首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Modeling and simulation using GPS-X software for a packed bed up-flow anaerobic sludge blanket followed by a biological aerated filter were studied. Both treatment units were packed with a non-woven polyester fabric as a bio-bed. The system was operated at a hydraulic and organic loading rate of 9.65 m3/m2/d and 2.64 kg BOD5/m3/day. Verification of the experimental results and calibration of the model were carried out prior simulation and modeling. Variables under consideration were HLR, OLR, and surface area of the packing material. HLR and OLR are increased incrementally until the break through point has been achieved. The results obtained from modeling indicated that the treatment system has great potential to be used as an ideal and efficient option for high hydraulic and organic loading rates up to 19.29 m3/m2/d and 4.48 kg BOD5/m3/day. The model indicated that increasing the input HLR and OLR loads to the treatment system up to 50 % of the original values achieved removal efficiencies 98 % for TSS, 88 % for BOD5, and 85 % for COD. Moreover, increasing the HLR to four times the original value (38.59 m3/m2/d) reduced the efficiency of the treatment system to 50 % for COD and BOD5. However, the removal rates of TSS, TKN, and TP were not affected. Also, the modeling results indicated that increasing the surface area of the packing material increased the overall efficiency of the treatment system.  相似文献   

2.
The aim of this research was to assess the efficiency of Fenton’s oxidation for degradation of endocrine disruptor bisphenol A (BPA) with emphasis on extent of accompanying adsorption. Adsorption on the waste sludge resulting from the Fenton’s oxidation could represent a significant impact on the final removal efficiency of BPA. Fenton’s oxidation was accomplished at two concentrations of BPA (0.228 and 22.8 mg L?1); both at the selected molar ratio of reagents Fe2+:H2O2 (1:10), as a function of reaction time. The kinetics of adsorption of BPA on waste sludge was determined for the same two concentrations of BPA at two concentrations of waste sludge (0.1 and 6.0 g L?1). In addition to changing concentrations of BPA and sludge, the adsorption process was also influenced by parameters such as temperature, pH and contact time. Adsorption isotherms were determined. Oxidation and adsorption were monitored by gas chromatography combined with mass spectrum. It has been confirmed that BPA is not completely oxidized in Fenton’s oxidation, because it is adsorbed to formed waste ferric sludge and thus necessary precautions for sludge deposition must be observed.  相似文献   

3.
Nowadays, natural resources are under increasing stress which fosters wastewater reuse planning and emphasizes on the decentralized wastewater treatment. Vermifiltration has been described as a viable alternative to treat domestic and urban wastewater, but few studies have focused on the impact of different filter packings on vermifiltration performance. This study evaluates the effect of vermicompost and sawdust in a single-stage vermifilter (VF) for urban wastewater treatment. After an acclimation period of 45 days, urban wastewater from a combined sewage collection system was applied continuously for 24 h. Earthworm stock density was of 20 g L?1, HRT of 6 h, HLR of 0.89 m3 m?2 day?1 and OLR of 7.38 g BOD5 day?1. System performance was assessed by the removal efficiencies of BOD5, COD, TSS, NH4 +, TN and TP, and fecal coliforms and helminth eggs elimination. Vermicompost (VE) and sawdust (SE) were tested, using an earthworm abundance of 20 g L?1. Treatment efficiencies were 91.3% for BOD5, 87.6% for COD, 98.4% for TSS and 76.5% for NH4 + in VE, and 90.5% for BOD5, 79.7% for COD, 98.4% for TSS and 63.4% for NH4 + in SE. Earthworms contributed to reduce NH4 + and TN removal and to increase NO3 ? concentration. No treatment was able to eliminate fecal coliforms down to guidelines values for wastewater irrigation as helminth eggs were completely eliminated. Single-stage vermifiltration system using both filter packings is inconsistent and cannot meet EU guideline values for discharge in sensitive water bodies and WHO guidelines for irrigation with treated wastewater.  相似文献   

4.
In this study, fluidized-bed Fenton process (FBF) was used to degrade dimethyl sulfoxide (DMSO), one of the most widely used solvents. Oxidation by Fenton’s reagent, Fe+2 and H2O2, is one of the cheapest advanced oxidation processes due to the high availability of the reagents. FBF is a modified approach that reduces the large amount of iron oxide sludge formed in conventional Fenton process. The optimal treatment efficiencies by FBF with 2 h of reaction were 95.22 % of DMSO degradation and 34.38 % of COD removal at the conditions of 5 mM DMSO, 68.97 g/L SiO2 carrier, pHinitial 3.0, 5 mM Fe2+, and 32.5 mM H2O2. The kinetic study was also done to investigate the two stages involved in the oxidation. The first stage fitted the zero reaction order with overall initial rate’s apparent rate constant, k 1, of ?0.099. The second stage fitted the first order of DMSO degradation, with rate constant, k 2, of ?0.0005.  相似文献   

5.
Produced water (PW) from natural gas field, characterized with high organic contents, has brought high environmental concerns world widely. Fenton and enhanced Fenton technologies were considered as the potential methods to degrade the organic contaminates in the PW, but with very limited data or reference. Here, we examined the optimum conditions of Fenton on organics and colour removal from natural gas PW after coagulation pre-treatment. Simultaneously, the optimal Fenton process integrated with ultraviolet (UV) and ultrasonic (US) irradiation were applied to enhance pollutants removal efficiencies. The optimal Fenton conditions were found at 60 min with molar ratios of 6:1 and 25:1 for H2O2/COD and H2O2/Fe2+, respectively and the initial pH of 3. Among these the three treatment processes, chemical oxygen demand (COD), total organic carbon, 5-day biological oxygen demand (BOD5), and colour removal efficiencies were highest during UV–Fenton (82, 73, 68, and 95%,) followed by US–Fenton (79, 70, 66, and 95%) and Fenton treatment (70, 58, 51, and 92%), respectively. High biodegradability (BOD5/COD) was also observed after UV–Fenton process (0.76) than the others (both 0.73). The current study showed a satisfactory carbon and colour removal efficiencies from PW using different Fenton processes; however, there still is a need for final polishing such as biological treatment or low cost constructed wetland before discharge. This study can be a good reference for engineering application PW treatment.  相似文献   

6.
The properties of activated sludge are very important in a membrane bioreactor (MBR) in terms of membrane fouling. The most important parameters affecting the membrane fouling can be listed as mixed liquor suspended solid (MLSS) concentration, soluble microbial products (SMPs), extracellular polymeric substances (EPSs), floc size, aeration and viscosity of both supernatant and activated sludge. The COD/TKN ratio also affects the physical properties of sludge in MBR system. This study aimed to investigate the effect of chemical oxygen demand-to-total Kjeldahl nitrogen (COD/TKN) ratio of feed wastewater treated in an MBR on biological components of activated sludge. The activated sludge characteristics were determined by quantitative analyses such as MLSS, EPS, SMP, floc size distribution, zeta potential, relative hydrophobicity and capillary suction time in a submerged MBR treating simulated wastewater having different COD/TKN ratios (16, 56 and 107). The COD and TKN removal efficiencies were found to be almost equal in the sMBRs having different COD/TKN ratios. However, it was seen that the EPS content and SMP concentration in the supernatant increased with increasing COD/TKN ratio. The results indicated that the COD/TKN ratio of feed should be considered as an effective parameter on activated sludge properties in sMBR systems.  相似文献   

7.
In the present study, the performance of three moving bed biofilm reactors (MBBRs) has been evaluated in series with anaerobic/anoxic/oxic (A2O) units for simultaneous removal of organic matter and nutrients (nitrogen and phosphorous) from a synthetic wastewater with characteristics similar to those of a typical municipal wastewater. Response surface methodology based on central composite design was used to investigate the effects of nitrate recycle ratio, hydraulic retention time (HRT), and influent chemical oxygen demand (COD) on the organic and nutrient removal and optimization process. The optimized values of influent COD, HRT, and R were 462 mg/L, 10 h, and 3.52, respectively. The predicted and observed values at optimized conditions were 92.8% and 93 ± 1.3%, 84.3% and 84 ± 1.3%, 71.7% and 68 ± 1.6% for COD, TN, and TP removals and 100 and 97 ± 1.2 mL/g for sludge volume index, respectively. After that, the influent COD, TN, and TP were increased to 550, 48, and 12 mg/L, respectively, to partly simulate the organics and nutrient variations of real wastewater treatment plants. The COD, TN, and TP removals were 91 ± 1.3, 82 ± 1.1, and 71 ± 0.8%, respectively. The influent COD, TN, and TP were increased again to 650, 56, and 14 mg/L, respectively. After this phase, the COD, TN, and TP removals were 90 ± 0.8, 80 ± 1.2, and 70 ± 1.0%, respectively. Obtained results indicated the good stability of the optimized system and the ability of MBBRs to remain stable at influent organics and nutrient variations. The ratio of attached volatile solids to mixed liquor volatile suspended solids was 1.90 ± 0.10, 2.07 ± 0.09, and 2.25 ± 0.14 in phases 1, 2, and 3, respectively. These high ratios indicate that the microorganisms had favored the attached growth to the suspended growth within the whole operation time.  相似文献   

8.
In 2005 a Cylindrospermopsis raciborskii bloom occurred in the Rio Verde Lake Basin (Brazil). To address this concern, a field analysis was performed to measure physicochemical variables and flows in 14 sub-basins, between 2008 and 2009. Measurements of mean total P (0.039 mg/L ± 0.018 mean SD), mean total Kjeldahl N (0.260 mg/L ± 0.226 mean SD), and mean BOD (1.2 mg/L ± 0.4 mean SD) concentrations were low in most streams, while COD reached a high of 27.1 mg/L (±4.9 mean SD). One tributary was responsible for 85 % of TP load, 77.1 % of TKN load, 78 % of t-BOD load, and 79 % of t-COD load. These concentrations and loads were used to develop the pollution potential assessment matrix (2PAM), which considered three different perspectives: stream water quality, reservoir ecosystem equilibrium, and sub-basin management. Each factor (TP, TKN, BOD and COD) was weighted based on concentration, total load and unit-area load. Pollution potential differed depending on which perspective was considered. The matrix developed, 2PAM, provides a new way to analyze concentrations and loads, enabling basin managers to prioritize action plans according to desired use within the basin.  相似文献   

9.
A combined ABR–MBR process consisting of an anaerobic baffled reactor (ABR) combined with an aerobic membrane bioreactor (MBR) treating municipal wastewater was investigated at controlled pH range 6.5–8.5 and at constant temperature 25 ± 1 °C. Total nitrogen (TN), ammonia (NH4 +–N), total phosphorus (TP), and chemical oxygen demand (COD) removal performances were evaluated by analyzing the mechanism for efficient nutrient removal. The results showed that the average removal rates of COD, NH4 +–N, TN, and TP reached 93, 99, 79, and 92 %, respectively, corresponding with the COD, NH4 +–N, TN, and TP effluent of 24 (18–31), 0.4 (0–0.8), 10.6 (8.8–12.9), and 0.31 (0.1–0.5) mg/L under the operational condition of hydraulic retention time (HRT) 7.5 h, recycle ratio 200 %, and dissolved oxygen 3 mg/L. The MBR enhanced NH4 +–N, TN, and TP removal rates of 13, 10, and 18 %, respectively, and the membrane retention reduced TP 0.17 mg/L. The process was able to maintain a stable performance with high-quality effluent. Analysis of the results by fluorescence in situ hybridization showed that the abundance of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and phosphorus accumulating organisms as percentages of all bacteria in each compartment was stable. The enriched microorganisms in the system appear to be the main drivers of the process efficient for nutrient removal.  相似文献   

10.
In this study, the characteristics of sewage of small community were determined for 6 months to ascertain the type of treatment required in subtropical conditions. The results demarcated sewage of this community as a medium-strength wastewater (chemical oxygen demand: 475 mg/L, biochemical oxygen demand: 240 mg/L and total suspended solids: 434 mg/L). Chemical oxygen demand to sulphate ratio of the sewage (11.6) established that it was amenable to anaerobic digestion. The temperature, strength, biodegradability and components of sewage were suitable for anaerobic digestion, and thus, upflow anaerobic sludge blanket reactor (UASB) was selected for its treatment. These reactors are often shutdown in small communities due to environmental and/or socio-economic factors. The ability of two UASB reactors, seeded with cow dung (UASBCD) and activated sludge of a dairy treatment plant (UASBASDIT) to restart after a long idle period of 12 months, was investigated along with sludge analysis by scanning electron microscope. Biomass in both reactors reactivated rapidly after shutdown period and within 30 days after substrate feeding achieved uniform removal efficiencies for chemical oxygen demand, total suspended solids, total dissolved solids, chloride and oil and grease. Chemical oxygen demand removal efficiency of both reactors became uniform and remained close to 80% after 30 days through reactivation of microbes in sludge bed due to adequate food and temperature conditions. During restart-up, at an average organic loading rate of 0.902 kg COD/m3 per day, methane yields of 0.091 and 0.084 m3/kg COD removed were achieved for UASBCD and UASBASDIT reactors, respectively.  相似文献   

11.
Sewage treatment station in oilfield needs a new process to meet the desired requirements. A new process was proposed to meet the discharge standards, which consisted of the following sub-processes: electrochemical treatment → coagulation treatment → integrated biochemical treatment of moving bed biofilm reactor and membrane bio-reactor → combined treatment process of macroporous adsorption resin. Electrochemical treatment included 5 electrolytic cells, total volume of which was 10 L. The PFS was chosen as the coagulants in the coagulation treatment, and the removal rate of COD could reach 66% when the dosage of PFS was 500 mg/L. The biochemical treatment consisted of anoxic tank, aerobic tank and membrane zone, and the removal rate of COD was about 55–70% when HRT was 12 h. SD300 resin was chosen as the best adsorbent in the treatment using macroporous adsorption resin. In addition, the effluent COD after coagulation treatment process becomes about 180 mg/L, the effluent COD after biological treatment becomes about 50 mg/L, and the last effluent COD with the macroporous adsorption resin becomes about 20 mg/L. The three-dimensional fluorescence spectrum was used to analyze the differences in types of organic matters in water samples between the raw water and the treated one. The results demonstrated that the new process meets the needs of wastewater treatment.  相似文献   

12.
The co-treatment of landfill leachate (LFL) with municipal wastewater (MWW) using shortcut sequencing batch reactor combined with coagulation–settling process (SBR + CS) was investigated. Four ratios of LFL to MWW volume (v/v) were used during experiments including the ratios 1:9, 2:8, 3:7 and 5:5. The average quality of the LFL was chemical oxygen demand (COD) of 20,800 mg L?1 and NH4-N of 2,645 mg L?1. The SBR-treating LFL in six series where mixing aeration and settling phases were varied from 4 to 14 h was combined with coagulation (FeCl3, Al2(SO4)3) with an interval of 2 h. It was found that ratio (1:9) of leachate to MWW under aeration and mixing phase of 4 h with settling time of 1.5 h exhibited the highest ability to remove both COD and NH 4 + -N, 99% and 85%, respectively. The short-time sequential batch reactor was tested for the treatment of raw LFL, and only 47% and 23% removal of COD and NH 4 + -N, respectively, could be achieved.  相似文献   

13.
在上流式好氧颗粒污泥床反应器中, 以厌氧颗粒污泥和好氧絮状活性污泥为接种泥, 采用人工配制的模拟废水, 成功培养出性能优异的好氧颗粒污泥.反应器内污泥浓度稳定在5g/L左右, 颗粒污泥粒径为0.5~2.0mm, 当进水COD为2000mg/L, 容积负荷为4.8kg/(m3·d)时, 系统对COD的去除率稳定在96%以上.通过扫描电镜观察, 好氧颗粒污泥是层状结构, 表面有大量丝状菌缠绕, 内部有短杆菌和空穴存在.逐步提高制药废水在进水中的比例, 经过47d的培养, 生物制药废水完全取代模拟废水, 系统对COD、NH3-N、TP的去除率分别稳定在90%、90%和70%以上.   相似文献   

14.
Wastewater treatment using moving bed membrane bioreactor technology was tested with real urban wastewater at a pilot plant, combining moving bed treatment as a biological process with hybrid biomass (suspended and fixed) and the advantages of a membrane separation system. The evolution of the kinetic constants of the hybrid biomass and organic matter removal were studied in a pilot plant under different operational conditions, by varying hydraulic retention time (HRT), mixed liquor suspended solids (MLSS) and temperature, and considering the attached biomass of the carrier and the dispersed biomass of the flocs to reproduce real treatment conditions. The rates of organic matter removal were 97.73 ± 0.81 % of biochemical oxygen demand (BOD5), 93.44 ± 2.13 % of chemical oxygen demand (COD), 94.41 ± 2.26 % of BOD5 and 87.62 ± 2.47 % of COD using 24.00 ± 0.39 and 10.00 ± 0.07 h of HRT, respectively. The influence of the environmental variables and operational conditions on kinetic constants was studied; it was determined that the most influential variable for the decay coefficient for heterotrophic biomass was HRT (0.34 ± 0.14 and 0.31 ± 0.10 days?1 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively), while for heterotrophic biomass yield, this was temperature (0.61 ± 0.04 and 0.52 ± 0.06 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively). The results show that introducing carriers in an MBR system provides similar results for organic matter removal, but with a lower concentration of MLSS.  相似文献   

15.
Leachate was a major cause of high risk classification. This landfill was set as one with highest possible risk classification due to high vulnerability of private water wells to contamination from leachate flows. The aim of this study is to determine the present and possible environmental risks of the leachate spreading from solid waste dumping site in Tunceli and offer solutions for those determined environmental risks. For this purpose, the characteristics of the leachate were monitored at two station points detected in the solid waste dumping site for 7 months. The characteristics of the leachate were found for pH between 7.9 and 8.7. Oxidation reduction potential (ORP) occurred between ??143 and ??48 mV while conductivity was between 2.8 and 2.6 mS. Total solid matter (TSM) and suspended solid matter (SSM) were between 1000 and 7000 mg/l, 0.2–22.5 mg/l, respectively, while total volatile solids (TVS) occurred between 300 and 1800 mg/l for the two stations. Alkalinity was approximately between 290 and 5210 mg/l, while biological oxygen demand (BOD5) and chemical oxygen demand (COD) results were 15–606 mg/l and 60–1160 mg/l, respectively, for two stations in all sampling time. In both stations, orthophosphate, ammonium nitrogen, nitrate, sulfate, and chloride analyses stayed between 3.04 and 921.1 mg/l; 0.29–619.36 mg/l; 8.94–135.04 mg/l; 125.9–1360.9 mg/l and 99.9–1249.9 mg/l, respectively, in 6 months. As a result of the characterization studies obtained from the leachate, it was found that the amounts of water entering into the waste mass and the retention period of the water in the mass were very effective in the temporal character change of the leachate. According to the Discharge Standards for Solid Waste Assessment and Disposal Facilities and Discharge to Waste Water Infrastructure Facilities of waste management regulation, the results were found to be risky. Consequently, the site in question needs to be urgently rehabilitated when considering the environmental risks of the leachate spreading from the site.  相似文献   

16.
17.
Pretreatment of waste emulsions with high organic content by a combined process of vibratory shear enhanced process and Fenton’s oxidation prior to biological treatment was investigated. Vibrating membrane had shown good performance in chemical oxygen demand and oil removals and the mitigation of concentration polarization. However, the permeate after filtration processing still contained high content of organics. Thus, additional Fenton oxidation was applied to reduce the organic loading, and improve the biodegradability of the wastewater. The optimal molar ratio of ferrous iron to hydrogen peroxide was 0.05 obtained from the jar-test experiments. Removal of organics was enhanced by increasing hydrogen peroxide dosage, while efficiency of hydrogen peroxide reached maximum of 1.11(w/w) at the hydrogen peroxide dosage of 6.8 g/L. Furthermore, the biological experiments indicated that the high concentration of organics could inhibit microbial activity, which decreased the chemical oxygen demand degradation rates. The adaptive period of the microbe was greatly shortened using Fenton’s reagent at the low dosages. The improvement of the biodegradability could be explained by partial mineralization and chemical transformation of parent organic compounds after Fenton oxidation.  相似文献   

18.
Fenton氧化膜-生物反应器出水中丙烯腈的实验研究   总被引:4,自引:0,他引:4  
采用膜-生物反应器和Fenton氧化组合工艺对丙烯腈废水进行处理。从GC/MS测量结果来看,膜-生物反应器出水中主要物质为2,6双(二甲基-乙基)-4-酚、苯二甲酸和硝基苯二甲酸,均为生物难降解有机物,使出水不能达标。后续Fenton氧化工艺处理膜生物反应器出水,可以使COD含量等指标达到所要求的排放标准。经过膜-生物处理与Fenton法结合的优化工艺,COD去除率达到80%~88%,去除率达到98%,出水水质可达排放标准。Fenton氧化工艺的最佳工艺条件为:pH值为3.4,硫酸亚铁的投加量为700mg/L,双氧水的投加量为600mg/L。  相似文献   

19.
The study focused on the feasibility of high NH4 +–N (400–600 mg/L) and COD load at two different hydraulic retention times (HRTs = 36 and 24 h) in two identical aerobic–anoxic sequencing bioreactors which were constructed in series in a single system using a specifically designed single biomass containing autotrophic nitrifying and heterotrophic denitrifying bacteria. Internal recirculation of synthetic wastewater from one tank to other was not carried out like the conventional aerobic–anoxic processes. Cycles of 15 days under sequences of aerated and non-aerated periods of three hour each were repeated during each continuous flow experiment conducted. Sodium bicarbonate and sodium acetate were selected as the appropriate inorganic and organic carbon sources. The results showed that the HRT may not affect the simultaneous nitrification and denitrification processes. Average nitrification ratio was obtained to be above 20 mg/L NH4 +–N/h daily. Results of 90 days’ operation also showed high removal efficiencies of ammoniacal nitrogen of about 83% daily. The main advantage of this process includes efficient ammoniacal nitrogen removal without separated aerobic and anoxic tanks, decrease operating costs due to the lesser oxygen concentration requirement in the bioreactors.  相似文献   

20.
Bisphenol A (BPA) is an endocrine disruptor that is difficult to completely remove from wastewater by conventional biological methods. Increased post-treatment BPA removal with ceramic membranes is worth investigating because of these membranes’ mechanical and chemical stability and lifespan. To determine the effectiveness of ceramic membranes for post-treatment of biologically treated BPA-contaminated wastewater, microfiltration (MF) and nanofiltration (NF) were conducted. Both processes removed BPA completely at an initial BPA concentration of 0.3 ± 0.14 mg/L. Increased concentration of 0.7 ± 0.29 mg/L decreased BPA removal. MF removed at least 24 % of BPA, presumably because BPA was adsorbed on particulate matter, which was retained by the membrane, or adsorbed on its surface. NF removed up to thrice more BPA. MF and NF completely removed suspended solids and 40–60 % COD. Filtration capacity decreased with time due to fouling but did not depend on initial BPA concentration. BPA concentrations in municipal wastewater are typically lower than the lowest concentration tested, where MF completely removed BPA. Hence, MF ceramic membranes appear a promising solution for post-treatment of BPA-containing wastewater. MF can be used at a much lower transmembrane pressure than NF, requiring less energy to pump wastewater through the membrane, thus reducing costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号