davies 《Lithos》2004,77(1-4):647-653
Experimental research on K-rich phases and observations from diamond inclusions, UHP metamorphic rocks, and xenoliths provide insights about the hosts for potassium at mantle conditions. K-rich clinopyroxene (Kcpx–KM3+Si2O6) can be an important component in clinopyroxenes at P>4 GPa, dependent upon coexisting K-bearing phases (solid or liquid) but not, apparently, upon temperature. Maximum Kcpx content can reach 25 mol%, with 17 mol% the highest reported in nature. Partitioning (K)D(cpx/liquid) above 7 GPa=0.1–0.2 require ultrapotassic liquids to form highly potassic cpx or critical solid reactions, e.g., between Kspar and Di. Phlogopite can be stable to about 8 GPa at 1250 °C where either amphibole or liquid forms. When fluorine is present, it generally increases in Phl upon increasing P (and probably T) to about 6 GPa, but reactions forming amphibole and/or KMgF3 limit F content between 6 and 8 GPa. The perovskite KMgF3 is stable up to 10 GPa and 1400 °C as subsolidus breakdown products of phlogopite upon increasing P. (M4)K-substituted potassic richterite (ideally K(KCa)Mg5Si8O22(OH,F)2) is produced in K-rich peridotites above 6 GPa and in Di+Phl from 6 to 13 GPa. K content of amphibole is positively correlated with P; Al and F content decrease with P. In the system 1Kspar+1H2O K-cymrite (hydrous hexasanidine–KAlSi3O8·nH2O–Kcym) is stable from 2.5 GPa at 400 to 1200 °C and 9 GPa; Kcym can be a supersolidus phase. Formation of Kcym is sensitive to water content, not forming within experiments with H2O2O>Kspar. Phase X, a potassium di-magnesium acid disilicate ((K1−xn)2(Mg1−nMn3+)2Si2O7H2x), forms in mafic compositions at T=1150–1400 °C and P=9–17 GPa and is a potential host for K and H2O at mantle conditions with a low-T geotherm or in subducting slabs. The composition of phase-X is not fixed but actually represents a solid solution in the stoichiometries □2Mg2Si2O7H2–(K□)Mg2Si2O7H–K2Mg2Si2O7 (□=vacancy), apparently stable only near the central composition. K-hollandite, KAlSi3O8, is possibly the most important K-rich phase at very high pressure, as it appears to be stable to conditions near the core–mantle boundary, 95 GPa and 2300 °C. Other K-rich phases are considered.  相似文献   

4.
In order to identify and characterise fluids associated with metamorphic rocks from the Chaves region (North Portugal), fluid inclusions were studied in quartz veinlets, concordant with the main foliation, in graphitic-rich and nongraphitic-rich lithologies from areas with distinct metamorphic grade. The study indicates multiple fluid circulation events with a variety of compositions, broadly within the C–H–O–N–salt system. Primary fluid inclusions in quartz contain low salinity aqueous–carbonic, H2O–CH4–N2–NaCl fluids that were trapped near the peak of regional metamorphism, which occurred during or immediately after D2. The calculated PT conditions for the western area of Chaves (CW) is P=300–350 MPa and T500 °C, and for the eastern area (CE), P=200–250 MPa and T=400–450 °C. A first generation of secondary fluid inclusions is restricted to discrete cracks at the grain boundaries of quartz and consists of low salinity aqueous–carbonic, H2O–CO2–CH4–N2–NaCl fluids. PT conditions from the fluid inclusions indicate that they were trapped during a thermal event, probably related with the emplacement of the two-mica granites.

A second generation of secondary inclusions occurs in intergranular fractures and is characterised by two types of aqueous inclusions. One type is a low salinity, H2O–NaCl fluid and the second consists of a high salinity, H2O–NaCl–CaCl2 fluid. These fluid inclusions are not related to the metamorphic process and have been trapped after D3 at relatively low P (hydrostatic)–T conditions (P<100 MPa and T<300 °C).

Both the early H2O–CH4–N2–NaCl fluids in quartz from the graphitic-rich lithologies and the later H2O–CO2–CH4–N2–NaCl carbonic fluid in quartz from graphitic-rich and nongraphitic-rich lithologies seem to have a common origin and evolution. They have low salinity, probably resulting from connate waters that were diluted by the water released from mineral dehydration during metamorphism. Their main component is water, but the early H2O–CH4–N2–NaCl fluids are enriched in CH4 due to interaction with the C-rich host rocks.

From the early H2O–CH4–N2–NaCl to the later aqueous–carbonic H2O–CO2–CH4–N2–NaCl fluids, there is an enrichment in CO2 that is more significant for the fluids associated with nongraphitic-rich lithologies.

The aqueous–carbonic fluids, enriched in H2O and CH4, are primarily associated with graphitic-rich lithologies. However, the aqueous–carbonic CO2-rich fluids were found in both graphitic and nongraphitic-rich units from both the CW and CE studied areas, which are of medium and low metamorphic grade, respectively.  相似文献   


5.
D. Phillips  J.W. Harris  K.S. Viljoen 《Lithos》2004,77(1-4):155-179
Silicate and oxide mineral inclusions in diamonds from the geologically and historically important De Beers Pool kimberlites in Kimberley, South Africa, are characterised by harzburgitic compositions (>90%), with lesser abundances from eclogitic and websteritic parageneses. The De Beers Pool diamonds contain unusually high numbers of inclusion intergrowths, with garnet+orthopyroxene±chromite±olivine and chromite+olivine assemblages dominant. More unusual intergrowths include garnet+olivine+magnesite and an eclogitic assemblage comprising garnet+clinopyroxene+rutile. The mineral chemistry of the De Beers Pool inclusions overlaps that of most worldwide localities. Peridotitic garnet inclusions exhibit variable CaO (<5.8 wt.%) and Cr2O3 contents (3.0–15.0 wt.%), although the majority are harzburgitic with very low calcium concentrations (<2 wt.% CaO). Eclogitic garnet inclusions are characterised by a wide range in CaO (3.3–21.1 wt.%) with low Cr2O3 (<1 wt.%). Websteritic garnets exhibit intermediate compositions. Most chromite inclusions contain 63–67 wt.% Cr2O3 and <0.5 wt.% TiO2. Olivine and orthopyroxene inclusions are magnesium-rich with Mg-numbers of 93–97. Olivine inclusions in chromite exhibit the highest Mg-numbers and also contain elevated Cr2O3 contents up to 1.0 wt.%. Peridotitic clinopyroxene inclusions are Cr-diopsides with up to 0.8 wt.% K2O. Eclogitic and websteritic clinopyroxene inclusions exhibit overlapping compositions with a wide range in Mg-numbers (66–86).

Calculated temperatures for non-touching inclusion pairs from individual diamonds range from 1082 to 1320 °C (average=1197 °C), whereas pressures vary from 4.6 to 7.7 GPa (average=6.3 GPa). Touching inclusion assemblages are characterised by equilibration temperatures of 995 to 1182 °C (average=1079 °C) and pressures of 4.2–6.8 GPa (average=5.4 GPa). Provided that the non-touching inclusions represent equilibrium assemblages, it is suggested that these inclusions record the conditions at the time of diamond crystallisation (1200 °C; 3.0 Ga). The lower average temperatures for touching inclusions are attributed to re-equilibration in a cooling mantle (1050 °C) prior to kimberlite eruption at 85 Ma. Pressure estimates for touching garnet–orthopyroxene inclusions are also skewed towards lower values than most non-touching inclusions. This apparent difference may be an artefact of the Al-exchange geobarometer and/or the result of sampling bias, due to limited numbers of non-touching garnet–orthopyroxene inclusions. Alternatively pressure differences could be caused by differential uplift in the mantle or possibly variations in thermal compressibility between diamond and silicate inclusions. However, thermodynamic modelling suggests that thermal compressibility differences would cause only minor changes in internal inclusion pressures (<0.2 GPa/100 °C).  相似文献   


6.
Garnet–melt trace element partitioning experiments were performed in the system FeO–CaO–MgO–Al2O3–SiO2 (FCMAS) at 3 GPa and 1540°C, aimed specifically at studying the effect of garnet Fe2+ content on partition coefficients (DGrt/Melt). DGrt/Melt, measured by SIMS, for trivalent elements entering the garnet X-site show a small but significant dependence on garnet almandine content. This dependence is rationalised using the lattice strain model of Blundy and Wood [Blundy, J.D., Wood, B.J., 1994. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454], which describes partitioning of an element i with radius ri and valency Z in terms of three parameters: the effective radius of the site r0(Z), the strain-free partition coefficient D0(Z) for a cation with radius r0(Z), and the apparent compressibility of the garnet X-site given by its Young's modulus EX(Z). Combination of these results with data in Fe-free systems [Van Westrenen, W., Blundy, J.D., Wood, B.J., 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am. Mineral. 84, 838–847] and crystal structure data for spessartine, andradite, and uvarovite, leads to the following equations for r0(3+) and EX(3+) as a function of garnet composition (X) and pressure (P):
r0(3+) [Å]=0.930XPy+0.993XGr+0.916XAlm+0.946XSpes+1.05(XAnd+XUv)−0.005(P [GPa]−3.0)(±0.005 Å)
EX(3+) [GPa]=3.5×1012(1.38+r0(3+) [Å])−26.7(±30 GPa)
Accuracy of these equations is shown by application to the existing garnet–melt partitioning database, covering a wide range of P and T conditions (1.8 GPa<P<5.0 GPa; 975°C<T<1640°C). DGrt/Melt for all 3+ elements entering the X-site (REE, Sc and Y) are predicted to within 10–40% at given P, T, and X, when DGrt/Melt for just one of these elements is known. In the absence of such knowledge, relative element fractionation (e.g. DSmGrt/Melt/DNdGrt/Melt) can be predicted. As an example, we predict that during partial melting of garnet peridotite, group A eclogite, and garnet pyroxenite, r0(3+) for garnets ranges from 0.939±0.005 to 0.953±0.009 Å. These values are consistently smaller than the ionic radius of the heaviest REE, Lu. The above equations quantify the crystal-chemical controls on garnet–melt partitioning for the REE, Y and Sc. As such, they represent a major advance en route to predicting DGrt/Melt for these elements as a function of P, T and X.  相似文献   

7.
V. Mathavan  G. W. A. R. Fernando   《Lithos》2001,59(4):217-232
Grossular–wollastonite–scapolite calc–silicate granulites from Maligawila in the Buttala klippe, which form part of the overthrusted rocks of the Highland Complex of Sri Lanka, preserve a number of spectacular coronas and replacement textures that could be effectively used to infer their P–T–fluid history. These textures include coronas of garnet, garnet–quartz, and garnet–quartz–calcite at the grain boundaries of wollastonite, scapolite, and calcite as well as calcite–plagioclase and calcite–quartz symplectites or finer grains after scapolite and wollastonite respectively. Other textures include a double rind of coronal scapolite and coronal garnet between matrix garnet and calcite. The reactions that produced these coronas and replacement textures, except those involving clinopyroxene, are modelled in the CaO–Al2O3–SiO2–CO2 system using the reduced activities. Calculated examples of TXCO2 and PXCO2 projections indicate that the peak metamorphic temperature of about 900–875 °C at a pressure of 9 kbar and the peak metamorphic fluid composition is constrained to be low in XCO2 (0.1<XCO2<0.30). Interpretation of the textural features on the basis of the partial grids revealed that the calc–silicate granulites underwent high-temperature isobaric cooling, from about 900–875 °C to a temperature below 675 °C, following the peak metamorphism. The late-stage cooling was accompanied by an influx of hydrous fluids. The calc–silicate granulites provide evidence for high-temperature isobaric cooling in the meta-sediments of the Highland Complex, earlier considered by some workers to be confined exclusively to the meta-igneous rocks. The coronal scapolite may have formed under open-system metasomatism.  相似文献   

8.
The compositions of various transition-zone and lower-mantle phases and coexisting carbonatic melts were determined by exploratory melting experiments in chemically complex CO2-bearing systems at 20–24.5 GPa and 1600–2000 °C. The melts are highly ultramafic, enriched in K, Na, Ca, Fe, and Mg, and depleted in Al and Si. Melting experiments were also carried out with the compositions on the join Mg2SiO4–Na2CO3 at 3.7 GPa and 1200–1600 °C. The solidus assemblage of MgCO3 and Na2MgSiO4 melts incongruently to produce forsterite and Na-rich melt. The new results and other recent studies in CO2-bearing systems suggest that carbonatic melt could be present, either transiently or permanently, in the whole Earth's upper mantle and at least the uppermost lower mantle. Carbonate-melt metasomatism is recognized as a process that could have a major effect on the composition and structure of the deep mantle, and thus play an important role in its evolution. Due to the unique properties of the carbonatic melt, its circulation in an otherwise static mantle could be a more efficient process than the solid-state convection for maintaining equilibrium in most of the mantle not involved directly in plate tectonics.  相似文献   

9.
Trevor H. Green  John Adam 《Lithos》2002,61(3-4):271-282
The solubility of Ti- and P-rich accessory minerals has been examined as a function of pressure and K2O/Na2O ratio in two series of highly evolved silicate systems. These systems correspond to (a) alkaline, varying from alkaline to peralkaline with increasing K2O/Na2O ratio; and (b) strongly metaluminous (essentially trondhjemitic at the lowest K2O/Na2O ratio) and remaining metaluminous with increasing K2O/Na2O ratio (to 3). The experiments were conducted at a fixed temperature of 1000 °C, with water contents varying from 5 wt.% at low pressure (0.5 GPa), increasing through 5–10 wt.% at 1.5–2.5 GPa to 10 wt.% at 3.5 GPa. Pressure was extended outside the normal crustal range, so that the results may also be applied to derivation of hydrous silicic melts from subducted oceanic crust.

For the alkaline composition series, the TiO2 content of the melt at Ti-rich mineral saturation decreases with increasing pressure but is unchanged with increasing K content (at fixed pressure). The P2O5 content of the alkaline melts at apatite saturation increases with increased pressure at 3.5 GPa only, but decreases with increasing K content (and peralkalinity). For the metaluminous composition series (termed as “trondhjemite-based series” (T series)), the TiO2 content of the melt at Ti-rich mineral saturation decreases with increasing pressure and with increasing K content (at fixed pressure). The P2O5 content of the T series melts at apatite saturation is unchanged with increasing pressure, but decreases with increasing K content. The contrasting results for P and Ti saturation levels, as a function of pressure in both compositions, point to contrasting behaviour of Ti and P in the structure of evolved silicate melts. Ti content at Ti-rich mineral saturation is lower in the alkaline compared with the T series at 0.5 GPa, but is similar at higher pressures, whereas P content at apatite saturation is lower in the T series at all pressures studied. The results have application to A-type granite suites that are alkaline to peralkaline, and to I-type metaluminous suites that frequently exhibit differing K2O/Na2O ratios from one suite to another.  相似文献   


10.
The Day Nui Con Voi belt in Vietnam is the southeasternmost part of the Red River shear zone in Asia. It is a narrow high-grade metamorphic core complex consisting of garnet–sillimanite–biotite gneisses, mylonite bands, amphibolite layers and migmatites. Geothermobarometric study of the complex revealed that the peak metamorphism took place under amphibolite-facies conditions of 690−60+30°C and 0.65±0.15 GPa and the subsequent mylonitization occurred under greenschist-facies conditions of 480°C and under 0.3 GPa. Fifteen synkinematic hornblende and biotite separates from gneisses, amphibolites and mylonites were dated with the K/Ar method. Hornblende separates from the Day Nui Con Voi give K–Ar ages of 26.4–28.5 Ma, and the biotite separates do give 24.5–24.7 Ma. Combination of thermobarometric and geochronological data yields the cooling history of 500°C at 28 Ma and 300°C at 24 Ma with a cooling rate of 70–110°C Ma−1, and 23 km post-metamorphic exhumation of the core complex. The first 16 km exhumation from the peak of metamorphism (at probably 31 Ma) to 28 Ma was triggered by the left-lateral strike-slip displacement of the Red River shear zone.  相似文献   

11.
The migmatites from Punta Sirenella (NE Sardinia) are layered rocks containing 3–5 vol.% of centimeter-sized stromatic leucosomes which are mainly trondhjemitic and only rarely granitic in composition. They underwent three deformation phases, from D1 to D3. The D1 deformation shows a top to the NW shear component followed by a top to the NE/SE component along the XZ plane of the S2 schistosity. Migmatization started early, during the compressional and crustal thickening stage of Variscan orogeny and was still in progress during the following extensional stage of unroofing and exhumation.

The trondhjemitic leucosomes, mainly consisting of quartz, plagioclase, biotite ± garnet ± kyanite ± fibrolite, retrograde muscovite and rare K-feldspar, are locally bordered by millimeter-sized biotite-rich melanosomes. The rare granitic leucosomes differ from trondhjemitic ones only in the increase in modal content of K-feldspar, up to 25%. Partial melting started in the kyanite field at about 700–720 °C and 0.8–0.9 GPa, and was followed by re-equilibration at 650–670 °C and 0.4–0.6 GPa, producing fibrolite–biotite intergrowth and coarse-grained muscovite.

The leucosomes have higher SiO2, CaO, Na2O, Sr and lower Al2O3, Fe2O3, MgO, TiO2, K2O, P2O5, Rb, Ba, Cr, V, Zr, Nb, Zn and REE content with respect to proximal hosts and pelitic metagreywackes. Sporadic anomalous high content of calcium and ferromagnesian elements in some leucosomes is due to entrainment of significant amounts of restitic plagioclase, biotite and accessory phases. The rare granitic leucosomes reveal peritectic K-feldspar produced by muscovite-dehydration melting. Most leucosomes show low REE content, moderately fractionated REE patterns and marked positive Eu anomaly. Proximal hosts and pelitic metagraywackes are characterized by higher REE content, more fractionated REE patterns and slightly negative Eu anomaly.

The trondhjemitic leucosomes were generated by H2O-fluxed melting at 700 °C of a greywacke to pelitic–greywacke metasedimentary source-rock. The disequilibrium melting process is the most reliable melting model for Punta Sirenella leucosomes.  相似文献   


12.
Rhenium and osmium in organic-rich sedimentary rocks are dominantly hydrogenous, but any nonhydrogenous component will influence the accuracy and precision of the Re–Os date obtained. To minimize the influence of any nonhydrogenous Re and Os, we evaluate analysis of isolated organic matter from the whole rock, together with whole rock analysis using a CrO3–H2SO4 digestion medium instead of inverse aqua regia, for a black shale unit of the Exshaw Formation, Canada. This unit previously returned a whole rock Re–Os date of 358±10 Ma (Model 3) [Geochim. Cosmochim. Acta (2002)] using inverse aqua regia dissolution. Organic matter isolated from the whole rock matrix using the HF–BF3 technique [Org. Geochem. 20 (1993) 249] yields scattered data and a Re–Os date of 449±220 Ma (Model 3, MSWD=616). The organic matter analyses show similar 187Os/188Os values, but significantly lower 187Re/188Os values in comparison to the whole rock analyses. We show that the Re–Os systematics of organic matter are altered during chemical isolation, and as such we suggest that the HF–BF3 method should not be used for Re–Os analysis of organic matter. Whole rock Re–Os analysis using a CrO3–H2SO4 digestion medium yields significantly better regression analysis compared with the inverse aqua regia method, and the Re–Os data identify two distinct initial 187Os/188Os values for the sample set. Separate regressions of these data yield precise dates [366.1±9.6, MSWD=2.2 and 363.4±5.6 Ma, MSWD=1.6 (Model 3)], which are indistinguishable from the age constraints for this formation (363.4±0.4 Ma, U–Pb monazite). Comparison of the Re–Os dates obtained from aqua regia and CrO3–H2SO4 methods suggests that the former may contain nonhydrogenous Re and Os, whereas the CrO3–H2SO4 method dominantly liberates hydrogenous Re–Os from organic matter, allowing for better stratigraphic age determinations and evaluation of the Os isotope composition of seawater.  相似文献   

13.
Microinclusions analyzed in a coated diamond from the Diavik mine in Canada comprise peridotitic minerals and fluids. The fluids span a wide compositional range between a carbonatitic melt and brine. The diamond is concentrically zoned. The brine microinclusions reside in an inner growth zone and their endmember composition is K19Na25Ca5Mg8Fe3Ba2Si4Cl32 (mol%). The carbonatitic melt is found in an outer layer and its endmember composition is K11Na21Ca11Mg26Fe7Ba2Si10Al3P2Cl5. The transition in inclusion chemistry is accompanied by a change in the carbon isotopic composition of the diamond from −8.5‰ in the inner zone to −12.1‰ in the outer zone. We suggest that this transition reflects mixing between already evolved brine and a freshly introduced carbonatitic melt of different isotopic composition.

The compositional range found in diamond ON-DVK-294 is the widest ever recorded in a single diamond. It closes the gap between brine found in cloudy octahedral diamonds from South Africa and carbonatitic melt analyzed in cubic diamonds from Zaire and Botswana. Thus, all microinclusions analyzed to date fall along two arrays connecting the carbonatitic melt composition to either a hydrous-silicic endmember or to a brine endmember. This connection suggests that many diamonds are formed from fluids derived form a mantle source not significantly influenced by local heterogeneities.  相似文献   


14.
We conducted a series of melting experiments in the join forsterite–diopside–leucite under 0.1 and 2.3 GPa and in the join forsterite–leucite–åkermanite under 2.3 GPa to understand paragenetic relationships amongst different types of lamproitic and lamprophyric magmas with K-rich mafic and ultramafic volcanic (kamafugitic) rocks. Both the joins were studied in the presence of excess water. The experimental results of the join forsterite–diopside–leucite at 0.1 GPa show that the five-phase point of forsterite (Fo)ss + diopside (Di)ss + leucite (Lc)ss + liquid (Liq) + vapour (V) (equivalent to ugandite lava) occurs at Fo2Di50Lc48 at 880 ± 5 °C. Phlogopite appears as the last phase at 830 ± 15 °C. The final crystalline assemblage of forsteritess + diopsidess + leucitess + phlogopite is similar to the phenocryst assemblage of missourite lava. Present study suggests that an olivine leucitite (ugandite) can be derived from an olivine italite, a slightly potassic peridotite and a leucitite magma.

A study of the join Fo–Di–Lc [P(H2O) = P(Total)] at 2.3 GPa shows that liquid compositions penetrate the primary phase volumes of forsteritess, phlogopitess, kalsilitess, K-feldsparss and diopsidess. It has the following three five-phase points: 1) one occurring at Fo9Di49Lc42 and 1005 ± 5 °C, where liquid and vapour coexists with forsteritess, phlogopitess and diopsidess (phlogopite-bearing madupite), 2) the second one at Fo4Di50Lc46 and 990 ± 10 °C, where diopsidess, K-feldsparss and phlogopitess coexist with liquid and vapour (pyroxene-bearing minette), and 3) the third one at Fo3Di21Lc76 and 775 ± 5 °C, where phlogopitess, kalsilitess and K-feldsparss are in equilibrium with liquid plus vapour (kalsilite-bearing minette).

The experimental results of the join Fo–Lc–åkermanite (Ak) show that the join 40 penetrates the primary phase volumes of forsteritess, phlogopitess, kalsilite, K-feldsparss, diopsidess and merwinitess. The data indicate the presence of four five-phase points: 1) one occurring at Fo7Lc42Ak51 and 1165 ± 5 °C, where phlogopitess, forsteritess, diopsidess coexists with liquid and vapour (olivine-bearing madupite), 2) the second one at Fo3Lc49Ak48 and 1140 ± 10 °C, where a liquid is in equilibrium with phlogopitess, K-feldsparss, diopsidess and vapour (pyroxene-bearing minette), 3) the third one at Fo18Lc21Ak61 and 1255 ± 10 °C, where merwinitess, forsteritess and diopsidess are in equilibrium with liquid and vapour (merwinite-bearing wherlite), and 4) the fourth one at Fo5Lc73.5Ak21.5 and 770 ± 5 °C, where kalsilitess, phlogopitess and K-feldspar coexist with liquid and vapour (kalsilite-bearing minette). The present data suggest that high pressure heteromorphic equivalent of a katungite magma is represented by a kalsilite-bearing minette, a pyroxene-bearing minette, or an olivine-bearing madupite.  相似文献   


15.
Larryn W. Diamond   《Lithos》2001,55(1-4):69-99
Aqueous solutions that contain volatile (gas) components are one of the most important types of fluid in the Earth's crust. The record that such fluids have left in the form of fluid inclusions in minerals provides a wealth of insight into the geochemical and petrologic processes in which the fluids participated. This article reviews the systematics of CO2–H2O fluid inclusions as a starting point for interpreting the chemically more complex systems. The phase relations of the binary are described with respect to a qualitative PTX model, and isoplethic–isochoric paths through this model are used to explain the equilibrium and non-equilibrium behaviour of fluid inclusions during microthermometric heating and cooling. The PTX framework is then used to discuss the various modes of fluid inclusion entrapment, and how the resulting assemblage textures can be used to interpret the PT conditions, phase states, and evolution paths of the parent solutions. Finally, quantitative methods are reviewed by which bulk molar volume and composition of CO2–H2O fluid inclusions can be determined from microthermometric observations of phase transitions.  相似文献   

16.
Jan-Marten Huizenga 《Lithos》2001,55(1-4):101-114
H2O, CO2, CH4, CO, H2 and O2 are the most important species in crustal fluids. The composition of these C–O–H fluids can be calculated if the pressure, temperature, carbon activity, and either the oxygen fugacity or the atomic H/O ratio of the fluid is known. The calculation methods are discussed and calculation results are illustrated with isobaric TXi, PT, and isobaric–isothermal ternary C–O–H diagrams. Fluid inclusion compositions, in particular, the XCO2/(XCO2+XCH4) ratio, can be used for C–O–H model calculations. However, care should be taken about possible post-entrapment changes, which may have modified the chemical composition of the fluid inclusion.  相似文献   

17.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


18.
The Zn–Pb±Ag±Cu San Cristobal district is located 100 km east of Lima in the western cordillera of Peru. It is centred around the Chumpe intrusion and is composed of vein and carbonate replacement ore types. The main San Cristobal vein presents a paragenesis that can be divided into three stages: (a) an early wolframite–quartz–pyrite stage, (b) a quartz–base metal stage, and (c) a late quartz–carbonate–barite stage.

Fluid inclusions in quartz from the tungsten stage are biphase (LV) at room temperature and homogenise to the liquid phase between 146 and 257 °C. Their salinities range between 2.1 and 5.1 wt.% NaCl equiv. Rare inclusions contain an additional crystal of halite and have salinities of 46–54 wt.% NaCl equiv. Data of the first two stages show a decrease in homogenisation temperatures concomitant with a salinity decline. Fluid inclusions in quartz from the late stage homogenise at higher temperatures, between 252 and 323 °C, with salinities ranging between 4.6 and 6.7 wt.% NaCl equiv.

Hydrogen and oxygen isotope data indicate a two-stage evolution. Isotopic compositions of the fluid associated with the first two stages define a trend with constant δ18O values and decreasing δD values (δ18O=3.2‰ to 5.0‰ V-SMOW and δD=−60‰ to −112‰ V-SMOW), which is interpreted as mixing of a dominantly magmatic component with minor meteoric water that had equilibrated with the host rocks. This interpretation is supported by sulphur and lead isotopic data from previous studies. By contrast, the quartz–carbonate–barite stage bears isotopic characteristics defining a trend with a coupled decrease of δ18O and δD (δ18O=−8.1‰ to 2.5‰ V-SMOW and δD=−57‰ to −91‰ V-SMOW) and is explained by addition of meteoric water to the system and subsequent mixing with a less important magmatic component.

Different fluid origins are confirmed by laser ablation ICP-MS analyses of the triphase (LVH) and biphase (LV) primary inclusions. The concentrations of the major ore elements, i.e., W, Cu, Zn and Pb, decrease throughout the paragenesis; W, and to a lesser extent Cu, show significant variations, associated with a steep decrease in their concentration. The decreasing concentrations can be explained by mineral deposition and dilution by the meteoric fluid; differences in the rate of decrease indicate selective precipitation of W. Fluid inclusions of the quartz–carbonate stages show an abrupt increase in Ba and Sr concentrations. This is interpreted to reflect a higher volume of host rock silicate alteration, probably due to the increasing size of the fluid flow cell and is explained by the input of a third fluid of unknown origin. LA-ICP-MS analyses show that the fluids were already depleted in W and Cu before reaching the emplacement of carbonate replacement ore type, whereas Zn and Pb were still present in considerable amounts. This is again due to selective precipitation and is consistent with the interpretation that the economically interesting metals were dominantly introduced by magmatic fluids.  相似文献   


19.
D. A. Carswell  R. N. Wilson  M. Zhai 《Lithos》2000,52(1-4):121-155
As is typical of ultra-high pressure (UHP) terrains, the regional extent of the UHP terrain in the Dabieshan of central China is highly speculative, since the volume of eclogites and paragneisses preserving unequivocal evidence of coesite and/or diamond stability is very small. By contrast, the common garnet (XMn=0.18–0.45)–phengite (Si=3.2–3.35)–zoned epidote (Ps38–97)–biotite–titanite–two feldspars–quartz assemblages in the more extensive orthogneisses have been previously thought to have formed under low PT conditions of ca. 400±50°C at 4 kbar. However, certain orthogneiss samples preserve garnets with XCa up to 0.50, rutile inclusions within titanite or epidote and relict phengite inclusions within epidote with Si contents p.f.u. of up to 3.49 — overlapping with the highest values (3.49–3.62) recorded for phengites in samples of undoubted UHP schists. These and other mineral composition features (such as A-site deficiencies in the highest Si phengites, Na in garnets linked to Y+Yb substitution and Al F Ti−1 O−1 substitution in titanites) are taken to be pointers towards the orthogneisses having experienced a similar metamorphic evolution to the associated UHP schists and eclogites. Re-evaluated garnet–phengite and garnet–biotite Fe/Mg exchange thermometry and calculated 5 rutile+3 grossular+2SiO2+H2O=5 titanite+2 zoisite equilibria indicate that the orthogneisses may indeed have followed a common subduction-related clockwise PT path with the UHP paragneisses and eclogites through conditions of Pmax at ca. 690°C–715°C and 36 kbar to Tmax at ca. 710°C–755°C and 18 kbar, prior to extensive re-crystallisation and re-equilibration of these ductile orthogneisses at ca. 400°C–450°C and 6 kbar. The consequential conclusion, that it is no longer necessary to resort to models of tectonic juxtapositioning to explain the spatial association of these Dabieshan orthogneisses with undoubted UHP lithologies, has far-reaching implications for the interpretation of controversial gneiss–eclogite relationships in other UHP metamorphic terrains.  相似文献   

20.
Peridotitic clinopyroxene (cpx) and pyrope garnet xenocrysts from four kimberlite pipes in the Kaavi–Kuopio area of Eastern Finland have been studied using major and trace element geochemistry to obtain information on the vertical compositional variability of the underlying mantle. The xenocryst data, when combined with the petrological constraints provided by peridotite xenoliths, yield a relatively complete section through the lithospheric mantle. Single-grain cpx thermobarometry fits with a 36-mW/m2 geotherm calculated using heat flow constraints and xenolith modes and geophysical properties. Ni thermometry on pyrope xenocrysts gives 700–1350 °C and, based on the cpx xenocryst/xenolith geotherm, indicates a wide sampling interval, ca. 80–230 km. Plotting pyrope major and trace element compositions as a function of temperature shows there are three distinct layers in the local lithospheric mantle:
(1) A low-temperature (<850 °C) harzburgite layer distinguished by Ca-rich but Ti-, Y- and Zr-depleted pyropes. The xenoliths originating from this layer are all fine-grained garnet-spinel harzburgites with secondary cpx.
(2) A variably depleted lherzolitic, harzburgitic and wehrlitic horizon from 950 to 1150 °C or 130 to 180 km.
(3) A deep layer from 180 to 240 km composed largely of fertile material.
The peridotitic diamond window at Kaavi–Kuopio stretches from the top of the diamond stability field at 140 km to the base of the harzburgite-bearing mantle at about 180 km, implying a roughly 40-km-wide prospective zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号