首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Coupled hydro-mechanical (HM) processes are significant in geological engineering such as oil and gas extraction, geothermal energy, nuclear waste disposal and for the safety assessment of dam foundations and rock slopes, where the geological media usually consist of fractured rock masses. In this study, we developed a model for the analysis of coupled hydro-mechanical processes in porous rock containing dominant fractures, by using the numerical manifold method (NMM). In the current model, the fractures are regarded as different material domains from surrounding rock, i.e., finite-thickness fracture zones as porous media. Compared with the rock matrix, these fractured porous media are characterized with nonlinear behavior of hydraulic and mechanical properties, involving not only direct (poroelastic) coupling but also indirect (property change) coupling. By combining the potential energy associated with mechanical responses, fluid flow and solid–fluid interactions, a new formulation for direct HM coupling in porous media is established. For indirect coupling associated with fracture opening/closure, we developed a new approach implicitly considering the nonlinear properties by directly assembling the corresponding strain energy. Compared with traditional methods with approximation of the nonlinear constitutive equations, this new formulation achieves a more accurate representation of the nonlinear behavior. We implemented the new model for coupled HM analysis in NMM, which has fixed mathematical grid and accurate integration, and developed a new computer code. We tested the code for direct coupling on two classical poroelastic problems with coarse mesh and compared the results with the analytical solutions, achieving excellent agreement, respectively. Finally, we tested for indirect coupling on models with a single dominant fracture and obtained reasonable results. The current poroelastic NNM model with a continuous finite-thickness fracture zone will be further developed considering thin fractures in a discontinuous approach for a comprehensive model for HM analysis in fractured porous rock masses.  相似文献   

2.
用流固耦合方法研究油藏压裂后应力应变和孔渗特性变化   总被引:10,自引:1,他引:10  
油藏压裂后将引起地应力场发生变化,使岩石变形,导致孔隙度和渗透率变化,进而影响产量,为研究这一问题,作者建立了油藏压裂后流-固耦合渗流模型,考虑了以下因素:油藏岩石变形,地应力,孔隙度和渗透率变化,人工裂缝,流体渗流与岩石应变耦合,储藏渗流与裂缝渗流耦合,非达西效应等。较详细地给出了耦合方程及推导过程,控制方程包括的未知变量有压力,饱和度及位移,11个变量,和11个方程,用有限差分方法将流体渗流和岩石应变方程离散成主对角占优的七对角矩阵,可在修改已有三维二相渗流和三维固体力学程序的基础上,采用隐式迭代方法求解,示例分析表明,用此模型可以研究储层应力变变,孔隙度和渗透率随时间和空间变化规律,为开发方案制定,整体压裂设计,压后生产管理等方面提供定量分析技术。  相似文献   

3.
虞松  朱维申  张云鹏 《岩土力学》2015,36(2):555-560
以非连续变形分析方法(DDA)为基础并采用稳态流体计算方法将二者结合进行裂隙岩体流-固耦合分析。利用DDA方法生成裂隙岩体模型,在此基础上采用矩阵搜索等方法形成新的裂隙水通网络模型。采用稳态迭代算法和立方定律求得裂隙水压力,并把裂隙水压力作为线载荷施加到块体边界,在DDA算法中每个迭代步完成后更新裂隙开度和水压值,与DDA算法结合研究裂隙水与块体之间相互作用关系。利用以上裂隙岩体流-固耦合计算方法研究了某水封油库开挖和运行过程洞室围岩流量和密封性,为该工程预测水封效果提供了有益的主要依据,也是国内首次采用DDA方法做大型工程的流-固耦合模型分析。  相似文献   

4.
This paper proposes a three-dimensional coupled hydrothermal model for fractured rock based on the finite-discrete element method to simulate fluid flow and heat transport. The 3D coupled hydrothermal model is composed of three main parts: a heat conduction model for the rock matrix, a heat transfer model for the fluid in the fractures (including heat conduction and heat convection), and a heat exchange model between the rock matrix and the fluid in the fractures. Four examples with analytical solutions are provided to verify the model. A heat exchange experiment of circulating water in a cylindrical granite sample with one fracture is simulated. The simulation results agree well with the experimental results. The effects of the fracture aperture, fluid viscosity, and pressure difference on the heat exchange between the fluid and rock are studied. Finally, an application concerned with heat transport and fluid flow in fractured rock is presented. The simulation results indicate that the 3D fully coupled hydrothermal model can capture the fluid flow and temperature evolution of rocks and fluids.  相似文献   

5.
Interpreting Dual Laterolog Fracture Data in Fractured Carbonate Formation   总被引:1,自引:0,他引:1  
The estimation of fractures is key to evaluating fractured carbonate reservoirs. It is difficult to evaluate this kind of reservoir because of its heterogeneously distributed fractures and anisotropy, A three-dimensional numerical model was used to simulate the responses of the dual laterolog (DLL) in a fractured formation based on a macro-isotropic anisotropic model, Accordingly, a fast fracture computing method was developed. First, the apparent conductivity of the DLL is linearly related to the porosity of the fracture and the conductivity of pore fluid. Second, the amplitude difference of the deep and shallow apparent resistivity logs is mainly dependent on the dip angle of the fracture. Then the response of the DLL to a formation with dip angle fractures is approximately depicted as a function of the bulk resistivity of the rock, the porosity of the fractures and the conductivity of fracture fluid. This function can be used to compute the porosity of fracture quickly. The actual data show that the fracture parameters determined by the DLL closely coincide with the formation micro imager log.  相似文献   

6.
离散裂隙渗流方法与裂隙化渗透介质建模   总被引:4,自引:1,他引:4  
流体渗流模拟的连续介质方法通常适用于多孔地质体,并不一定适用于裂隙岩体,由于裂隙分布及其特征与孔隙差异较大。若流体渗流主要受裂隙的控制,对于一定尺寸的裂隙岩体,多孔介质假设则较难刻划裂隙岩体的渗流特征。离散裂隙渗流方法不但可直接用于模拟裂隙岩体非均质性和各向异性等渗流特征,而且可用其确定所研究的裂隙岩体典型单元体及其水力传导(渗透)张量大小。主要讨论了以下问题:(1)饱和裂隙介质中一般的离散流体渗流模拟;(2)裂隙岩体中的REV(典型单元体)及其水力传导(渗透)张量的确定;(3)利用离散裂隙网络流体渗流模型研究裂隙方向几何参数对水力传导系数和REV的影响;(4)在二维和三维离散裂隙流体渗流模型中对区域大裂隙和局部小裂隙的处理方法。调查结果显示离散裂隙流体渗流数学模型可用来评价不同尺度上的裂隙岩体的水力特征,以及裂隙方向对裂隙化岩体的水力特征有着不可忽视的影响。同时,局部小裂隙、区域大裂隙应当区别对待,以便据其所起的作用及水力特征,建立裂隙化岩体相应的流体渗流模型。  相似文献   

7.
岩体结构与岩体水力耦合计算模型   总被引:3,自引:2,他引:1  
水力耦合作用是岩体中力学过程与渗流过程相互作用的物理过程。水力耦合机理的理解是水力耦合分析的关键问题,其耦合机理是由岩体结构特性决定的。在分析岩体水力耦合过程基础上,根据岩体的基本结构及代表性单元体(REV)是否存在提出了建立水力耦合模型的方法。当裂隙岩体中不存在代表性单元体(REV)时,提出了裂隙岩体多重介质流固耦合分析的全耦合数学模型,给出流固耦合模型数值方法求解的数学模型及有限元计算表达式。程序编制和验证工作正在进行中。  相似文献   

8.
In this paper a new analytical model is proposed to determine the permeability tensor for fractured rock masses based on the superposition principle of liquid dissipation energy. This model relies on the geometrical characteristics of rock fractures and the corresponding fracture network, and demonstrates the coupling effect between fluid flow and stress/deformation. This model empirically considers the effect of pre‐peak shear dilation and shear contraction on the hydraulic behavior of rock fractures and can be used to determine the applicability of the continuum approach to hydro‐mechanical coupling analysis. Results of numerical analysis presented in this paper show that the new model can effectively describe the permeability of fractured rock masses, and can be applied to the coupling analysis of seepage and stress fields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
为探讨寒区裂隙岩体含冰裂隙在冻融循环作用下的冻胀力演化规律,进而揭示疲劳冻融对岩体结构劣化的影响机制,采用自行设计的8通道冻胀力实时监测系统开展了不同岩性、不同裂隙几何形态下的冻胀力测试试验,获取了多次冻融循环中冻胀力演化曲线,并分析了岩性和裂隙几何形态对冻胀力演化规律的影响。研究表明:(1)冻融循环造成岩体结构劣化是冻胀力引起岩体疲劳损伤的过程,每个冻融循环的冻胀力演化过程都经过孕育阶段、暴发阶段、跌落回稳阶段、回升阶段和消散阶段,并且发现了冻胀力回升这一现象;初始冻胀力峰值可作为裂隙岩体抗冻融损伤指标;(2)在多次冻融循环作用下岩体裂隙冻胀力不断暴发、积聚和释放,期间产生的裂隙累积损伤驱动着裂隙持续扩展,引起岩体进一步的疲劳劣化;疲劳冻融作用下,初始冻胀力峰值与二次冻胀力峰值变化趋势可作为裂隙岩体受冻融影响损伤劣化程度的判断依据;(3)岩体结构特性影响冻胀力演化规律,岩体基质的微细观结构影响冻结过程中水分迁移;宏观预置裂隙几何形态影响冻胀力演化规律,扩展程度越大的裂隙积聚出的冻胀力越大。疲劳冻融下冻胀力演化规律的研究可为寒区岩体工程长期冻融稳定性预测及工程建设提供理论依据。  相似文献   

10.
Mechanical and hydraulic properties of rocks related to induced seismicity   总被引:1,自引:0,他引:1  
Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23–55.The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass.In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid.However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now available that clearly demonstrates this stress-flow behavior. Two approaches have been used in attempting to numerically model such behavior: (1) continuum models, and (2) discrete models. The continuum approach only needs information as to average values of fracture spacing and material properties. But because of the inherent complexity of fractured rock masses and the corresponding decrease in symmetry, it is difficult to develop an equivalent continuum that will simulate the behavior of the entire system. The discrete approach, on the other hand, requires details of the fracture geometry and material properties of both fractures and rock matrix. The difficulty in obtaining such information has been considered a serious limitation of discrete models, but improved borehole techniques can enable one to obtain the necessary data, at least in shallow systems. The possibility of extending these methods to deeper fracture systems needs more investigation. Such data must be considered when deciding whether to use a continuum or discrete model to represent the interaction of rock and fluid forces in a fractured rock system, especially with regard to the problem of induced seismicity. When one is attempting to alter the pressure distribution in a fault zone by injection or withdrawal of fluids, the extent to which this can be achieved will be controlled in large measure by the behavior of the fractures that communicate with the borehole. Since this is essentially a point phenomenon, i.e., the changes will propagate from a relatively small region around the borehole, the use of a discrete model would appear to be preferable.  相似文献   

11.
Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. ‘Sparse channels’ refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.  相似文献   

12.
The role of hydromechanical coupling in fractured rock engineering   总被引:19,自引:2,他引:17  
This paper provides a review of hydromechanical (HM) couplings in fractured rock, with special emphasis on HM interactions as a result of, or directly connected with human activities. In the early 1960s, the coupling between hydraulic and mechanical processes in fractured rock started to receive wide attention. A series of events including dam failures, landslides, and injection-induced earthquakes were believed to result from HM interaction. Moreover, the advent of the computer technology in the 1970s made possible the integration of nonlinear processes such as stress–permeability coupling and rock mass failure into coupled HM analysis. Coupled HM analysis is currently being applied to many geological engineering practices. One key parameter in such analyses is a good estimate of the relationship between stress and permeability. Based on available laboratory and field data, it was found that the permeability of fractured rock masses tends to be most sensitive to stress changes at shallow depth (low stress) and in areas of low in-situ permeability. In highly permeable, fractured rock sections, fluid flow may take place in clusters of connected fractures which are locked open as a result of previous shear dislocation or partial cementation of hard mineral filling. Such locked-open fractures tend to be relatively insensitive to stress and may therefore be conductive at great depths. Because of the great variability of HM properties in fractured rock, and the difficulties in using laboratory data for deriving in-situ material properties, the HM properties of fractured rock masses are best characterized in situ. Electronic Publication  相似文献   

13.
付宏渊  蒋煌斌  邱祥  姬云鹏 《岩土力学》2020,41(12):3840-3850
为探究不同外部环境因素影响下浅层粉砂质泥岩边坡裂隙渗流特性,采用自主研发的岩体裂隙渗流试验装置,对含6种不同裂隙面粗糙度(JRC)的粉砂质泥岩裂隙试样进行渗流试验,研究了不同低围压和覆水深度下粉砂质泥岩裂隙渗流特性。结果表明:不同覆水深度及JRC下围压与粉砂质泥岩裂隙渗透系数均呈反相关,两者之间关系可用幂函数表征,且渗透系数的降低过程可分为快速降低(围压为0~30 kPa)和缓慢降低(围压为30~50 kPa)两个阶段,CT扫描结果验证了围压增大使得粉砂质泥岩裂隙开度减小是渗透系数随围压增大而减小的主要原因。随围压的增大或覆水深度的减小,不同JRC粉砂质泥岩裂隙渗透系数的离散程度逐渐减小。当围压增至最大,同时覆水深度最小时,JRC对裂隙渗透系数的影响将会被消除。不同围压下,粉砂质泥岩裂隙渗透系数与覆水深度呈正相关,且两者关系可用指数函数表征。推导出了粉砂质泥岩裂隙渗流非线性Izabsh模型,该模型能较好地反映低应力及低流速下粉砂质泥岩裂隙渗流量与压力梯度之间的非线性变化关系,但随围压的增大,该模型的相关性有一定程度的减小。  相似文献   

14.
裂隙岩体流固耦合问题是目前国内外研究热点之一,采用离散元软件UDEC对裂隙岩体发生节理剪胀的渗透性变化规律进行了模拟分析。基于现场调查的裂隙信息统计生成裂隙网络岩体模型。 通过固定垂直应力、不断增加应力比RS(RS=水平应力/垂直应力)使岩体出现剪胀,采用库伦滑移节理模式对岩体在剪胀过程中的渗透性变化情况进行模拟。结果发现:当应力比较小(RS3.1)时,节理水力隙宽、流速、渗透系数等参数都随着应力比的增加表现出明显的降低; 而当岩体出现剪胀现象之后(应力比大于3.1),发生剪切滑移和剪胀现象的节理控制着裂隙岩体的总体渗流行为,与不考虑节理剪胀的计算结果相比,岩体渗透能力出现了显著增长。这一结果表明,剪胀对裂隙岩体渗透性的影响是显著而不可忽视的。  相似文献   

15.
裂隙渗流会引起裂隙周围岩体中的温度场变化,在低温岩体中其影响更为明显;此外,裂隙水与周围低温岩石介质发生热交换会引起裂隙中的水冰相变过程发生,而裂隙水冻结将阻碍裂隙渗流,引起裂隙渗流场的变化。因此,低温下的裂隙岩体水-热相互作用是一个强耦合过程。考虑裂隙中的水冰相变过程和渗流作用,建立了低温冻结条件下裂隙岩体水-热耦合模型;以冻结法施工为例,考察了低温冻结过程中裂隙水渗流对裂隙冻结交圈的影响。研究结果表明:由于裂隙渗流的存在,距裂隙较远处岩石先冻结,裂隙冻结所需时间远大于周围岩石;裂隙宽度和裂隙水压力差都会影响冻结交圈时间,裂隙越宽、水压力差越大,裂隙冻结需要时间越长;随着冻结时间的推进,裂隙水渗流速度逐渐降低,当裂隙冻结后裂隙渗流停止。最后通过构建随机裂隙网络模型,利用所建立的水-热耦合模型考察了裂隙网络渗流对冻结交圈的影响,说明了在冻结法施工中考虑裂隙的重要性。  相似文献   

16.
岩体裂隙系统渗流场与应力场耦合模型   总被引:15,自引:0,他引:15  
岩体系统具有复杂的结构。一般认为,岩体系统是非均质各向异性不连续的多相介质体系。当岩体以裂隙为主,且其分布较密集时,可将岩体系统看作等效连续多相介质体系。本文运用等效连续介质理论,提出了两种岩体裂隙系统渗流场与应力场耦合模型:一是以渗透水压力与隙变形关系、应力与渗透系统数关系为基础,建立渗透系数张量计算公式,进而建立等效效连续介质渗流为数学模型。以裂隙岩体应变张量分析为基础,建立裂隙岩体效应力张量  相似文献   

17.
高玮  胡承杰  贺天阳  陈新  周聪  崔爽 《岩土力学》2020,41(7):2179-2188
借助损伤力学思想,基于统计强度理论,提出一种适用于深部工程破裂区破裂岩体的本构模型建立方法,并通过室内试验和数值试验进行了验证。将破裂岩体划分为无数微元立方体,微元立方体的强度与岩石破裂程度有关,且各立方体强度随机分布,故可用强度反映破裂岩体的破裂程度,据此提出一种破裂岩体本构模型建立方法。其中,根据岩石破裂面间的摩擦力做功等于材料破裂后释放的应变能,得到从力学角度定义的岩石破裂程度变量;另外,假定微元立方体强度分布服从Weibull分布,应力水平满足Hoek-Brown准则。利用泥质砂岩破裂岩体典型三轴试验结果,建立泥质砂岩破裂岩体本构模型,并进行了验证,结果表明模型计算曲线与试验曲线吻合度较好。利用离散元软件PFC进行了补充数值试验验证研究,证明了泥质砂岩破裂岩体理论模型的良好计算效果,进而证明提出的本构模型建立方法的可行性。  相似文献   

18.
In this paper, a fully coupled thermo-hydro-mechanical model is presented for two-phase fluid flow and heat transfer in fractured/fracturing porous media using the extended finite element method. In the fractured porous medium, the traction, heat, and mass transfer between the fracture space and the surrounding media are coupled. The wetting and nonwetting fluid phases are water and gas, which are assumed to be immiscible, and no phase-change is considered. The system of coupled equations consists of the linear momentum balance of solid phase, wetting and nonwetting fluid continuities, and thermal energy conservation. The main variables used to solve the system of equations are solid phase displacement, wetting fluid pressure, capillary pressure, and temperature. The fracture is assumed to impose the strong discontinuity in the displacement field and weak discontinuities in the fluid pressure, capillary pressure, and temperature fields. The mode I fracture propagation is employed using a cohesive fracture model. Finally, several numerical examples are solved to illustrate the capability of the proposed computational algorithm. It is shown that the effect of thermal expansion on the effective stress can influence the rate of fracture propagation and the injection pressure in hydraulic fracturing process. Moreover, the effect of thermal loading is investigated properly on fracture opening and fluids flow in unsaturated porous media, and the convective heat transfer within the fracture is captured successfully. It is shown how the proposed computational model is capable of modeling the fully coupled thermal fracture propagation in unsaturated porous media.  相似文献   

19.
三轴压缩条件下三峡坝基岩石破裂的分形特征   总被引:1,自引:0,他引:1  
根据分形理论,系统地研究了在三轴压缩条件下三峡坝基岩石破裂系和破损物的分形结构。结果表明,在三轴压缩条件下,岩石脆性破裂的破裂系和岩石破损物的粒度分布均有很好的统计自相似性。在不同的围压和应变率下,岩石脆性破裂的分维值各不相同,体现了岩石脆性断裂机制的差异性。分维可作为描述岩石脆性断裂的定量参数  相似文献   

20.
为了探索煤层顶板中水平井向目标层穿层压裂的裂缝扩展规律,以华北石炭-二叠纪煤田为例,运用断裂力学、损伤力学以及流体力学等经典理论并结合现场实测资料,开展了压裂缝延伸距离与压裂时间时空演化规律的建模与验证。首先,基于原生裂缝特性、渗透特性以及压裂射孔段附加应力等因素,提出了顶板水平井垂向造缝的起裂压力计算公式;其次,在考虑裂缝性煤岩体损伤效应的基础上,引入Dougill损伤因子,将该计算模型拓展为延伸压力计算模型;最后,基于改进的经典PKN裂缝模型和压裂液滤失理论,建立了连续穿层工况下压裂缝延伸距离与压裂施工时间的函数关系。实践验证表明,根据理论模型合理调配时间参数,可以控制穿层裂缝的延伸距离。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号