首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Authors collected 38 sedimentary boreholes and numerous seismic profiles from previous publications to delineate the Holocene sedimentation rate of six major depositional sinks in the middle-lower Changjiang River basins and its river coast. The results demonstrate that the highest sedimentation rate of ca. 15 m/ka occurred in the mono-depositional sink of the former Changjiang River mouth during 10 000–8000 aBP, when post-glacial transgression happened and the Changjiang water level remained at lower stand. With the rising of the Changjiang water level in response to sea level rise, Jianghan Basin of the middle Changjiang River becomes the other important depositional sink with highest sedimentation rate of 10 m/ka since 7000 aBP. As Jianghan Basin was mostly filled up at ca. 4000 aBP, Dongting Basin and the lower Changjiang valley trapped sediments in great amounts like in the river mouth. A considerable amount of Changjiang sediments has been delivered, both eastward and southward, to the inner continental shelf of the East China Sea, especially after 2000 aBP. This indicates reduced sediment storage capacity of the middle-lower Changjiang valley and the river mouth. In total, ca. 1307.4 billion tons of sediment have deposited in the middle-lower Changjiang floodplain since 7000 aBP. In the meantime, ca. 947 billion tons of sediment have been deposited in the river coast to form the Changjiang subaqueous delta and the Zhejiang-Fujian along-shelf mud wedge. Our result also reveals two time stages with lower sedimentation rates(< 4 m/ka) in all basins during 8000–7000 aBP and in the estuarine area during 4000–2000 aBP, probably owing to stengthened chemical weathering of decline of monsoon precipitation. __________ Translated from Journal of Palaeogeography, 2007, 9(4):419–429 [译自: 古地理学报]  相似文献   

2.
《Applied Geochemistry》1998,13(3):349-358
Geochemical data from 4 cores taken in the Eastern Gotland Basin of the Central Baltic Sea (68 to 243 m water depth) show that depositional conditions for heavy metals in sediments were similar at all water depths prior to anthropogenic influxes. After the onset of industrialization, the deep anoxic parts of the basin expanded at irregular intervals and the <63 μm fractions of the sediments became characterized by high organic C and heavy-metal accumulation rates. The difference between the enrichment patterns in the basin and on the slope suggests that material enriched in organic matter (and associated trace elements) and in sulphides (and associated trace elements) is preferentially deposited in the basin. The composition of the sediments in the basin therefore reflects the effects of lateral transport of the sediment, which enriches organic C in the deepest part of the basin and of anoxia in the deep water of the basin, where metal sulphides are formed. Previous estimates of the timing of the onset of industrial pollution in the Central Baltic may have been in error because these new data suggest that this began in the Eastern Gotland Basin in about 1870.  相似文献   

3.
Coring through glaciotectonically stacked Quaternary sediments situated below sea level on the island of Møn, Denmark, recovered a succession of interstadial sediments of Middle Weichselian age. Plant and animal remains including insects found in laminated sand and mud indicate deposition in a lake surrounded by dwarf shrubs, herbs, mosses and rare trees. The insect fauna indicates a mean July temperature of 8–12 °C, suggesting an arctic to sub‐arctic environment, while winter temperatures around ?8 to ?22 °C suggest periglacial conditions with permafrost. Luminescence dating of sediment samples gave ages from 48–29 ka, and radiocarbon dating indicates deposition of plant fragments between 45 and 36 ka BP. The fossil assemblage from Møn shows close resemblance to those from other sites with similar ages found in the vicinity of the western Baltic Basin.  相似文献   

4.
In this paper we present Quaternary stratigraphy of the area around Chennai based on archaeological findings on the ferricrete surface, geomorphological observations supplemented by radiocarbon dating. The coastal landscape around Chennai, Tamil Nadu, has preserved ferruginised boulder gravel deposits, ferricretes and fluvial deposits of varying thickness. The area studied is approximately 150 km east to west and 180 km north to south with a broad continental shelf towards the seaward. Several rivers enter the Bay of Bengal along its shores like the Koratallaiyar, Cooum and the Adyar. Precambrian charnockite and Upper Gondwana sandstone and shale bedrock rim the shelf margin. For the most part, the Upper Pleistocene-Holocene fluvial sediments overlie an erosion surface that has cut into older Pleistocene sediments and ferricrete surface. Incised valleys that cut into this erosion surface are up to 5–6 km wide and have a relief of at least 30 m. The largest valley is that cut by the Koratallaiyar River. Holocene sediments deposited in the incised valleys include fluvial gravels, early transgressive channel sands and floodplain silts. Older Pleistocene sediments are deposited before and during the 120-ka high stand (Marine isotope stage 5). They consist of ferricretes and ferricrete gravel formed in nearshore humid environments. Muddy and sandy clastic sediments dated to the ca. 5 ka highstand suggest that the climate was semi arid at this time with less fluvial transport. The coarsening up sequence indicates deposition by high intensity channel processes. Pedogenic mottled, clayey silt unit represents an important tectonic event when the channel was temporarily drained and sediment were sub aerially exposed. Uplift of the region has caused the local rivers to incise into the landscape, forming degradation terraces.  相似文献   

5.
The Skagerrak is a key region for our understanding of the Late Quaternary history of the East North Sea, of the entire Baltic basin and of the adjacent Scandinavian land areas. The depositional history of the postglacial Skagerrak began after the ice margin withdrew from Jutland to close to the modern Norwegian coast around 14 ka B.P. to 13 ka B.P. The Skagerrak was immediately filled by marine waters from the Norwegian Sea, but retained a fjord-like shape until approximately 10.2 ka B.P., when a connection opened across central Sweden to the Baltic Ice Lake. This seaway closed around 9 ka B.P., but a new seaway to the Baltic basin opened subsequently (probably close to 8.5 ka B.P.) through the Danish Belts. At about 10 ka B.P. the Skagerrak 'fjord' also started to change shape due to the flooding of the large former land area under the modern North Sea. Paleo-geography and -bathymetry of these changes can now be quantified in great detail. The young Quaternary sediments of the Skagerrak consist of fine-grained clays with minor amounts of silty and sandy material and are mostly of terrigenous origin, whereas biogenic components in general make up only a minor proportion of the bulk sediment. Prior to 10 ka B.P. a major portion of these deposits originated from the Fennoscandian regions N and E of the Skagerrak, while ice-rafting contributed coarse terrigenous components to the usually fine-grained sediments and while it was filled by brackish surface and cold polar bottom waters. At approximately 10 ka B.P., more temperate waters started to fill the Skagerrak and a good portion of the sediment seems to have originated from areas to the South. The Norwegian Coastal Current can only be documented for the past 7 ka; subtle changes of the pelagic and benthic environments could also be documented for later intervals.  相似文献   

6.
The Quaternary fills of the buried valleys of southern Alberta and Saskatchewan have provided a wealth of information for the reconstruction of the glacial-interglacial record of the western plains of Canada, and this paper reports on the previously unstudied stratigraphy of the buried Calgary Valley and its former tributaries in the lower Red Deer River area. We attempt to differentiate Empress Group sediments, which potentially relate to pre-glacial, interglacial/ interstadial and post-glacial lake and river deposition, using sedimentology, stratigraphy and palaeoecology. Twenty-nine stratigraphical logs indicate that Empress Group sediments have infilled a considerably large area of badlands and tributary coulees that once drained into the Calgary Valley, located 15 km to the north of Dinosaur Provincial Park. Radiocarbon dates of 52.4 ka, 27.4 ka and > 42.4 ka and glacially modified quartz grains suggest that at least some of the valley fills date to interglacial or interstadial periods and may be mid-Wisconsinan in age. However, outcrops of an older till overlying other valley fills suggest that the buried valleys were only partially excavated during interglacials/interstadials and that older (even pre-glacial) sediments could have survived. Subglacial channels, recognisable on air photographs, largely coincide with buried valley positions due to the preferential excavation of the Quaternary sediment by meltwater and are filled with post-glacial lake sediment from which a radiocarbon date of 16 ka BP was obtained. Pre-glacial and glacial/post-glacial Empress Group sediments are lithologically indistinct but cover a large time span in southern Alberta.  相似文献   

7.
The Himalayan mountain system has many depressions of regional dimensions, which are found oriented mostly E–W to NE–SW, mainly to the north of the main boundary fault (MBF). The Karewa Basin in the Kashmir Himalaya has sediments belonging to late Neogene to Quaternary formations, which represent an almost 1,300-m-thick succession of sand, mud and gravels exposed in the river valleys and the plateau margins of the entire Kashmir Valley. Sandbox analogue experiments show a great variety of wedge shapes showing significant changes in the taper angles due to the change in basal friction. Between two pop-ups or depressions (pop-down) of significant dimensions develop along the strike of the growing wedge. In order to maintain the critical angle, these depressions initially receive material from the hinterland, and later on, from the foreland end of the wedge. The depressions have developed due to the change in the surface slope of the wedge, and receive the eroded material only from the adjacent upheaved portions of the wedge. On continuation of the experiments (in cases where the wedge is highly unstable), these depressions are coupled with the wedge along with their sand-fills. The depositional history of the Karewa sediments indicates a sequential evolutionary pattern of the basin and thus represents a natural analogue of the sandbox experiments.  相似文献   

8.
Lake Zürich occupies a glacially overdeepened perialpine trough in the northern Middlelands of Switzerland. A total of 154.4 m of Quaternary sediments and 47.3 m of Tertiary Molasse bedrock has been cored from the deepest part of the lake, some 10 km south of the city of Zürich. Some 16.8 m of gravels and sands directly overlying the bedrock include basal till and probably earliest subglacial fluvial and lacustrine deposits. These are overlain by 98.6 m of fine-grained, glacial-aged sediments comprising completely deformed proglacial and/or subglacial lacustrine muds, separated by four basal mud tills. The lack of interglacial sediments, fossils, and other datable material, and the presence of severe sediment deformation and unknown amounts of erosion prevent the establishment of an exact chronostratigraphy for sediments older than the upper mud till. Above it some 8.6 m of lacustrine muds were deposited, folded, faulted, and tilted during the final opening of the lake at about 17,500–17,000 years ago. Superimposed are 30.4 m of final Würm and post-glacial sediments comprising (from oldest): cyclic proglacial mud, thick-bedded and laminated mud, a complex transition zone, laminated carbonate, laminated marl, and diatom-calcite varves. These sediments reflect changing catchment and lacustrine conditions including: glacial proximity, catchment stability, lake inflow characteristics, thermal structure, chemistry, and bed stability. Average sedimentation rates ranged from 11 cm yr−1 immediately after glacier withdrawal, to as low as 0.4 mm yr−1 as the environment stabilized. The lack of coarse outwash deposits separating the fine-grained glaciolacustrine sediments from a corresponding underlying basal till suggests that deglaciation of the deep northern basin of Lake Zürich was by stagnation-zone retreat rather than by retreat of an active ice-front.  相似文献   

9.
Two hundred and eighty-one samples, collected from drilling core NS93-5 located in the Nansha area of the South China Sea, were used to study the magnetic characteristics of the sediments in the sea. Detailed rock magnetic results show that the magnetic minerals of the sediments were dominated by ferrimagnetic minerals such as magnetite, and a small contribution of hematite and maghematite also existed. The sediments recorded three negative values of remanence magnetic inclination at the depth: 191–206 cm, 232–248 cm, and 292–308 cm. The corresponding ages of these negative values were 65.87–68.7 ka B.P., 73.4–80.8 ka B.P. and 108.4–113.6 ka B.P., respectively, according to stratigraphy of oxygen isotope, 14C, and the age of a volcanic ash layer. The negative value during 108.4–113.6 ka B.P. may be the record of a Blake event in the sediments of the Nansha area. Translated from Marine Geology & Quaternary Geology, 2006, 26(1): 59–66 [译自: 海洋地质与第四纪地质]  相似文献   

10.
Eolian deposition on the semiarid southern Colorado Plateau has been attributed to episodic aridity during the Quaternary Period. However, OSL ages from three topographically controlled (e.g. falling) dunes on Black Mesa in northeastern Arizona indicate that eolian sediments there were deposited in deep tributary valleys as early as 35–30 ka, with most sand deposited before 20 ka. In contrast, the oldest OSL ages for sand sheets fall within the Pleistocene-Holocene climatic transition (~ 12–8 ka). Thus most eolian sediment accumulated on Black Mesa under climatic conditions that were in general cooler, moister, and more variable than today, not more arid, pointing to a considerable increase in sediment supply.  相似文献   

11.
12.
Piper  Hiscott  & Normark 《Sedimentology》1999,46(1):47-78
The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known.
The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses.
Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.  相似文献   

13.
《Earth》2009,92(1-4):77-92
The hypoxic zone in the Baltic Sea has increased in area about four times since 1960 and widespread oxygen deficiency has severely reduced macro benthic communities below the halocline in the Baltic Proper and the Gulf of Finland, which in turn has affected food chain dynamics, fish habitats and fisheries in the entire Baltic Sea. The cause of increased hypoxia is believed to be enhanced eutrophication through increased anthropogenic input of nutrients, such as nitrogen and phosphorus. However, the spatial variability of hypoxia on long time-scales is poorly known: and so are the driving mechanisms. We review the occurrence of hypoxia in modern time (last c. 50 years), modern historical time (AD 1950–1800) and during the more distant past (the last c. 10 000 years) and explore the role of climate variability, environmental change and human impact. We present a compilation of proxy records of hypoxia (laminated sediments) based on long sediment cores from the Baltic Sea. The cumulated results show that the deeper depressions of the Baltic Sea have experienced intermittent hypoxia during most of the Holocene and that regular laminations started to form c. 8500–7800 cal. yr BP ago, in association with the formation of a permanent halocline at the transition between the Early Littorina Sea and the Littorina Sea s. str. Laminated sediments were deposited during three main periods (i.e. between c. 8000–4000, 2000–800 cal. yr BP and subsequent to AD 1800) which overlap the Holocene Thermal Maximum (c. 9000–5000 cal. yr BP), the Medieval Warm Period (c. AD 750–1200) and the modern historical period (AD 1800 to present) and coincide with intervals of high surface salinity (at least during the Littorina s. str.) and high total organic carbon content. This study implies that there may be a correlation between climate variability in the past and the state of the marine environment, where milder and dryer periods with less freshwater run-off correspond to increased salinities and higher accumulation of organic carbon resulting in amplified hypoxia and enlarged distribution of laminated sediments. We suggest that hydrology changes in the drainage area on long time-scales have, as well as the inflow of saltier North Sea waters, controlled the deep oxic conditions in the Baltic Sea and that such changes have followed the general Holocene climate development in Northwest Europe. Increased hypoxia during the Medieval Warm Period also correlates with large-scale changes in land use that occurred in much of the Baltic Sea watershed during the early-medieval expansion. We suggest that hypoxia during this period in the Baltic Sea was not only caused by climate, but increased human impact was most likely an additional trigger. Large areas of the Baltic Sea have experienced intermittent hypoxic from at least AD 1900 with laminated sediments present in the Gotland Basin in the Baltic Proper since then and up to present time. This period coincides with the industrial revolution in Northwestern Europe which started around AD 1850, when population grew, cutting of drainage ditches intensified, and agricultural and forest industry expanded extensively.  相似文献   

14.
In depressions of the Baltic Sea, where the bottom is periodically marked by stagnation, silt contains as much as 5% Mn (up to 17% in some layers) and 9–10% Corg. Silt in such depressions is laminated. The marine sediment sequence is stratified due to the influx of oceanic water into sea: the upper layers are oxic, while the lower (near-bottom) layers are hydrosulfuric. Boundary between them is represented by the transitional O2-H2S layer. This zone (redox barrier) is marked by drastic variation in Eh. Zone below this barrier is characterized by the accumulation of huge amounts of the dissolved manganese (Mn2+) and iron (Fe2+), which diffuse from the hydrosulfuric layer into the oxic layer under the influence of gradient and precipitated as suspeusion with as much as 15% Fe and 45% Mn. When fresh oxygenated saline water is transported to depressions, the hydrosulfuric setting gives way to oxic one and the dissolved elements are transformed into the particulate phases as hydroxides and geologically instantly precipitated at the bottom. After 5–10 yr, the setting changes; hydrogen sulfide is again delivered to water column from the bottom. This is accompanied by supply of the dissolved Mn2+ and Fe2+ previously accumulated as gel-type sediment at the bottom. Thus, the cycle of elements is repeated. The latter, however, is not completely dissolved. Some portion remains at the bottom as black rhodochrosite microlayers (laminas) that contain as much as 29% Mn. The black laminas accumulated during aeration include remains of bottom foraminifers. In addition, the bottom comprises pale diatom laminas and brownish gray varieties composed of clayey and organic substances. Bulk samples of the laminated silt contain as much as 12.9% Mn or 26.9% MnCO3. Depressions in the Baltic Sea represent a unique site of the Earth marked by accumulation of the carbonate-manganiferous sediments at present. We believe that Oligocene manganese carbonate-oxide ores described by N.M. Strakhov and coauthors were accumulated in the same manner. Compositions of manganiferous sediments in the Baltic region and some ancient ores in Europe are compared. The author studied five stages of Mn accumulation and sediment transformation into ores.  相似文献   

15.
The Upper Rhine Graben (URG) is characterized by a thickness of up to 500 m of unconsolidated Quaternary sediments, providing excellent records of the Rhine river system and its responses to tectonic and climatic changes. The most complete Quaternary sequence of fluvial and limnic-fluvial deposits is found in the Heidelberg Basin, due to its long-term subsidence since the mid-Eocene. The aim of this study is to provide a chronological framework using optically stimulated luminescence (OSL) dating of aeolian and fluvial sands derived from the upper 33 m of a sediment core, which was drilled into the Heidelberg Basin infill close to the village of Viernheim, Germany. The OSL ages demonstrate that the dated fluvial sediments were deposited during the last glacial period (Weichselian) and that there were at least three aggradation periods during this episode. The coversands that cap the sequence were emplaced during the early Holocene.  相似文献   

16.
Middle–Late Pleistocene tectonic activity has been inferred through studies on travertine deposits exposed in a tract of the hinterland Northern Apennines. A detailed study on the relationships between tectonics and travertine deposition coupled with 230Th/234U age determination of travertines at Cava Oliviera quarry, located close to Serre di Rapolano village (southern Tuscany, Northern Apennines), allowed us to recognise Pleistocene faults, whose activity has been referred to 157–24 ka, at least. Travertine deposition was tectonically controlled by WSW-ENE striking, oblique and normal faults, associated to a main fault (named as the Violante Fault). This structure dissected a regional normal fault (known as the Rapolano Fault) Early–Middle Pliocene in age, which bounded the eastern side of the Pliocene Siena Basin, and gave rise to space accommodation for clayey and sandy marine sediments. Hydrothermal circulation (and related travertine deposition) was favoured by the damaging enhancement due to the fault–fault intersection. Tectonic activity has been also documented by deformation recorded by travertines, which suggest a main tectonic event between 64 ± 5 and 40 ± 5 ka. The tectonic activity described for the study area agrees with the Quaternary tectonic evolution documented in the surrounding areas (e.g. Mt. Amiata and Mt. Vulsini), as well as the Tyrrhenian margin of the Central Apennines, indicating that a widespread tectonic activity affected the inner part of the Apennines until the latest Quaternary.  相似文献   

17.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

18.
Quaternary post-Barreiras sediments are widespread along Brazil's passive margin. These deposits are well exposed in the onshore Paraíba Basin, which is one of the rift basins formed during the Pangean continental breakup. In this area, the post-Barreiras sediments consist of sandstones with abundant soft-sediment deformation structures related to seismicity contemporaneous with deposition. The trace fossils Thalassinoides and Psilonichnus are found up to 38 m above modern sea level in sandstones dated between 60.0 (± 1.4) and 15.1 (± 1.8) ka. The integration of ichnological and sedimentary facies suggests nearshore paleoenvironments. Such deposits could not be related to eustatic sea-level rise, as this time coincides with the last glaciation. Hence, an uplift of 0.63 mm/yr, or 1.97 mm/yr if sea level was 80 m lower in the last glaciation, would have been required to ascend the post-Barreiras sediments several meters above the present-day sea level during the last 60 ka. This would suggest that the post-rift stage of the South American eastern passive margin may have experienced tectonic reactivation more intense than generally recognized. Although more complete data are still needed, the information presented herein may play an important role in studies aiming to decipher the Quaternary evolution of this passive margin.  相似文献   

19.
Jensen, J. B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. 1997 (September): The Baltic Ice Lake in the southwestern Baltic: sequence-, chrono- and biostratigraphy. Boreas , Vol. 26, pp. 217–236. Oslo. ISSN 0300–9483.
This multidisciplinary study focuses on late-glacial deposits in the Mecklenburg Bay -Arkona Basin area. The sequence stratigraphical method has been used on shallow seismic and lithological data, in combination with biostratigraphical work and radiocarbon dating. Glacial-till deposits underlie sediments from two Baltic Ice Lake phases. Varved clay deposits from the initial phase cover the deepest parts of the basins. A prograding delta is observed at the western margin of the Arkona Basin, prograding from the Darss Sill area. The delta system is possibly related to a highstand dated at 12.8 ka. A maximum transgression level around 20 m below present sea level (b.s.l.) is inferred, followed by a drop in water level and formation of lowstand features. The final ice lake phase is characterized by a new transgression. The transgression maximum as observed in the Mecklenburg Bay is represented by transgressive and highstand deltaic deposits. These also indicate a maximum shore level of 20 m b.s.l. The deltaic sediments that contain macroscopic plant remains and diatoms have yielded Younger Dryas ages. Mapping of the late-glacial morphology of the Darss Sill area reveals a threshold at 23 to 24 m b.s.l. This means that the Baltic Ice Lake highstand phases inundated the Darss Sill, which implies that the westernmost extension of the Baltic Ice Lake reached as far as Kiel Bay. Forced regressive coastal deposits at the western margin of the Arkona Basin mark a lowstand level of around 40 m b.s.l. caused by the final drainage of the Baltic Ice Lake. The lowstand deposits predate lacustrine deposits from the Ancylus Lake, which date to approximately 9.6 ka BP.  相似文献   

20.
Late Quaternary stratigraphy and sedimentation in the Ganga Alluvial Plain and the Bengal Basin have influenced arsenic contamination of groundwater. Arsenic contaminated aquifers are pervasive within lowland organic rich, clayey deltaic sediments in the Bengal Basin and locally within similar facies in narrow, entrenched river valleys within the Ganga Alluvial Plain. These were mainly deposited during early-mid Holocene sea level rise. Arsenic was transported from disseminated sources as adsorbed on dispersed phases of hydrated-iron-oxide. These were preferentially entrapped as sediment coatings on organic-rich, fine-grained deltaic and floodplain sediments. Arsenic was released later to groundwater mainly by reductive dissolution of hydrated-iron-oxide and corresponding oxidation of sediment organic matter. Strong reducing nature of groundwater in the Bengal Basin and parts of affected middle Ganga floodplains is indicated by high concentration of dissolved iron (maximum 9-35 mg/l). Groundwater being virtually stagnant under these settings, released arsenic accumulates and contaminates groundwater. The upland terraces in the Bengal Basin and in the Central Ganga Alluvial Plain, made up of the Pleistocene sediments are free of arsenic contamination in groundwater. These sediments are weakly oxidised in nature and associated groundwater is mildly reducing in general with low concentration of iron (<1 mg/l), and thus incapable to release arsenic. These sediments are also flushed free of arsenic, released if any, by groundwater flow due to high hydraulic head, because of their initial low-stand setting and later upland terraced position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号