首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humic acid was titrated by sodium methoxide in dimethylsulfoxide using platinum-calomel electrode systems. Adding benzoic acid and phenol as internal standards to humic acid yielded two inflections. The titer at the first inflection point was equivalent to the carboxyl groups whose pKa (H2O) values were less than 7. The difference between the titers at the two inflection points was equivalent to the phenolic hydroxyl groups whose pKa (H2O) values were 7–10. Calculated results for the carboxyl and phenolic hydroxyl groups in humic acid obtained by the nonaqueous titration method agreed closely with those obtained by conventional methods.  相似文献   

2.
The role of bacterial extracellular polymeric substances (EPS) in metal adsorption was determined by studying Cd adsorption onto the gram-negative bacterial species Pseudomonas putida with and without enzymatic removal of EPS from the biomass material. A range of experimental approaches were used to characterize the Cd adsorption reactions, including bulk proton and Cd adsorption measurements, FTIR spectroscopy, and fluorescence microscopy. The proton-reactivities of the biomass samples with EPS are not significantly different from those obtained for EPS-free biomass. Similarly, the presence of EPS does not significantly affect the extent of Cd removal from solution by the biomass on a mass-normalized basis, based on bulk Cd adsorption measurements conducted as a function of pH, nor does it appear to strongly affect the Cd-binding groups as observed by FTIR. However, fluorescence microscopy indicates that Cd, although concentrated on cell walls, is also bound to some extent to EPS. Together, the results from this study suggest that the P. putida EPS can bind significant concentrations of Cd from solution, and that the nature and mass-normalized extent of the binding is similar to that of the cell wall. Therefore, the EPS-bearing systems do not exhibit enhanced mass-normalized removal of Cd from solution relative to the EPS-free systems. The presence of the EPS effectively increases the viability of cells exposed to aqueous Cd, likely due to sequestration of the Cd away from the cells due to Cd-EPS binding.  相似文献   

3.
Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21–32 mg C l?1 in O/A horizon leachates, from 5–7 mg C l?1 in B horizon leachates, from 2–4 mg C l?1 in groundwater solutions, from 6–8 mg C l?1 in first order streams, from 3–8 mg C l?1 in lake inlets, and from 2–7 mg C l?1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4–5 μeq mg?1 C at ambient pH, and a total of 6–7 meq COOH per gram carbon.  相似文献   

4.
The adsorption of two model siderophores, desferrioxamine B (DFOB) and aerobactin, to lepidocrocite (γ-FeOOH) was investigated by attenuated total reflection infrared spectroscopy (ATR-FTIR). The adsorption of DFOB was investigated between pH 4.0 and 10.6. The spectra of adsorbed DFOB indicated that two to three hydroxamic acid groups of adsorbed DFOB were deprotonated in the pH range 4.0-8.2. Deprotonation of hydroxamic acid groups of adsorbed DFOB at pH values well below the first acid dissociation constant of solution DFOB species (pKa = 8.3) and well below the point of zero charge of lepidocrocite (pHPZC = 7.4) suggested that the surface speciation at the lower end of this pH range (pH 4) is dominated by a surface DFOB species with inner-sphere coordination of two to three hydroxamic acids groups to the surface. Maximum adsorption of DFOB occurred at approximately pH 8.6, close to the first pKa value of the hydroxamic acid groups, and decreased at lower and higher pH values.The spectra of adsorbed aerobactin in the pH range 3-9 indicated at least three different surface species. Due to the small spectral contributions of the hydroxamic acid groups of aerobactin, the interactions of these functional groups with the surface could not be resolved. At high pH, the spectral similarity of adsorbed aerobactin with free aerobactin deprotonated at the carboxylic acid groups indicated outer-sphere complexation of the carboxylate groups. With decreasing pH, a significant peak shift of the asymmetric carboxylate stretch vibration was observed. This finding suggested that the (lateral) carboxylic acid groups are coordinated to the surface either as inner-sphere complexes or as outer-sphere complexes that are strongly stabilized at the surface by hydrogen bonding at low pH.  相似文献   

5.
The behavior of a natural topaz, Al2.00Si1.05O4.00(OH0.26F1.75), has been investigated by means of in situ single-crystal synchrotron X-ray diffraction up to 45 GPa. No phase transition or change in the compressional regime has been observed within the pressure-range investigated. The compressional behavior was described with a third-order Birch–Murnaghan equation of state (III-BM-EoS). The III-BM-EoS parameters, simultaneously refined using the data weighted by the uncertainties in P and V, are as follows: K V = 158(4) GPa and K V  = 3.3(3). The confidence ellipse at 68.3 % (Δχ2 = 2.30, 1σ) was calculated starting from the variance–covariance matrix of K V and K′ obtained from the III-BM-EoS least-square procedure. The ellipse is elongated with a negative slope, indicating a negative correlation of the parameters K V and K V , with K V = 158 ± 6 GPa and K V  = 3.3 ± 4. A linearized III-BM-EoS was used to obtain the axial-EoS parameters (at room-P), yielding: K(a) = 146(5) GPa [β a = 1/(3K(a)) = 0.00228(6) GPa?1] and K′(a) = 4.6(3) for the a-axis; K(b) = 220(4) GPa [β b = 0.00152(4) GPa?1] and K′(b) = 2.6(3) for the b-axis; K(c) = 132(4) GPa [β c = 0.00252(7) GPa?1] and K′(c) = 3.3(3) for the c-axis. The elastic anisotropy of topaz at room-P can be expressed as: K(a):K(b):K(c) = 1.10:1.67:1.00 (β a:β b:β c = 1.50:1.00:1.66). A series of structure refinements have been performed based on the intensity data collected at high pressure, showing that the P-induced structure evolution at the atomic scale is mainly represented by polyhedral compression along with inter-polyhedral tilting. A comparative analysis of the elastic behavior and P/T-stability of topaz polymorphs and “phase egg” (i.e., AlSiO3OH) is carried out.  相似文献   

6.
Bond-valence methods for the prediction of (hydr)oxide solution monomer and surface functional group acidity constants are examined in light of molecular structures calculated using ab initio methods. A new method is presented that is based on these calculated structures, and it is shown that previously published methods have neglected one or more of four essential features of a generalized model. First, if the apparent pKa values of solution monomers are to be used to predict intrinsic pKa values of surface functional groups, similar electrostatic corrections must be applied in both cases. In surface complexation models, electrostatic corrections are applied by representing a charged surface as a uniform plane of charge density, and an analogous correction can be made to solution monomers by treating them as charged spheres. Second, it must be remembered that real surfaces and real monomers are not homogeneous planes or spheres. Rather, charge density is distributed rather unevenly, and a further electrostatic correction (which is often quite large) must be made to account for the proximity of electron density to the point of proton attachment. Third, the unsaturated valence of oxygen atoms in oxyacids, hexaquo cations, and oxide surfaces is strongly correlated with acidity after electrostatic corrections are made. However, calculation of unsaturated valence for oxyacids and oxide surfaces must be based on realistic MeO bond lengths (taking into account bond relaxation), which can be obtained from ab initio structure optimizations. Finally, unsaturated valence must be divided between possible bonds (four for oxygen atoms) to reflect the fact that O-H bonds are localized to particular regions of the O atoms.Empirical models that take all these factors into account are presented for oxyacids and hexaquo cations. These models are applied to the gibbsite (100), (010), (001), and cristobalite (100) surfaces, and it is demonstrated that the model for oxyacids predicts reasonable intrinsic pKa values for oxide surfaces. However, the prediction of surface pKa values is complex, because the protonation state of one functional group affects the pKa values of neighboring groups. Therefore, calculations of larger periodic systems, progressively protonated and reoptimized, are needed.  相似文献   

7.
《Applied Geochemistry》1998,13(7):893-904
The octanol–water partition coefficients (log Kow) of 2,4,6-trichlorophenol and pentachlorophenol were determined as functions of pH, ionic strength and aqueous metal content. For both chlorophenols, the log Kow exhibits pH dependence in the range pKa−1<pH<pKa+3. At lower and higher pH values, the behaviour of the chlorophenols is independent of pH. The present data, in conjunction with that of pre-existing data, indicate that a linear relationship exists between log Kow and log ionic strength of the aqueous solution for pentachlorophenol, and the data also suggest that aqueous metal–chlorophenolate complexation can significantly alter the partitioning behaviour. The data reported here was used to obtain an empirical model of the partitioning behaviour based on speciation of the aqueous chlorophenol. The model requires knowledge of the low pH partitioning behaviour, as well as the acidity constant for the particular chlorophenol of interest. Although Kow values have been measured as a function of pH and/or ionic strength for only pentachlorophenol, the input parameters for our empirical model are readily accessible in the literature for many chlorophenols. The model greatly expands our ability to quantify the hydrophobicity of chlorophenols, enabling accurate estimations of the pH and ionic strength dependencies of the partitioning behaviour over a wide range of pH and ionic strength values of environmental interest.  相似文献   

8.
Density functional theory is used to compute the effect of protonation, deprotonation, and dehydroxylation of different reactive sites of a goethite surface modeled as a cluster containing six iron atoms constructed from a slab model of the (1 1 0) goethite surface. Solvent effects were treated at two different levels: (i) by inclusion of up to six water molecules explicitly into the quantum chemical calculation and (ii) by using additionally a continuum solvation model for the long-range interactions. Systematic studies were made in order to test the limit of the fully hydrated cluster surfaces by a monomolecular water layer. The main finding is that from the three different types of surface hydroxyl groups (hydroxo, μ-hydroxo, and μ3-hydroxo), the hydroxo group is most active for protonation whereas μ- and μ3-hydroxo sites undergo deprotonation more easily. Proton affinity constants (pKa values) were computed from appropriate protonation/deprotonation reactions for all sites investigated and compared to results obtained from the multisite complexation model (MUSIC). The approach used was validated for the consecutive deprotonation reactions of the [Fe(H2O)6]3+ complex in solution and good agreement between calculated and experimental pKa values was found. The computed pKa for all sites of the modeled goethite surface were used in the prediction of the pristine point of zero charge, pHPPZN. The obtained value of 9.1 fits well with published experimental values of 7.0-9.5.  相似文献   

9.
Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO(αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand pKa values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for five and six membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems.  相似文献   

10.
Crystallization experiments of basaltic andesite mafic endmember from the 24 ka Lower Pollara eruption (Salina, Aeolian Islands, Italy) were investigated at 200 MPa, 950–1100 °C, in the H2O activity (aH2O) range ~0.3 to 1, and at two ranges of oxygen fugacity (fO2) between ~FMQ to FMQ+1 and ~FMQ+2 to FMQ+3.3 (log bars, FMQ is fayalite-magnetite-quartz). Comparison of the produced phase assemblages and phase compositions with the natural sample reveals that the storage conditions were ~1050 °C, ~2.8 wt% H2O in the melt (aH2O ~0.5), and relatively oxidizing (~FMQ+2.5). The composition of plagioclase in the groundmass indicates a period of cooling to ≤950 °C. The overall differentiation trends of the Salina volcanics can be explained by fractional crystallization close to H2O saturated conditions (~5 wt% H2O in the melt at 200 MPa) and most likely by accumulation of plagioclase, i.e., in basaltic andesites, and by various degree of mixing–mingling between the corresponding differentiates. The slightly elevated K2O contents of the most mafic basaltic andesites that can be found in the lowermost unit of the Lower Pollara pyroclastics reveal earlier processes of moderately hydrous fractional crystallization at higher temperature (>~1050 °C). Fractional crystallization with decreasing influence of H2O causes a moderate decrease of MgO and a significant increase of K2O relative to SiO2 in the residual liquids. It is exemplarily shown that the crystallization of SiO2-rich phases at high temperature and low aH2O of only moderately K2O-rich calc-alkaline basalts can produce shoshonitic and high potassic rocks similar to those of Stromboli and Volcano. This suggests that the observed transition from calc-alkaline to shoshonitic and high potassic volcanism at the Aeolian Arc over time can be initiated by a general increase of magmatic temperatures and a decrease of aH2O in response to the extensional tectonics and related increase of heat flow and declining influence of slab-derived fluids.  相似文献   

11.
High-pressure in situ X-ray diffraction experiment of Fe- and Al-bearing phase D (Mg0.89Fe0.14Al0.25Si1.56H2.93O6) has been carried out to 30.5 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields values of V 0 = 86.10 ± 0.05 Å3; K 0 = 136.5 ± 3.3 GPa and K′ = 6.32 ± 0.30. If K′ is fixed at 4.0 K 0 = 157.0 ± 0.7 GPa, which is 6% smaller than Fe–Al free phase D reported previously. Analysis of axial compressibilities reveals that the c-axis is almost twice as compressible (K c  = 93.6 ± 1.1 GPa) as the a-axis (K a  = 173.8 ± 2.2 GPa). Above 25 GPa the c/a ratio becomes pressure independent. No compressibility anomalies related to the structural transitions of H-atoms were observed in the pressure range to 30 GPa. The density reduction of hydrated subducting slab would be significant if the modal amount of phase D exceeds 10%.  相似文献   

12.
A model Suwannee fulvic acid (SFA [Leenheer, J.A., 1994. In: Baker, L.A. (Ed.), Chemistry of Dissolved Organic Matter in Rivers, Lakes and Reservoirs. Advances in Chemistry Series, vol. 237. American Chemical Society]) was energy minimized in various deprotonation states using semi-empirical methods. The structures were minimized in the isolated SFA phase and SFA with 60 water molecules to mimic the first solvation sphere. The relative energies of deprotonation were calculated at four carboxylic acid sites with Hartree-Fock (HF/6-31G(d)) and density functional theory (B3LYP/6-31G(d)) methods. Comparisons were made between the theoretical methods and states of solvation. Isolated and solvated models resulted in different relative deprotonation orders. The energy changes calculated for removing a H+ from a given carboxylic acid group as a function of overall model molecule charge are large enough to explain the large variations of carboxyl group pKas in dissolved natural organic matter. Analysis of the SFA structure as a function of molecular charge is also discussed.  相似文献   

13.
The dependence of Mg/Fe ordering on oxygen partial pressure in natural olivine crystals of volcanic origin has been studied by X-ray diffraction. Two natural crystals with 10% and 12% fayalite have been investigated and the atomic positions, anisotropic temperature factors, extinction coefficients and site occupancies have been refined, reaching R-values of 2.2%. After subjecting the crystals to oxygen partial pressures of 10?16 bar and 10?21 bar the crystals were studied again. In total six crystals were studied and the distribution coefficients K D determined. The natural untreated crystals had K D=1.09 and 1.06, e.g., a slight preference of Fe in (M1). p(O2) of 10?16 bar increased the ordering of Fe in (M1) to K D=1.2, while p(O2)=10?21 bar reversed K D to 0.8 with ordering of Fe in (M2). These experiments suggest that Mg/Fe ordering in olivines is primarily determined by the prevailing oxygen partial pressure.  相似文献   

14.
Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (KD) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event KD for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low.  相似文献   

15.
A unified physico-chemical model, based on a modified Henderson-Hasselbalch equation, for the analysis of ion complexation reactions involving charged polymeric systems is presented and verified. In this model pH = pKa+p(ΔKa) + log(α/1 − α) where Ka is the intrinsic acid dissociation constant of the ionizable functional groups on the polymer, ΔKa is the deviation of the intrinsic constant due to electrostatic interaction between the hydrogen ion and the polyanion, and alpha (α) is the polyacid degree of ionization. Using this approach pKa values for repeating acidic units of polyacrylic (PAA) and polymethacrylic (PMA) acids were found to be 4.25 ± 0.03 and 4.8 ± 0.1, respectively. The polyion electrostatic deviation term derived from the potentiometric titration data (i.e. p(ΔKa)) is used to calculate metal ion concentration at the complexation site on the surface of the polyanion. Intrinsic cobalt-polycarboxylate binding constants (7.5 for PAA and 5.6 for PMA), obtained using this procedure, are consistent with the range of published binding constants for cobalt-monomer carboxylate complexes. In two phase systems incorporation of a Donnan membrane potential term allows determination of the intrinsic pKa of a cross-linked PMA gel, pKa = 4.83, in excellent agreement with the value obtained for the linear polyelectrolyte and the monomer. Similarly, the intrinsic stability constant for cobalt ion binding to a PMA-gel (βCoPMA+ = 11) was found to be in agreement with the linear polyelectrolyte analogue and the published data for cobalt-carboxylate monodentate complexes.  相似文献   

16.
Wadeite-type K2Si4O9 was synthesized with a cubic press at 5.4 GPa and 900 °C for 3 h. Its unit-cell parameters were measured by in situ high-T powder X-ray diffraction up to 600 °C at ambient P. The TV data were fitted with a polynomial expression for the volumetric thermal expansion coefficient (αT = a 0 + a 1 T), yielding a 0 = 2.47(21) × 10?5 K?1 and a 1 = 1.45(36) × 10?8 K?2. Compression experiments at ambient T were conducted up to 10.40 GPa with a diamond-anvil cell combined with synchrotron X-ray radiation. A second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding K T = 97(3) GPa and V 0 = 360.55(9) Å3. These newly determined thermal expansion data and compression data were used to thermodynamically calculate the PT curves of the following reactions: 2 sanidine (KAlSi3O8) = wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite (SiO2) and wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite/stishovite (SiO2) = 2 hollandite (KAlSi3O8). The calculated phase boundaries are generally consistent with previous experimental determinations.  相似文献   

17.
MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg–akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 °C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 °C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153–839 K) of a 1 = 20(3) × 10?9 K?2 and a 0 = 17(2) × 10?6 K?1, with an average of α 0 = 27.1(6) × 10?6 K?1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch–Murnaghan equation of state (BM2 EoS) fitting yields: V 0 = 263.7(2) Å3, K T0 = 217(3) GPa (K′ fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: α a  = 8.2(3) and α c  = 10.68(9) (10?6 K?1); β a  = 11.4(3) and β c  = 15.9(3) (10?4 GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15–300 K and 0–28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between ?1.02 × 10?5 and +1.7 × 10?5 K?1, indicating both weak hydrogen bonds (O–H···O) and strong OH bonding due to long O···O distances.  相似文献   

18.
Synchrotron single-crystal X-ray diffraction experiments at high-pressure and high-temperature conditions were performed up to 20 GPa and 573.0(2) K on a fully ordered stoichiometric dolomite and a partially disordered stoichiometric dolomite [order parameter, s = 0.26(6)]. The ordered dolomite was found to be stable up to approximately 14 GPa at ambient temperature and up to approximately 17 GPa at T = 573.0(2) K. The PV data from the ambient temperature experiments were analysed by a second-order Birch–Murnaghan equation-of-state giving K 0 = 92.7(9) GPa for the ordered dolomite and K 0 = 92.5(8) GPa for the disordered dolomite. The high-temperature data, collected for the ordered sample, were fitted by a third-order Birch–Murnaghan equation-of-state resulting in K 0 = 95(6) GPa and K′ = 2.6(7). In order to compare the three experiments results, a third-order Birch–Murnaghan equation-of-state was also calculated for the ambient temperature experiments giving K 0 = 93(3) GPa, K′ = 3.9(6) for the ordered dolomite and K 0 = 92(3) GPa, K′ = 4.0(4) for the disordered dolomite. The derived axial moduli show that dolomite compresses very anisotropically, being the c-axis approximately three times more compressible than the a-axis. The axial compressibility increases as T increases, and the a-axis is the most temperature-influenced axis. On the contrary, axial compressibility is not influenced by disordering. Structural refinements at different pressures show that Ca and Mg octahedra are almost equally compressible in the ordered dolomite with K(CaO6) = 109(4) GPa and K(MgO6) = 103(3) GPa. On the contrary, CaO6 compressibility is reduced and MgO6 compressibility is increased in the disordered crystal structure where K(CaO6) = 139(4) GPa and K(MgO6) = 89(4) GPa. Disordering is found to increase CaO6 and to decrease MgO6 bond strengths, thus making stiffer the Ca octahedron and softer the Mg octahedron. Cation polyhedra are distorted in both ordered and disordered dolomites and they increase in regularity as P increases. Ordered dolomite approaches regularity at approximately 14 GPa. The increase in regularity of octahedra in the disordered dolomite is strongly affected by the very slow regularization of MgO6 with respect to CaO6. The phase transition to the high-pressure polymorph of dolomite (dolomite-II), which is driven by a significant increase in the regularity of both cations polyhedra and mineral crystal structure, occurs in the ordered dolomite at ambient temperature at approximately 14 GPa; whereas no clear evidences of phase transition were observed as regards the disordered crystal structure.  相似文献   

19.
The thermoelastic parameters of Ca3Cr2Si3O12 uvarovite garnet were examined in situ at high pressure up to 13 GPa and high temperature up to 1100 K by synchrotron radiation energy-dispersive X-ray diffraction within a 6-6-type multi-anvil press apparatus. A least-square fitting of room T data to a third-order Birch–Murnaghan (BM3) EoS yielded K0 = 164.2 ± 0.7 GPa, V0 = 1735.9 ± 0.3 Å3 (K’0 fixed to 4.0). PVT data were fitted simultaneously by a modified HT-BM3 EoS, which gave the isothermal bulk modulus K0 = 163.6 ± 2.6 GPa, K’0 = 4.1 ± 0.5, its temperature derivative (?K0,T/?T)P = –0.014 ± 0.002 GPa K?1, and the thermal expansion coefficients a0 = 2.32 ± 0.13 ×10?5 K?1 and b0 = 2.13 ± 2.18 ×10?9 K?2 (K’0 fixed to 4.0). Our results showed that the Cr3+ enrichment in natural systems likely increases the density of ugrandite garnets, resulting in a substantial increase of mantle garnet densities in regions where Cr-rich spinel releases chromium through a metasomatic reaction.  相似文献   

20.
In situ X-ray diffraction measurements of KAlSi3O8-hollandite (K-hollandite) were performed at pressures of 15–27 GPa and temperatures of 300–1,800 K using a Kawai-type apparatus. Unit-cell volumes obtained at various pressure and temperature conditions in a series of measurements were fitted to the high-temperature Birch-Murnaghan equation of state and a complete set of thermoelastic parameters was obtained with an assumed K300,0=4. The determined parameters are V 300,0=237.6(2) Å3, K 300,0=183(3) GPa, (?K T,0/?T) P =?0.033(2) GPa K?1, a 0=3.32(5)×10?5 K?1, and b 0=1.09(1)×10?8 K?2, where a 0 and b 0 are coefficients describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. We observed broadening and splitting of diffraction peaks of K-hollandite at pressures of 20–23 GPa and temperatures of 300–1,000 K. We attribute this to the phase transitions from hollandite to hollandite II that is an unquenchable high-pressure phase recently found. We determined the phase boundary to be P (GPa)=16.6 + 0.007 T (K). Using the equation of state parameters of K-hollandite determined in the present study, we calculated a density profile of a hypothetical continental crust (HCC), which consists only of K-hollandite, majorite garnet, and stishovite with 1:1:1 ratio in volume. Density of HCC is higher than the surrounding mantle by about 0.2 g cm?3 in the mantle transition zone while this relation is reversed below 660-km depth and HCC becomes less dense than the surrounding mantle by about 0.15 g cm?3 in the uppermost lower mantle. Thus the 660-km seismic discontinuity can be a barrier to prevent the transportation of subducted continental crust materials to the lower mantle and the subducted continental crust may reside at the bottom of the mantle transition zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号