首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
The effects of F-region neutral winds on the distribution of He+ in the equatorial ionosphere have been examined using a theoretical model and an observational data set. It is shown by the model that components of neutral wind in the magnetic meridian up to only 50 m s? can produce He+ gradients in the northern and southern sectors of a flux tube that differ by more than 80%. This is associated with interhemisphere transport velocities of He+ as large as 15 m s?1 at 800 km. A substantial latitude gradient in the He+ distribution across the dip equator also results from the redistribution of He+ The changes in the He+ concentration at the dip equator and the latitude distribution of He+ in response to different neutral wind components is determined from the model and used to construct longitude distributions of He+ to compare with observations made at equinox. Good agreement between the calculations and observations is obtained both at the geographic and geomagnetic equators using the relationship between neutral winds, interhemispheric transport velocity and He+ concentration derived from the model. If these relationships can be extrapolated to accommodate the different conditions expected during solstice, we can also discuss the He+ distributions expected during this season.  相似文献   

2.
Measured rates are presented for the reaction of He+ ions with H2 (and D2) molecules to form H+, H2+, and HeH+ ions, as well as for the subsequent reactions of H+ and HeH+ ions with H2 to form H3+. The neutralization of H3+ (and H5+) ions by dissociative recombination with electrons is shown to be fast. The reaction He+ + H2 is slow (k = 1.1 × 10?13 cm3/sec at300°K) and produces principally H+ by the dissociative charge transfer branch. It is concluded that there may be a serious bottleneck in the conversion of two of the primary ions of the upper Jovian ionosphere, H+ and He+ (which recombine slowly), to the rapidly recombining H3+ ion (α[H3+]?3.4 × 10?7 cm3/sec at 150°K).  相似文献   

3.
Solar wind interaction with neutral interstellar helium focused by the Sun's gravity in the downwind solar cavity is discussed in a hydrodynamical approach. Upon ionization the helium atoms “picked up” by the (single fluid) solar wind plasma cause a slight decrease in the wind speed and a corresponding marked temperature increase. For neutral helium density outside the cavity nHe = 0.01 atoms cm?3 and for interstellar kinetic temperature THe= 10,000 K, the reduction is speed of the solar wind on the downwind axis at 10 AU from the Sun amounts to about 2kms?1; the solar wind temperature excess attains 7000 K. The resulting pressure excess leads to a non-radial flow of the order of 0.25 km s?1. The possibility of experimental confirmation is discussed.  相似文献   

4.
We have obtained IUE ultraviolet spectra of the low-excitation planetary nebula CN 3-1. The recordings show the well-known doublet 2800 MgII and resonance line 2852 MgI as strong absorption lines. We show that these lines cannot be of interstellar origin and that they may be formed in two envelopes surrounding the main nebula: in the transition zone (doublet 2800 MgII) and in the neutral envelope (line 2852 MgI). These envelopes possess an important property: they contain dust particles, and even a moderate amount of such particles may influence the strength of the absorption lines of MgII and MgI.The emission line 4686 HeII has no relation to the nebula CN 3-1 and belongs to its nucleus, a star of type WR. It is very probable that the nucleus of this nebula is a binary system with a WR component (T *=50 000 K), exciting the helium lines, and a star of B0 or B2 type (T *=26 000 K) exciting the nebular linesN 1+N 2 [OIII], 3727 [OII], hydrogen lines, etc.  相似文献   

5.
We present the results of Monte Carlo mass-loss computations for hot low-mass stars, specifically for subdwarf B (sdB) stars. It is shown that the mass-loss rates on the Horizontal Branch (HB) computed from radiative line-driven wind models are not high enough to create sdB stars. We argue, however, that mass loss plays a role in the chemical abundance patterns observed both in field sdB stars, as well as in cluster HB stars. The derived mass loss recipe for these (extremely) hot HB stars may also be applied to other groups of hot low-mass stars, such as post-HB (AGB-manqué, UV-bright) stars, over a range in effective temperatures between ?10 000 and 50 000 K. Finally, we present preliminary spectral synthesis on the more luminous sdB stars for which emission cores in Hα have been detected (Heber, U., et al.: 2003, in:Stellar Atmosphere Modeling, ASP Conference Proceedings, p. 251). We find that these line profiles can indeed be interpreted as the presence of a stellar wind with mass loss on the order of 10?11?M yr ?1.  相似文献   

6.
Recent satellite observations of thermal ion composition in the near-equatorial plasmasphere have shown that He+ comprises 5–10% typically and occasionally 25% or more of the total thermal ion density. A steady state diffusive equilibrium model for the distributions of H+, He+ and O+ along a plasmaspheric flux tube is used to elicit effects that may help explain these observed high He+ fractional concentrations. The model indicates that both the ionospheric composition and the temperature distribution along the flux tubes are important factors controlling the equatorial He+ composition, through the plasma scale height and thermal diffusion effects. Direct comparison of the model results with thermal ion observations by ISEE-1 indicates that the effects incorporated into the model may explain some of the elevated He+ concentrations. In some instances, however, effects not included in the model may also be of importance.  相似文献   

7.
Recent observations of the X-ray and EUV emission of non-supergiant B stars are summarized. As compared with O stars, the X-rays of most of the near-main-sequence B stars are soft, and the stars show a departure from theL x = 10?7 L bol relation. Using line driven wind models to provide an estimate of the density distribution, it is concluded that a major fraction of the wind emission measure is hot, whereas in shocked wind theory less than 10 percent of the wind emission measure should be hot. The X-ray observations suggest that all of the B stars are X-ray emitters with a basal X-ray luminosity of about 10?8.5 L bol . A hard component dominates the X-ray emission of τ Sco, and possible causes are discussed. For the Be stars, the X-ray emission is that which is expected from a normal B-star wind coming from the poles, as in the Wind Compressed Disk (WCD) model of Be stars. None of the stars, including theβ Cep stars, show noticeable variability in their X-rays.EUVE observations of CMa B2 II, find it to be the brightest object in the EUV sky at 500 to 700 Å. It shows a Lyman continuum flux that is a factor of 30 higher than line blanketed model atmospheres. The continuum is seen on both sides of the He I 504 Å edge, and the discrepancy with model atmospheres is even greater shortward of 504 Å. TheEUVE spectra show emission lines both from high stages of ionization ( Feix to Fexvi) and from low stages (Heii and Oiii). The Heii Lymanα results from recombination following X-ray photoionization in the wind, and the Oiii resonance line is found to be present because of the Bowen fluorescence mechanism. Thus, there is and interesting coupling between the wind production by the EUV photospheric emission, the production of X-ray and line EUV emission by winds, and the production of fluorescence by recombination in the wind; all of these processes are now observable in B stars.  相似文献   

8.
Peter Bodenheimer 《Icarus》1974,23(3):319-325
The evolution of the protoplanet Jupiter is followed, using a hydrodynamic computer code with radiative energy transport. Jupiter is assumed to have formed as a subcondensation in the primitive solar nebula at a density just high enough for gravitational collapse to occur. The initial state has a density of 1.5 × 10?11 g cm?3 and a temperature of 43 K; the calculations are carried to an equilibrium state where the central density reaches 0.5 g cm?3 and the central temperature reaches 2.5 × 104 K. During the early part of the evolution the object contracts in quasi-hydrostatic equilibrium; later on hydrodynamic collapse occurs, induced by the dissociation of hydrogen molecules. After dissociation is complete, the planet regains hydrostatic equilibrium with a radius of a few times the present value. Further evolution beyond this point is not treated here; however the results are consistent with the existence of a high-luminosity phase shortly after the planet settles into its final quasistatic contraction.  相似文献   

9.
We study the nonstationary recombination of hydrogen in the atmosphere of SN 1987A by taking into account ion-molecular processes. The hydrogen excitation due to nonstationary recombination is shown to be enough to explain the observed hydrogen lines in a time interval until day 30 in the absence of additional excitation mechanisms. Thus, the problem of a deficit in the hydrogen excitation that has recently been found in modeling the hydrogen spectrum of SN 1987A at an early photospheric stage by assuming statistical ionization equilibrium is resolved. The mass of the radioactive 56Ni with a spherically symmetric distribution in the outer layers is shown to be close to 10?6 M . Our model predicts the appearance of a blue peak in the Hα profile between days 20 and 30. This peak bears a close similarity to the observed peak known as the Bochum event. The presence of this peak in the model is attributable to nonstationary recombination and to a substantial contribution of hydrogen neutralization involving H? and H2.  相似文献   

10.
Exploratory models of the collapse of spherical self-gravitating clouds are studied in relation to the problem of the formation of first generation star-systems. The masses which were considered are in the range of 83 to 5.2×1010 M . For simplicity, the assumed composition includes hydrogen only, which could be in the form of H, H2, H+ or H?. Since the physical conditions that might have prevailed in a primeval nebula are not well known, rather simple initial conditions were chosen: The gas starts from rest and has initially a uniform temperature. We consider the case of rather cool (T 0~100 K) neutral clouds with different initial ionization degrees. Some of the initial density-distributions here considered are uniform while others are decreasing from the center outwards. The assumed initial values for the densities are ~10?24 g cm?3, except for one of the models, for which it is ~10?26 g cm?3. Several atomic processes within the gas, including physical-chemical reactions and the evaluation of radiative emission coefficients are considered. A system of differential equations is set up in order to evaluate the concentrationsn H,n H 2,n H +,n H ? andn e as a function of time. The treatment makes possible the study of the cooling and heating properties of the gas. Furthermore, the dynamical, thermal and chemical evolution of the cloud can be followed during the collapse. The computations apply only to the optically thin stages. The models show the importance of a correct evaluation of the chemical reactions and dissipative mechanisms, which cannot be ignored in a realistic treatment of the collapse of self-gravitating clouds. The influence of the initial conditions on the dynamical and thermal properties during evolution are also analysed.  相似文献   

11.
We obtain ratios of volumes of He+ to H+ zones forHII regions ionized by associations following a Salpeter IMF using Kurucz's (1979) model atmospheres. It is concluded that the temperature of hottest star in the association is the dominant factor determining the He ionization structure. The selective dust absorption seems to play a secondary role as well as density gradients and spatial distribution of ionizing stars. The results are compared with observations, in particular with the Orion Nebula. A density gradient is found in M42. Filling factors in the range ??5–16 for M43 are obtained.  相似文献   

12.
Comets and the chondritic porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3–40 μm) reveal the presence of a warm (near-IR) featureless emission modeled by amorphous carbon grains. Broad andnarrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Feand 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IRspectra of CP IDPs dominated by GEMS (0.1 μm silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He+ ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (<5%), however, to account for the deduced abundance of crystalline silicates in comet dust. An insufficient source of ISMMg-rich crystals leads to the inference that most Mg-rich crystals in comets are primitive grains processed in the early solar nebula prior to their incorporation into comets. Mg-rich crystals may condense in the hot (~1450 K), inner zones of the early solar nebula and then travel large radial distances out to the comet-forming zone. On the other hand, Mg-rich silicate crystals may be ISM amorphous silicates annealed at ~1000 K and radially distributed out to the comet-forming zone or annealed in nebular shocks at ~5-10 AU. Determining the relative abundance of amorphous and crystalline silicatesin comets probes the relative contributions of ISM grains and primitive grains to small, icy bodies in the solar system. The life cycle of dust from its stardust origins through the ISM to its incorporation into comets is discussed.  相似文献   

13.
Evolutionary calculations are presented for spherically symmetric protoplanetary configurations with a homogeneous solar composition and with masses of 10?3, 1.5 × 10?3, 2.85 × 10?4, and 4.2 × 10?4M. Recent improvements in equation-of-state and opacity calculations are incorporated. Sequences start as subcondensations in the solar nebula with densities of ~10?10 to 10?11 g cm?3, evolve through a hydrostatic phase lasting 105 to 107 years, undergo dynamic collapse due to dissociation of molecular hydrogen, and regain hydrostatic equilibrium with densities ~1 g cm?3. The nature of the objects at the onset of the final phase of cooling and contraction is discussed and compared with previous calculations.  相似文献   

14.
Observations of the occurrence of He+ dominance in the topside ionosphere are discussed. An earlier model of the behaviour of high-latitude H+ and O+ thermal plasma (Quegan et al., 1982) is extended to include He+ as a major ion. Calculations using the extended model show that plasma convection is likely to play a key rôle in producing regions of He+ dominance. Suggested conditions for He+ dominance are listed and their applicability to observed He+ behaviour is discussed.  相似文献   

15.
UBV photometry for two hot protoplanetary nebula candidates, early B supergiants with emission lines in the spectrum, IRAS 01005+7910 and IRAS 22023+5249, as well as for IRAS 22495+5134, the central star of the young compact planetary nebula M 2–54, is presented for the first time. Fast irregular brightness variations of the stars with maximum amplitudes up to and color-brightness correlations have been found: the B - V colors tend to become redder with increasing brightness, while U - B more likely decrease with brightening. The color excesses E(B - V) have been determined. The equivalent widths and absolute intensities of emission lines have been derived from low-resolution spectroscopy. Spectral variability has been revealed in all objects. The parameters of the gaseous nebula have been calculated for M 2–54: N e ~ 104 cm?3and T e = 7700 ± 200 K. A joint analysis of the photometric and spectroscopic data suggests that stellar wind variations can be one of the causes of the stellar variability. The luminosities and distances of all three objects have been estimated.  相似文献   

16.
17.
Models of the protosatellite accretion disk of Saturn are developed that satisfy cosmochemical constraints on the volatile abundances in the atmospheres of Saturn and Titan with due regard for the data obtained with the Cassini orbiter and the Huygens probe, which landed on Titan in January 2005. All basic sources of heating of the disk and protosatellite bodies are taken into account in the models, namely, dissipation of turbulence in the disk, accretion of gaseous and solid material onto the disk from the feeding zone of Saturn in the solar nebula, and heating by the radiation of young Saturn and thermal radiation of the surrounding region of the solar nebula. Two-dimensional (axisymmetric) temperature, pressure, and density distributions are calculated for the protosatellite disk. The distributions satisfy the cosmochemical constraints on the disk temperature, according to which the temperature at the stage of the satellite formation ranged from 60–65 K to 90–100 K at pressures from 10?7 to ?10?4 bar in the zone of Titan’s formation (according to estimates, r = 20–35R Sat). Variations of the basic input parameters (the accretion rate onto the protosatellite disk of Saturn from the feeding zone of the planet ?; the parameter α characterizing turbulent viscosity of the disk; and the mass concentration ratio in the solid/gas system) satisfying the aforementioned temperature constraint are found. The spectrum of models satisfying the cosmochemical constraints covers a considerable range of consistent parameters. A model with a rather small flux of ? = 10?8 M Sat/ yr and a tenfold depletion of Saturn’s disk in gas due to gas scattering from the solar nebula is at one side of this range. A model with a much higher flux of ? = 10?6 M Sat/yr and a hundredfold decrease in opacity of the disk matter owing to decreased concentration of dust particles and/or their agglomeration into large aggregates and sweeping up by planetesimals is at the other side of the range.  相似文献   

18.
The results of long-term photometric and spectroscopic observations of the young compact planetary nebula Vy 2-2 (PNG 045.4-02.7) are presented. The UBV photometry in 1990–2016 has revealed a slight brightness trend in the yearly averaged data, most pronounced in the V band. We have measured the relative fluxes of optical emission lines on the spectrograms taken with the 1.25-m telescope at the Southern Station of the SAI MSU in 1999–2016, estimated the absolute flux in the Hβ line to be F(Hβ) = (2.1 ± 0.4) × 10?12 erg cm?2 s?1, and determined the interstellar extinction constant c(Hβ) = 1.8. The electron temperature and density in the nebula have been estimated from diagnostic line ratios: Te = (10?12) × 103 K and Ne ≥ 105 cm?3. To detect any possible evolutionary changes, we have compared the new observations with the archival data obtained over the entire history of spectroscopic observations of Vy 2-2. No significant changes in the relative intensities of the strongest emission lines and the integrated flux in the Hβ line exceeding the observational errors have been found. We have revealed a tendency for the intensity ratio F(λ4363)/F(λ4959) to decrease with time, which may be related to a decrease in the electron density in the nebula. Based on our photometric and spectroscopic data, we have estimated the luminosity of the central star of Vy 2-2, which corresponds to the evolutionary tracks for the most massive post-AGB stars of the O-rich sequence.  相似文献   

19.
The results of detailed calculations on the production of H2 and He3 nuclei by cosmic ray protons and helium nuclei in interstellar medium are presented. The flux and energy spectra of these nuclei as well as those of cosmic ray H1 and He4 nuclei in the vicinity of the Earth are calculated. For this purpose the source spectra are assumed to be in the form of a power law in total energy per nucleon with an additional velocity dependent term. This spectrum denoted as Fermi Spectrum, is about midway between the power law spectrum in rigidity and in total energy per nucleon. The fluxes are calculated taking into account: (1) energy dependent cross-sections of thirteen nuclear reactions of cosmic ray protons and helium nuclei with interstellar H1 and He4 leading to the production of H2 and He3 nuclei, (2) angular distributions and kinematics of these reactions, (3) ionization loss of the primary and secondary nuclei in interstellar medium, (4) elastic collisions of cosmic ray protons and helium nuclei, (5) distributions of cosmic ray path-lengths in in terstellar space as in gaussian and exponential forms, and (6) interplanetary modulation of cosmic rays from the numerical solution of the complete Fokker-Planck equation describing the diffusion, convection and adiabatic deceleration of cosmic ray nuclei in the solar system. On comparing the calculated values of H2/He4 and He3/(He3+He4) as a function of energy with the observed data of several investigators, it is found that agreement between the calculated values and most of the observed data is obtained on the basis of: (a) source spectrum in the form of Fermi Spectrum, (b) distribution of path-lengths as in the gaussian form with a mean value of 4 g cm–2 of hydrogen or as in exponential form with leakage path length of 4 g cm–2.  相似文献   

20.
IUE ultraviolet spectral recording for a low excitating planetary nebula NGC 6369 is obtained. The very strong doublet 2800 Mgii in emission as well as not less strong absorption line 2852 Mgi are discovered in the spectrum of this nebula. It is shown that the resonance line 2852 Mgi may originate only in a neutral envelope, around the nebula, consisting of neutral hydrogen, neutral magnesium, and dust particles (Hi+Mgi). The importance of this absorption line as a powerful indicator of the discovery of neutral envelopes around the planetary nebulae is outlined.The possibility of the existence of one more envelope—transition zone—immediately contacting with the bright that is ionized part of nebula (Hii+Mgii) is also shown. The transition zone consists of neutral hydrogen, ionized magnesium, and dust particles (Hi+Mgii), main parameters of this zone are also obtained (Table IV).The temperature of the central star of this nebula is obtained for the first time:T *=48000 K. Continuous background in the interval 2600–3000 Å is identified with Balmer continuum with electron temperatureT e =12500 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号