首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
An algorithm for the numerical modelling of magnetotelluric fields in 2-D generally anisotropic block structures is presented. Electrical properties of the individual homogeneous blocks are described by an arbitrary symmetric and positive-definite conductivity tensor. The problem leads to a coupled system of partial differential equations for the strike-parallel components of the electromagnetic field. E x, and H x These equations are numerically approximated by the finite-difference (FD) method, making use of the integro-interpolation approach. As the magnetic component H x, is constant in the non-conductive air, only equations for the electric mode are approximated within the air layer. The system of linear difference equations, resulting from the FD approximation, can be arranged in such a way that its matrix is symmetric and band-limited, and can be solved, for not too large models, by Gaussian elimination. The algorithm is applied to model situations which demonstrate some non-trivial phenomena caused by electrical anisotropy. In particular, the effect of 2-D anisotropy on the relation between magnetotelluric impedances and induction arrows is studied in detail.  相似文献   

2.
Seismic body waves in anisotropic media: synthetic seismograms   总被引:5,自引:0,他引:5  
Summary. Synthetic seismograms and particle motion diagrams are computed for simple, layered Earth models containing an anisotropic layer. The presence of anisotropy couples the P, SV and SH wave motion so that P waves incident on the anisotropic layer from below produce P, SV and small-amplitude SH waves at the surface both the P velocity and the amplitudes of the converted phases vary with azimuth. Significant SH amplitudes may be generated even when the wavelength of the P wave is much greater than the thickness of the anisotropic layer. Incident SV or SH waves may each generate large amplitudes of both SV and SH motion. This strong coupling is largely independent of the degree of velocity anisotropy of the medium. The arrivals from short-period S waves exhibit S-wave splitting, but arrivals from longer period S waves superpose into a modified waveform. This strong coupling does not allow the arrival of separate phases with pure SV and SH polarization except along directions of symmetry where the motion decouples.  相似文献   

3.
Summary. An attempt is made to explain the existence of intracrustal low-velocity layers in rift zones by using an anisotropic model. It is supposed that the anisotropy is due to the preferred orientation of micas and amphiboles in metamorphic rocks forming the upper crust. Analysing the velocity distribution along different directions in anisotropic media the authors conclude that the low-velocity layer must be isotropic (randomly oriented) with an anisotropic lid.  相似文献   

4.
The perfectly matched layer (PML) absorbing boundary condition is incorporated into an irregular-grid elastic-wave modelling scheme, thus resulting in an irregular-grid PML method. We develop the irregular-grid PML method using the local coordinate system based PML splitting equations and integral formulation of the PML equations. The irregular-grid PML method is implemented under a discretization of triangular grid cells, which has the ability to absorb incident waves in arbitrary directions. This allows the PML absorbing layer to be imposed along arbitrary geometrical boundaries. As a result, the computational domain can be constructed with smaller nodes, for instance, to represent the 2-D half-space by a semi-circle rather than a rectangle. By using a smooth artificial boundary, the irregular-grid PML method can also avoid the special treatments to the corners, which lead to complex computer implementations in the conventional PML method. We implement the irregular-grid PML method in both 2-D elastic isotropic and anisotropic media. The numerical simulations of a VTI lamb's problem, wave propagation in an isotropic elastic medium with curved surface and in a TTI medium demonstrate the good behaviour of the irregular-grid PML method.  相似文献   

5.
Summary. A method for the determination of the anisotropic characteristics of rock samples by acousto-polarization analysis is described. Linearly polarized shear-waves generated by a transducer, propagate through a sample and are recorded by a polarized receiver. Measurements are made by rotating the sample first with the polarization vectors of source and receiver aligned parallel, and rotating again with the polarization vectors orthogonal. The method can determine the orientation of the anisotropic symmetry axes, and can be used to examine linear anisotropic absorption. Use of the method is illustrated by application to strongly anisotropic rocks. It appears to be an effective means of determining the elastic characteristics of rock samples and other anisotropic media.  相似文献   

6.
Summary. The characteristics of surface-wave propagation in ocean basins are examined numerically for models with two types of anisotropic alignment in the upper mantle: one resulting from glide-plane slip in olivine with horizontal or vertical slip-planes, and the other from syntectonic recrystallization of olivine in a zone of horizontal shear. Glide-plane slip can cause highly anomalous inclined-Rayleigh particle-motion in the third-generalized mode (corresponding to the isotropic second-Rayleigh mode). The amplitude of this anomaly is rather insensitive to details of the structure. Syntectonic recrystallization can cause an anomalous combination of inclined-and tilted-Rayleigh motion in all modes. The variation with period of the amplitude of the anomaly in the fundamental mode can indicate the approximate depth to the anisotropic layer. In both types of alignment, the sense of tilt and the inclination varies with direction of propagation in a manner characteristic of the structural symmetry.  相似文献   

7.
Shear wave splitting analyses have been carried out using teleseismic data from broad-band seismograph stations deployed at temporary and permanent locations in Dronning Maud Land (DML), Antarctica. In most cases, the observed anisotropy can be related to major tectonic events that formed the present-day Antarctic continent. We rule out an anisotropic contribution from recent asthenospheric flow. At the Russian base Novolazarevskaya near the coast in central DML, waveform inversion suggests a two-layer model where the fast direction of the upper layer is oriented parallel to Archean fabrics in the lithosphere, whereas the anisotropy of the lower layer is interpreted to have been created during the Jurassic Gondwana break-up. Recordings at the South African base Sanae IV, however, show enigmatic results. For narrow backazimuthal segments, splitting parameters show strong variations together with a multitude of isotropic measurements, indicative of complex scattering that cannot be explained by simple one- or two-layer anisotropic models. In the interior of the continent, the data are consistent with single-layer anisotropy, but show significant spatial variations in splitting parameters. A set of temporary stations across the Heimefront shear zone in western DML yield splitting directions that we interpret as frozen anisotropy from Proterozoic assembly of the craton. An abrupt change in fast axis direction appears to mark a suture between the Grunehogna craton, a fragment of the Kalahari–Kaapvaal craton in southern Africa and the Mesoproterozoic Maudheim Province.  相似文献   

8.
Summary. A method based on a combination of partial separation of variables and finite-difference method is used for the calculation of complete theoretical seismograms for inhomogeneous anisotropic media. Examples of theoretical seismograms for several anisotropic models are presented.  相似文献   

9.
Summary. Analysis of NORSAR records and a number of Soviet microfilms reveals second-mode surface Caves propagating along paths covering a large part of Eurasia. These second modes in the 6–15-s period band are frequently disturbed by other surface-wave modes and by body-wave arrivals. However, in all cases, where the modes appear to be undisturbed and show normal dispersion, the Second Rayleigh modes have a slowly varying phase difference with the Second Love modes. This coupling has the particle motion of Inclined Rayleigh waves characteristic of surface-wave propagation in anisotropic media, where the anisotropy possesses a horizontal plane of symmetry. Numerical examination of surface wave propagating in Earth models, with an anisotropic layer in the upper mantle, demonstrate that comparatively small thicknesses of material with weak velocity anisotropy can produce large deviations in the polarizations of Inclined Rayleigh Second modes. In many structures, these inclinations are very sensitive to small changes in anisotropic orientation and to small changes in the surrounding isotropic structure. It is suggested that examination of second mode inclination anomalies of second mode surface waves may be a powerful technique for examining the detailed anisotropic structure of the upper mantle.  相似文献   

10.
11.
Upper-mantle flow beneath French Polynesia from shear wave splitting   总被引:1,自引:0,他引:1  
Upper-mantle flow beneath the South Pacific is investigated by analysing shear wave splitting parameters at eight permanent long-period and broad-band seismic stations and 10 broad-band stations deployed in French Polynesia from 2001 to 2005 in the framework of the Polynesian Lithosphere and Upper Mantle Experiment (PLUME). Despite the small number of events and the rather poor backazimuthal coverage due to the geographical distribution of the natural seismicity, upper-mantle seismic anisotropy has been detected at all stations except at Tahiti where two permanent stations with 15 yr of data show an apparent isotropy. The median value of fast polarization azimuths (N67.5°W) is parallel to the present Pacific absolute plate motion direction in French Polynesia (APM: N67°W). This suggests that the observed SKS fast polarization directions result mainly from olivine crystal preferred orientations produced by deformation in the sublithospheric mantle due to viscous entrainment by the moving Pacific Plate and preserved in the lithosphere as the plate cools. However, analysis of individual measurements highlights variations of splitting parameters with event backazimuth that imply an actual upper-mantle structure more complex than a single anisotropic layer with horizontal fast axis. A forward approach shows that a two-layer structure of anisotropy beneath French Polynesia better explains the splitting observations than a single anisotropic layer. Second-order variations in the measurements may also indicate the presence of small-scale lateral heterogeneities. The influence of plumes or fracture zones within the studied area does not appear to dominate the large-scale anisotropy pattern but may explain these second-order splitting variations across the network.  相似文献   

12.
Summary. Two approaches to travel-time computations in laterally inhomogeneous anisotropic media are presented. The first method is based on ray tracing in an anisotropic inhomogeneous medium, the second on the linearization procedure. The linearization procedure, which can be applied to inhomogeneous, slightly anisotropic media, does not require ray tracing in an anisotropic medium. Applications of linearized equations to the solutions of direct and inverse kinematic problems are discussed. A program package to perform the linearized computations for rather general 2-D laterally inhomogeneous layered structures is described and a numerical example is presented.  相似文献   

13.
Summary. Peculiarities of propagation in the upper mantle of western Europe are documented by profiles of stations recording body waves generated by explosions. Azimuthal variations of travel times and amplitudes of P waves and possible birefringence of S waves may be associated with an anisotropic layer at depths where the lithosphere-asthenosphere transition is supposed to be.  相似文献   

14.
Summary. Seismic investigations using shear-wave and converted wave techniques show that very often reflected PS - and SS -waves have anomalous polarizations ( accessory components ). This phenomenon cannot be explained in terms of isotropic models with dipping boundaries. Computations of synthetic seismograms of reflected PS - and SS -waves were made for different models of transversely isotropic media with dipping anisotropic symmetry axes not normal to the boundaries. Synthetic seismograms were computed by ray techniques using an optimization algorithm to construct all rays arriving at a given receiver. These computations indicate that accessory components arise when the medium above the boundary is anisotropic, where they are caused by the constructive interference of qSV - and qSH -waves. If a low-velocity layer is present, displacement vectors of both waves have horizontal projections which are approximately orthogonal. The algorithm for wave separation is presented and some results of its use are given.  相似文献   

15.
Shear-wave polarizations on a curved wavefront at an isotropic free surface   总被引:12,自引:0,他引:12  
Summary. We present polarization diagrams of the particle motions at the free surface of an isotropic half-space generated by incident shear waves from a local buried point source. The reflectivity technique is used to calculate synthetic seismograms from which the particle motions are plotted. The particle motions are examined over a range of epicentral distances in a uniform isotropic half-space for different source frequencies and polarization angles, and for different Poisson's ratios. The particle motions due to a curved wavefront possess different characteristics from those generated by plane wavefronts at corresponding incidence angles. A curved wavefront generates a local SP -phase: a P -headwave which propagates along the free surface, and arrives shortly before the direct S -wave. These two arrivals give rise to cruciform particle motions in the sagittal and horizontal planes, which could be misinterpreted as anisotropy-induced shear-wave splitting. An examination of the particle motion in the transverse plane, mutually orthogonal to the sagittal and horizontal planes, can be used to discriminate between isotropic and anisotropic interpretations. The amplitude of the SP -phase is enhanced when it propagates in a low-velocity surface layer overlying the source layer, and may then become the dominant phase on radial-component seismograms. The presence of even a single surface layer may introduce considerable complexity into the seismogram, and we examine the effects of layer thickness, velocity contrast, and source depth on the corresponding polarization diagrams. Reliable information on the source and propagation path characteristics of shear waves from a buried local point source can only be obtained from free-surface records if they are recorded within a very limited epicentral distance range.  相似文献   

16.
P-SH conversion is commonly observed in teleseismic P waves, and is often attributed to dipping interfaces beneath the receiver. Our modelling suggests an alternative explanation in terms of flat-layered anisotropy. We use reflectivity techniques to compute three-component synthetic seismograms in a 1-D anisotropic layered medium. For each layer of the medium, we prescribe values of seismic velocities and hexagonally symmetric anisotropy about a common symmetry axis of arbitrary orientation. A compressional wave in an anisotropic velocity structure suffers conversion to both SV -and SH -polarized shear waves, unless the axis of symmetry is everywhere vertical or the wave travels parallel to all symmetry axes. The P-SV conversion forms the basis of the widely used 'receiver function' technique. The P-SH conversion occurs at interfaces where one or both layers are anisotropic. A tilted axis of symmetry and a dipping interface in isotropic media produce similar amplitudes of both direct ( P ) and converted ( Ps ) phases, leaving the backazimuth variation of the P-Ps delay as the main discriminant. Seismic anisotropy with a tilted symmetry axis leads to complex synthetic seismograms in velocity models composed of just a few flat homogeneous layers. It is possible therefore to model observations of P coda with prominent transverse components with relatively simple 1-D velocity structures. Successful retrieval of salient model characteristics appears possible using multiple realizations of a genetic-algorithm (GA) inversion of P coda from several backazimuths. Using GA inversion, we determine that six P coda recorded at station ARU in central Russia are consistent with models that possess strong (> 10 per cent) anisotropy in the top 5 km and between 30 and 43 km depth. The symmetry axes are tilted, and appear aligned with the seismic anisotropy orientation in the mantle under ARU suggested by SKS splitting.  相似文献   

17.
Summary. Susceptibility, thermo-remanent magnetization (TRM) and isothermal remanent magnetization (IRM) anisotropy ellipsoids have been determined for several rock samples. The results indicate that the ellipsoid of initial susceptibility is less anisotropic than the TRM and low field IRM ellipsoids which are found experimentally to be of identical shape. This suggests that palaeomagnetic data for anisotropic rocks may be corrected by using the anisotropy ellipsoid determined from magnetically non-destructive low field IRM measurements. Such IRM measurements can also be used to obtain anisotropy axes of samples which are inherently anisotropic but which have a susceptibility which is too weak to be accurately measured. The results for a series of artificial anisotropic samples containing magnetite particles of different sizes (in the range 0.2–90 μm) were very similar to those for the rocks. In contrast, a comparison of the susceptibility and IRM ellipsoids for anisotropic samples containing particles from a magnetic tape gave very different results in accordance with theory. Such results imply that susceptibility and IRM ellipsoids could be used to determine whether anisotropic rocks contain uniaxial single-domain particles (magnetization confined to the easy axis) or whether the particles are essentially multidomain.  相似文献   

18.
An introduction to wave propagation in anisotropic media   总被引:8,自引:0,他引:8  
Summary. Wave motion in an anisotropic solid is fundamentally different from motion in an isotropic solid, although the effects are often subtle and difficult to recognize. There are such a wide range of three-dimensional variations possible in anisotropic media that it is difficult to understand the behaviour of wave motion without experimentation. Laboratory experiments are very difficult to construct and extensive numerical experiments have now given many theoretical insights so that the behaviour of waves in anisotropic media is now comparatively well understood. This introduction summarizes some of the relationships and insights required for this understanding.  相似文献   

19.
Summary. A formulation is derived for calculating the energy division among waves generated by plane waves incident on a boundary between generally anisotropic media. A comprehensive account is presented for P, SV and SH waves incident from an isotropic half-space on an orthorhombic olivine half-space, where the interface is parallel to a plane of elastic symmetry. For comparison, a less anisotropic medium having transverse isotropy with a horizontal axis of symmetry is also considered. The particle motion polarizations of waves in anisotropic medium differ greatly from the polarizations in isotropic media, and are an important diagnostic of the presence of anisotropy. Incident P and SV waves generate quasi- SH waves, and incident SH waves generate quasi- P and quasi- SV waves, often of considerable relative magnitude. The direction of energy transport diverges from the propagation direction.  相似文献   

20.
We present a complete ray theory for the calculation of surface-wave observables from anisotropic phase-velocity maps. Starting with the surface-wave dispersion relation in an anisotropic earth model, we derive practical dynamical ray-tracing equations. These equations allow calculation of the observables phase, arrival-angle and amplitude in a ray theoretical framework. Using perturbation theory, we also obtain approximate expressions for these observables. We assess the accuracy of the first-order approximations by using both theories to make predictions on a sample anisotropic phase-velocity map. A comparison of the two methods illustrates the size and type of errors which are introduced by perturbation theory. Perturbation theory phase and arrival-angle predictions agree well with the exact calculation, but amplitude predictions are poor. Many previous studies have modelled surface-wave propagation using only isotropic structure, not allowing for anisotropy. We present hypothetical examples to simulate isotropic modelling of surface waves which pass through anisotropic material. Synthetic data sets of phase and arrival angle are produced by ray tracing with exact ray theory on anisotropic phase-velocity maps. The isotropic models obtained by inverting synthetic anisotropic phase data sets produce deceptively high variance reductions because the effects of anisotropy are mapped into short-wavelength isotropic structure. Inversion of synthetic arrival-angle data sets for isotropic models results in poor variance reductions and poor recovery of the isotropic part of the anisotropic input map. Therefore, successful anisotropic phase-velocity inversions of real data require the inclusion of both phase and arrival-angle measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号