首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Concentrations of Re and Os, and the isotopic composition of Os have been measured in the Japan Sea sediments to assess the response of the Japan Sea to glacial–interglacial climate change and associated weathering fluxes. The osmium concentrations in the sediment samples analyzed vary from 59 to 371 pg/g, and 187Os/188Os from 0.935 to 1.042. Only 187Os/188Os of sediment samples from dark laminations deposited under suboxic to anoxic conditions and having elevated concentrations of Re and Os, and with ≥ 80% hydrogenous Os are explained in terms of seawater composition. Lower 187Os/188Os were observed for sediments deposited during the last glacial maximum (LGM) when planktonic foraminifera from the Japan Sea recorded lighter oxygen isotopic composition. Decrease in dissolved Os fluxes from continents and/or change in the composition of the dissolved load to the Japan Sea are suggested as the driving mechanisms for the observed lower LGM 187Os/188Os. The results of this study, coupled with lower 187Os/188Os during the last glacial observed at other sites from ocean basins with different lithology and contrasting sediment accumulation rates, suggest that this trend is characteristic of the global oceans.

Data from this study show that the Japan Sea recorded higher 187Os/188Os during the current interglacial coinciding with excursions of oxygen isotopic compositions of planktonic foraminifera to heavier values. This is explained in terms of preferential release of 187Os during deglacial weathering and/or higher continental Os flux driven by warm and wet climate. This study demonstrates that Os isotopic composition of reducing margin sediments has immense potential to track variations in the seawater composition. In addition, 187Os/188Os of reducing sediments may be used to draw inferences about local paleoceanographic processes in semi-enclosed basins such as the Japan Sea.  相似文献   


2.
李丽  王慧  汪品先 《地球科学》2008,33(6):793-799
以分子有机地球化学为手段对南海北部四万年来的古环境古气候研究表明, U37k’-SST表层水温在冰期、间冰期平均范围分别为27℃和24℃, LGM与全新世温差达4.5℃; 以高分子量烷烃所代表的陆源物质输入和长链不饱和酮化合物所代表的海洋初级生产力都呈现冰期高、间冰期低特征, 表明冰期时陆源物质输入的增加和海洋表层生产力的提高; 正构烷烃C31/C27记录了南方大陆的植被由冰期时草本植物占优势向间冰期时木本植物占优势的转变.说明南海在末次冰期以来气候的不稳定性, 和海陆生态系统对气候变化的响应以及分子有机地球化学在古环境古气候研究中的巨大潜力.   相似文献   

3.
白令海北部陆坡100ka来的古海洋学记录及海冰的扩张历史   总被引:4,自引:0,他引:4  
白令海北部陆坡B2-9柱状样中生源组分的研究显示, 自MIS5.3期以来表层生产力指标的粗组分和蛋白石含量呈阶梯状增加, 反映表层生产力阶段式的增长.全新世表层生产力达到最高, 并且MIS3.2~2期高, 比MIS5.3~3.3期最低.高有机碳含量对应于高C/N比值, 显示有机碳混合来源, 不能作为表层生产力的指标.MIS5.1, 3.3~3.2期和全新世高的有机碳含量和C/N比值反映间冰期陆源有机物质输入量的增加.MIS5.3期至中全新世, 不断增加的陆源砂级和粉砂级颗粒组分说明随着气候的逐渐变冷, 陆架海冰在不断扩张.伐冰碎屑和碳屑颗粒冰期、间冰段和末次冰消期升高, 而间冰期降低, 反映冰期白令海陆架海冰扩张和间冰期海冰消融的过程.冰期海冰扩张与北美大陆气候的相互关联, 揭示了晚第四纪冰期旋回中白令海海冰扩张及其对全球气候变化的响应.   相似文献   

4.
新元古代后期地球经历了至少两次全球规模的冰川期,分别为Sturtian冰期和Marinoan冰期。鄂西走马地区南华系古城组与南沱组分别属于Sturtian和Marinoan冰期沉积,大塘坡组代表间冰期沉积,同时,大塘坡期是我国重要的成锰时期。本文通过对走马地区ZK702钻孔岩心古城组、大塘坡组、南沱组底部细碎屑岩样品元素地球化学的研究,计算了CIA、CIW、PIA、Al/Ca、Rb/Sr、V/Cr、U/Th等特征值,探讨了该区南华纪冰期至间冰期的古气候和古氧相演化过程,结合岩石学证据认为:古城冰期气候寒冷干燥(CIA值从底部的69. 2过渡至57. 8,均值为62. 2),大塘坡间冰期早期气候依然寒冷(CIA值介于54. 3~62. 7,均值59. 7),大塘坡中晚期气候恢复温暖湿润并趋于稳定(CIA值介于70. 2~81. 1,均值75. 8),南沱冰期气候又转向寒冷干燥(CIA值由78. 6降低至61. 9),CIW、PIA、Rb/Sr值等指标反映的古气候演化过程与CIA值反映一致,Al/Ca值的变化也反映了陆源碎屑输入量随着古气候波动;V/Cr、U/Th、Ni/Co等比值反映出研究区古海洋古城期-南沱早期总体处于氧化环境,其中大塘坡早期处于弱氧化环境,古城期、大塘坡中晚期和南沱早期处于氧化环境;研究区大塘坡锰矿形成于间冰期早期寒冷气候下的弱氧化环境,气候转暖后锰矿停止沉积,锰矿成矿与古气候和古氧相具有耦合关系。  相似文献   

5.
I. Kawasaki  Y. Asai  Y. Tamura 《Tectonophysics》2001,330(3-4):267-283
Along the Japan trench where some Mw8 class interplate earthquakes occurred in the past century such as the 1896 Sanriku tsunami earthquake (M6.8, Mt8.6, 12×1020 N m) and the 1968 Tokachi-oki earthquake (Mw8.2, 28×1020 N m), the Pacific plate is subducting under northeast Japan at a rate of around 8 cm/year. The seismic coupling coefficient in this region has been estimated to be 20–40%. In the past decade, three ultra-slow earthquakes have occurred in the Sanriku-oki region (39°N–42°N): the 1989 Sanriku-oki (Mw7.4), the 1992 Sanriku-oki (Mw6.9), and the 1994 Sanriku-oki (Mw7.7) earthquakes. Integrating their interplate moments released both seismically and aseismically, we have the following conclusions. (1) The sum of the seismic moments of the three ultra-slow earthquakes was (4.8–6.6)×1020 N m, which was 20–35% of the accumulated moment (18.6–23.0)×1020 N m, in the region (39°N–40.6°N, 142°E–144°E) for the 21–26 years since the 1968 Mw8.2 Tokachi-oki earthquake. This is consistent with the previous estimates of the seismic coupling coefficient of 20–40%. On the other hand, the sum of the interplate moments including aseismic faulting is (11–16)×1020 N m, leading to a “seismo-geodetic coupling coefficient” of 50–85%, which is an extension of the seismic coupling coefficient to include slow events. (2) The time constants showed a large range from 1 min (102 s) for the 1968 Tokachi-oki earthquake to 10–20 min (103 s) for the 1896 Sanriku tsunami earthquake, to one day (105 s) for the 1992 Sanriku-oki ultra-slow earthquake, to on the order of one year (107 s) for the 1994 Sanriku-oki ultra-slow earthquakes. (3) Based on the space–time distribution, three “gaps of moment release,” (40.6°N–42°N, 142°E–144°E) 39°N–40°N, 142°E–143°E) and (39°N–40°N, 142°E–144°E), are identified, instead of the gaps of seismicity.  相似文献   

6.
We have conducted acid–base potentiometric titrations and U(VI) sorption experiments using the Gram negative, facultatively anaerobic bacterium Shewanella putrefaciens. Results of reversed titration studies on live, inactive bacteria indicate that their pH-buffering properties result from the equilibrium ionization of three discrete populations of functional groups. Carboxyl (pKa=5.16±0.04), phosphoryl (pKa=7.22±0.15) and amine (pKa=10.04±0.67) groups most likely represent these three resolvable functionalities, based on their pKa values. Site densities for carboxyl, phosphoryl and amine groups on the bacterial surface were approximately 31.7 μmol sites/g bacteria (0.35±0.02 sites/nm2), 8.95 μmol/g (0.11±0.007 sites/nm2) and 38.0 μmol/g (0.42±0.008 sites/nm2), respectively, based on an estimated bacterial specific surface area of 55 m2/g. Sorption experiments showed that U(VI) can reversibly complex with the bacterial surface in the pH 2–8 interval, with maximum adsorption occurring at a pH of 5. Sorption is not strongly sensitive to ionic strength (NaCl) in the range 0.02–0.10 M. The pH and ionic strength dependence of U(VI) sorption onto S. putrefaciens is similar to that measured for metal-oxide surfaces and Gram positive bacteria, and appears to be similarly governed by competitive speciation constraints. Measured U(VI) sorption is accounted for by using two separate adsorption reactions forming the surface complexes >COO–UO2+ and >PO4H–UO2(OH)2. Using S. putrefaciens as a model organism for dissimilatory metal-reducing Gram negative anaerobes, our results extend the applicability of geochemical speciation models to include bacteria that are capable of reductively solubilizing or precipitating a wide variety of environmentally and geologically important metals and metallic species.  相似文献   

7.
The isotopic composition and mass balances of sources and sinks of sulfur are used to constrain the limnological–hydrological evolution of the last glacial Lake Lisan (70–14 ka BP) and the Holocene Dead Sea. Lake Lisan deposited large amounts of primary gypsum during discrete episodes of lake level decline. This gypsum, which appears in massive or laminated forms, displays δ34S values in the range of 14–28‰. In addition, Lake Lisan’s deposits (the Lisan Formation) contain thinly laminated and disseminated gypsum as well as native sulfur which display significantly lower δ34S values (−26 to 1‰ and −20 to −10‰, respectively). The calculated bulk isotopic compositions of sulfur in the sources and sinks of Lake Lisan lacustrine system are similar (δ34S ≈ 10‰), indicating that freshwater sulfate was the main source of sulfur to the lake. The large range in δ34S found within the Lisan Formation (−26 to +28‰) is the result of bacterial sulfate reduction (BSR) within the anoxic lower water body (the monimolimnion) and bottom sediments of the lake.

Precipitation of primary gypsum from the Ca-chloride solution of Lake Lisan is limited by sulfate concentration, which could not exceed 3000 mg/l. The Upper Gypsum Unit, deposited before ca. 17–15 ka, is the thickest gypsum unit in the section and displays the highest δ34S values (25–28‰). Yet, our calculations indicate that no more than a third of this Unit could have precipitated directly from the water column. This implies that during the lake level decline that instigated the precipitation of the Upper Gypsum Unit, significant amounts of dissolved sulfate had to reach the lake from external sources. We propose a mechanism that operated during cycles of high-low stands of the lakes that occupied the Dead Sea basin during the late Pleistocene. During high-stand intervals (i.e., Marine Isotopic Stages 2 and 4), lake brine underwent BSR and infiltrated the lake’s margins and adjacent strata. As lake level dropped, these brines, carrying 34S-enriched sulfate, were flushed back to the shrinking lake and replenished the water column with sulfate, thereby promoting massive gypsum precipitation.

The Holocene Dead Sea precipitated relatively small amounts of primary gypsum, mainly in the form of thin laminae. δ34S values of these laminae and disseminated gypsum are relatively constant (15 ± 0.7‰) and are close to present-day lake composition. This reflects the lower supply of freshwater to the lake and the limited BSR activity during the arid Holocene time and possibly during former arid interglacials in the Levant.  相似文献   


8.
The October 1996 eruption within the Vatnajökull Glacier, Iceland, provides a unique opportunity to study the net effect of volcanic eruptions on atmospheric and oceanic CO2. Volatile elements dissolved in the meltwater that enclosed the eruption site were eventually discharged into the ocean in a dramatic flood 35 days after the beginning of the eruption, enabling measurement of 50 dissolved element fluxes. The minimum concentration of exsolved CO2 in the 1×1012 kg of erupted magma was 516 mg/kg, S was 98 mg/kg, Cl was 14 mg/kg, and F was 2 mg/kg. The pH of the meltwater at the eruption site ranged from about 3 to 8. Volatile and dissolved element release to the meltwater in less than 35 days amounted to more than one million tonnes, equal to 0.1% of the mass of erupted magma. The total dissolved solid concentration in the floodwater was close to 500 mg/kg, pH ranged from 6.88 to 7.95, and suspended solid concentration ranged from 1% to 10%. According to H, O, C and S isotopes, most of the water was meteoric whereas the C and S were of magmatic origin. Both C and S went through isotopic fractionation due to precipitation at the eruption site, creating “short cuts” in their global cycles. The dissolved fluxes of C, Ca, Na, Si, S and Mg were greatest ranging from 1.4×1010 to 1.4×109 mol. The dissolved C flux equaled 0.6 million tonnes of CO2. The heavy metals Ni, Mn, Cu, Pb and Zn were relatively mobile during condensation and water–rock interactions at the eruption site. About half of the measured total carbon flood flux from the 1996 Vatnajökull eruption will be added to the long-term CO2 budget of the oceans and the atmosphere. The other half will eventually precipitate with the Ca and Mg released. Thus, for eruptions on the ocean floor, one can expect a net long-term C release to the ocean of less than half that of the exsolved gas. This is a considerably higher net C release than suggested for the oceanic crust by Staudigel et al. [Geochim. Cosmochim. Acta, 53 (1989) 3091]. In fact, they suggested a net loss of C. Therefore, magma degassed at the ocean floor contributes more C to the oceans and the atmosphere than magma degassed deep in the oceanic crust. The results of this study show that subglacial eruptions affecting the surface layer of the ocean where either Mn, Fe, Si or Cu are rate-determining for the growth of oceanic biomass have a potential for a transient net CO2 removal from the ocean and the atmosphere. For eruptions at high latitudes, timing is crucial for the effect of oceanic biota. Eruptions occurring in the wintertime when light is rate-determining for the growth of biota have much less potential for bringing about a transient net negative CO2 flux from the ocean atmosphere reservoir.  相似文献   

9.
The δ13C of organic matter bound within the crystal lattice of foraminiferal calcite tests may provide a potential tracer of the isotopic composition of the surface water primary photosynthate. Using δ13C of the organic matter extracted from the crystal lattice and the calcite test, it is theoretically possible to estimate the paleo-surface water pCO2. We have tailored this technique initially for the subpolar planktonic foraminifera species Globigerina bulloides. Initial surface water pCO2 estimates from deep-sea core BOFS 5K (50°41.3′N, 21°51.9′W, water depth 3547 m) indicate that the northeast Atlantic Ocean may have been a greater sink for CO2 during the last glacial than during the Holocene. Greatly reduced benthic foraminifera abundances, especially phytodetritus feeders, in BOFS 5K during the last glacial indicates low surface productivity. This rules out a productivity-driven CO2 sink. The enhanced glacial CO2 sink must, therefore, have results from a southwards shift of the centre of deep water formation.  相似文献   

10.
We report osmium concentrations and isotopic compositions of 40 groundwater samples from the Bengal plain. Groundwaters have Os concentrations (16.9-191.5 pg/kg), about 5-10 times higher than those published for most rivers or seawater. 187Os/188Os varies widely (from 0.96 to 2.79) and is related to the isotopic signatures of the sediments constituting local aquifers. Os contents are correlated with those of soluble elements such as Sr, Mg, and Ca, suggesting that differing extents of solid-solution interaction explain most of the variation in measured Os concentrations. The covariation between Os and Sr allows us to estimate the mean Os content of Bengal groundwater (∼70 pg/kg). This concentration is too low to allow Bengal groundwater to significantly influence the marine Os isotopic composition, if likely fresh groundwater discharge rates to the Bay of Bengal are assumed. However, if Bengal groundwater Os concentrations are typical, the global Os groundwater flux would be expected to be around 180 kg/year, making it the second largest input of Os to the ocean after the river flux. Including this flux in the current Os marine budget, and assuming that this and other fluxes have remained constant with time, would decrease the calculated residence time of Os in the ocean by about 30%.  相似文献   

11.
Koen de Jong   《Lithos》2003,70(3-4):91-110
In order to attempt to further constrain the age of the early Alpine tectonic evolution of the Mulhacén Complex and to explore the influence of inherited isotopes, micas from a small number of well-characterised rocks from the Sierra de los Filábres, with a penetrative tectonic fabric related to the exhumation of eclogite-facies metamorphic rocks, were selected for 40Ar/39Ar and Rb–Sr dating.

A single phengite grain from an amphibolite yielded an 40Ar/39Ar laser step heating plateau age of 86.9±1.2 Ma (2σ; 70% 39Ar released) and an inverse isochron age of 86.2±2.4 Ma with an 36Ar/40Ar intercept within error of the atmospheric value. Induction furnace step heating of a biotite separate from a gabbro relic in an eclogite yielded a weighted mean age of 173.2±6.3 Ma (2σ; 95% 39Ar released). These ages are diagnostic of excess argon (40ArXS) incorporation, as they are older than independent age estimates for the timing of eclogite-facies metamorphism and intrusion of the gabbros. 40ArXS incorporation probably resulted from restricted fluid mobility in the magmatic rocks during their metamorphic recrystallisation.

Rb–Sr whole-rock–phengite ages of graphite-bearing mica schists from Paleozoic rocks (Secano unit) show a dramatic variation (66.1±3.2, 40.6±2.6 and 14.1±2.2 Ma). An albite chlorite mica schist from the Mesozoic series of the Nevado–Lubrín unit has a whole-rock–mica–albite age of 17.2±1.9 Ma, which is within error of an 40Ar/39Ar plateau age published previously and of the youngest Rb–Sr age of the Paleozoic series obtained in this study. The significant spread in Rb–Sr ages implies that progressive partial resetting of an older isotopic system has occurred. The microstructure of the samples with pre-Miocene Rb–Sr ages reveals incomplete recrystallisation of white mica and inhibited grain growth due to the presence of graphite particles. This interpretation agrees with previously published, disturbed and slightly dome-shaped 40Ar/39Ar age spectra that may point similarly to the presence of an older isotope component. The progressively reset Rb–Sr system is a relic of Variscan metamorphism of the Paleozoic series of the Mulhacén Complex. In contrast, the origin of the ca. 17.2 Ma old sample from the Mesozoic series precludes any isotopic inheritance, in agreement with its pervasive tectono-metamorphic recrystallisation during the Miocene.

Exhumation of the eclogite-facies Mulhacén Complex occurred in two stages with contrasting rates of about 22.5 mm/year during the early phase and 9–10 mm/year during the late phase; the latter with a cooling rate in the order of 330 °C/Ma.  相似文献   


12.
黄渤海有机碳的分布特征及收支评估研究   总被引:4,自引:1,他引:3  
陆架边缘海是陆海相互作用研究中最为关键的区域,也是全球重要的碳储库,在区域物质循环过程中发挥着重要的作用。基于2012年5月和11月对黄渤海海域的综合调查,对该海域水体和沉积物中有机碳的含量与分布进行了分析,并结合相关文献资料对黄渤海有机碳的收支进行了估算。主要结论为:黄渤海溶解有机碳和颗粒有机碳均呈近岸河口区域高、离岸低的分布趋势;有机碳的组成以溶解有机碳为主,颗粒有机碳由海洋自生的有机碳和陆地来源的有机碳组成;黄渤海沉积物有机碳高值区主要分布在河口和泥质区,其组成也是由海洋自生和陆源混合而成,其中渤海以陆源为主,而黄海以海源为主。黄渤海有机碳收支评估表明,有机碳的主要来源为初级生产力产生的有机物,其贡献为(6 760±971)×104t/a,占有机碳输入总量的(74±10)%,沉积物再悬浮的通量为(884±200)×104t/a,东海向黄海输入的通量为(679±107)×104t/a,河流及陆源输入的通量为(643±63)×104t/a,大气干湿沉降的通量为(141±39)×104t/a,其贡献分别占有机碳输入总量的(10±2.2)%,(7.5±1.2)%,(7.0±0.7)%和(1.5±0.4)%;黄渤海有机碳的主要支出为呼吸消耗,其贡献为(5 190±746)×104t/a,占有机碳输出总量的(57±8.2)%,黄海向东海输出的通量为(2 150±370)×104t/a,有机碳沉积通量为(1 030±225)×104t/a,有机碳降解通量为(737±191)×104t/a,其贡献分别占有机碳输出总量的(24±4.1)%,(11±2.5)%和(8.0±2.1)%。有机碳收支评估表明黄渤海有机碳以海洋自生来源为主,且具有潜在碳的"汇"的特性,水体中外源输入和海洋自生有机碳的(1.6±0.3)%埋藏于该海域内。  相似文献   

13.
Chemical erosion in glacial environments is normally a consequence of chemical weathering reactions dominated by sulphide oxidation linked to carbonate dissolution and the carbonation of carbonates and silicates. Solute fluxes from small valley glaciers are usually a linear function of discharge. Representative glacial solute concentrations can be derived from the linear association of solute flux with discharge. These representative glacial concentrations of the major ions are 25% of those in global river water. A 3-D thermomechanically coupled model of the growth and decay of the Northern Hemisphere ice sheets was used to simulate glacial runoff at 100-year time steps during the last glacial cycle (130 ka to the present). The glacially derived fluxes of major cations, anions and Si over the glaciation were estimated from the product of the glacial runoff and the representative glacial concentration. A second estimate was obtained from the product of the glacial runoff and a realistic upper limit for glacial solute concentrations derived from theoretical considerations. The fluxes over the last glacial cycle are usually less than a few percent of current riverine solute fluxes to the oceans. The glacial fluxes were used to provide input to an oceanic carbon cycling model that also calculates changes in atmospheric CO2. The potential change in atmospheric CO2 concentrations over the last glacial cycle that arise from perturbations in glacial solute fluxes are insignificant, being <1 ppm.  相似文献   

14.
We reconstructed the paleoenvironmental history of surface and deep water over the last 130 kyr from oxygen and carbon isotope ratios of planktonic and benthic foraminifera in two cores (MD179-3312 and MD179-3304) from the Joetsu Basin, eastern margin of the Japan Sea. Our data showed that paleoceanographic changes such as influx of surface currents and vertical circulation were associated with global glacial–interglacial sea level change. Surface water conditions were influenced by the influx of Tsushima Current, East China Sea coastal or off-shore waters through the Tsushima Strait during interglacial or interstadial stages, and strongly affected by freshwater input during the glacial maximum. During interglacial maximums such as Marine Isotope Stages 1 and 5e, development of well-oxygenated bottom water was indicated. A density-stratified ocean with weak ventilation was inferred from the isotopic records of benthic foraminifera during the Last Glacial Maximum. Local negative excursions in carbon isotopes during deglacial or interglacial periods may suggest the dissolution of gas hydrates or methane seep activities.  相似文献   

15.
We evaluate whether the global weathering budget is near steady state for the pre-anthropogenic modern environment by assessing the magnitude of acidity-generating volcanic exhalations. The weathering rate induced by volcanic acid fluxes, of which the CO2 flux is the most important, can be expressed as an average release rate of dissolved silica, based on a model feldspar-weathering scheme, and the ratio of carbonate-to-silicate rock weathering. The theoretically predicted flux of silica from chemical weathering is slightly smaller than the estimated global riverine silica flux. After adjustment for carbonate weathering, the riverine dissolved bicarbonate flux is larger than the volcanic carbon degassing rate by a factor of about three. There are substantial uncertainties associated with the calculated and observed flux values, but the modern system may either not be in steady state, or additional, “unknown” carbon sources may exist. The closure errors in the predicted budgets and observed riverine fluxes suggest that continental weathering rates might have had an impact on atmospheric CO2 levels at a time scale of 103-104 years, and that enhanced weathering rates during glacial periods might have been a factor in the reduced glacial atmospheric CO2 levels. Recent anthropogenic emissions of carbon and sulfur have a much larger acid-generating capacity than the natural fluxes. Estimated potential weathering budgets to neutralize these fluxes are far in excess of observed values. A theoretical scenario for a return to steady state at the current anthropogenic acidity emissions (disregarding the temporary buffering action of the ocean reservoir) requires either significantly lower pH values in continental surface waters as a result of storage of strong acids, and/or higher temperatures as a result of enhanced atmospheric CO2 levels in order to create weathering rates that can neutralize the total flux of anthropogenic and natural background acidity.  相似文献   

16.
Zircon U–Pb ages and trace elements were determined for granulites and gneiss at Huangtuling, which are hosted by ultrahigh-pressure metamorphic rocks in the Dabie Orogen, east-central China. CL images reveal core–rim structure for most zircons in the granulites. The cores show oscillatory zoning, relatively high Th/U ratios, and HREE enriched patterns, consistent with a magmatic origin. They gave a weighted mean 207Pb/206Pb age of 2766 ± 9 Ma, interpreted as dating magma emplacement of the protolith. The rims are characterized by sector or planar zoning, low Th/U ratios, negative Eu anomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphic conditions. Zircon U–Pb dating yields a weighted mean 207Pb/206Pb age of 2029 ± 13 Ma, which is interpreted to record a metamorphic event, possibly during assembly of the supercontinent Columbia. The gneiss has a protolith age of 1982 ± 14 Ma, which is younger than the zircon age of the granulite-facies metamorphism, suggesting a generally delay between HT metamorphism and the intrusion of post-collisional granites. A few inherited cores with igneous characteristics have 207Pb/206Pb ages of 2.90, 3.28 and 3.53 Ga, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants in the Yangtze Craton. A few Cretaceous metamorphic ages were also obtained, suggesting the influence of post-collisional collapse in response to Cretaceous extension of the Dabie Orogen. It is inferred that the recently discovered Archean basement of the Yangtze Craton occurs as far north as the Dabie Orogen.  相似文献   

17.
Using analysis of marines cores from the Bay of Biscay as a basis, a system of different episodes of the Upper Pleistocene and the Holocene in the area of the Bay is presented. These episodes are characterized by several sedimentological and micropaleontological observations and particularly by the analysis of the coiling ratio of a few species of planktonic foraminifera. From the cores it is thus possible to determine the Holocene, the Würmian with its four glacial and three interglacial stages, and, at the base of the last glacial stage, the Riss-Würm interglacial or its upper level.  相似文献   

18.
A decrease in temperature (ΔT up to 45.5 °C) and chloride concentration (ΔCl up to 4.65 mol/l) characterises the brine–seawater boundary in the Atlantis-II, Discovery, and Kebrit Deeps of the Red Sea, where redox conditions change from anoxic to oxic over a boundary layer several meters thick. High-resolution (100 cm) profiles of the methane concentration, stable carbon isotope ratio of methane, and redox-sensitive tracers (O2, Mn4+/Mn2+, Fe3+/Fe2+, and SO42−) were measured across the brine–seawater boundary layer to investigate methane fluxes and secondary methane oxidation processes.

Substantial amounts of thermogenic hydrocarbons are found in the deep brines (mostly methane, with a maximum concentration up to 4.8×105 nmol/l), and steep methane concentration gradients mainly controlled by diffusive flow characterize the brine–seawater boundary (maximum of 2×105 nmol/l/m in Kebrit Deep). However, locally the actual methane concentration profiles deviate from theoretical diffusion-controlled concentration profiles and extremely positive δ13C–CH4 values can be found (up to +49‰ PDB in the Discovery Deep). Both, the actual CH4 concentration profiles and the carbon-13 enrichment in the residual CH4 of the Atlantis-II and Discovery Deeps indicate consumption (oxidation) of 12C-rich CH4 under suboxic conditions (probably utilizing readily available—up to 2000 μmol/l—Mn(IV)-oxihydroxides as electron acceptor). Thus, a combined diffusion–oxidation model was used to calculate methane fluxes of 0.3–393 kg/year across the brine–seawater boundary layer. Assuming steady-state conditions, this slow loss of methane from the brines into the Red Sea bottom water reflects a low thermogenic hydrocarbon input into the deep brines.  相似文献   


19.
Changes in the terrigenous sediment source and transport mechanisms during the late Quaternary have been investigated using four sediment cores within the Indian sector of Southern Ocean, using the magnetic susceptibility (MS) and sedimentological records. Sediments deposited during the Holocene and other interglacial periods were characterised by low MS, low sand content, reduced ice-rafted detritus (IRD) input and increased illite possibly transported via hydrographic advection from the south. The glacial intervals are characterised by high MS, high sand content, increased IRD input and reduced illite clays, derived from both local as well as Antarctic sources. Significant reduction in clay fraction and illite content during glacials suggests that the erosive and transporting capabilities of the deep and bottom waters could have reduced compared to the interglacial times. The changes in terrigenous influx to this region were significantly influenced by the rhythmic glacial-interglacial fluctuations in bottom circulation and the position of the Polar Front.  相似文献   

20.
The Central Zone of the Limpopo Belt (South Africa) underwent high-grade metamorphism at 2.7–2.5 and 2.03 Ga. Quartz-rich, garnet-, cordierite-, biotite- and orthoamphibole-bearing, feldspar-free gneisses from the western Central Zone reached granulite-facies conditions (800 °C at 8–10 kbar) followed by decompression. Garnet from one such sample shows significant zonation in trace elements but little zonation in major elements. Zoning patterns suggest that the early prograde breakdown of REE-rich accessory phases contributed to the garnet trace element budget. Monazite from the sample yields a SHRIMP weighted mean 207Pb–206Pb age of 2028 ± 3 Ma, indistinguishable from a SHRIMP zircon age of 2022 ± 11 Ma previously measured on metamorphic overgrowths on 2.69 Ga igneous zircon cores. New zircon and monazite formed before, or at, the metamorphic peak, and occur as inclusions in garnet. Monazite appears to have formed through the breakdown of early allanite ± xenotime ± apatite. Trace element zoning patterns in garnet and the age of accessory phases are most consistent with a single tectonometamorphic event at 2.03 Ga.

The plagioclase and K-feldspar-free composition of the garnet–cordierite–orthoamphibole gneisses requires open system processes such as intense hydrothermal alteration of protoliths or advanced chemical weathering. In the studied sample, the 2.69 Ga igneous zircons show a prominent negative Eu anomaly, suggesting equilibrium with plagioclase, or plagioclase fractionation in the precursor magma. In contrast, the other minerals either show small negative (2.03 Ga monazite), no (2.02 Ga zircon and garnet) or positive Eu anomalies (orthoamphibole). This suggests that the unusual bulk compositions of these rocks were set in after 2.69 Ga but before the peak of the 2.03 Ga event, most probably while the protoliths resided at shallow or surficial crustal levels.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号