首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 483 毫秒
1.
煤层含气量对煤层气开发有直接影响。柿庄南区块煤层含气量相对较高,但开发过程中存在较多低效井,开展含气量三维地质建模有助于厘定含气性对煤层气井产量的影响。以沁水盆地柿庄南区块3号煤层为研究对象,运用多元回归分析方法依次建立基于埋深、灰分、挥发分及固定碳含量等参数的含气量预测公式及基于测井数据的煤岩工业分析各组分含量预测公式,最终得出柿庄南区块基于测井数据的含气量预测模型并应用于全区,与实测值对比表明预测结果较好。运用Petrel软件基于预测结果构建含气量模型,探讨3号煤层含气量三维分布特征。研究表明,区内3号煤层含气量介于11~20 m3/t,其主控因素为煤层埋深和构造部位。该模型对研究区煤层气井低产因素厘定和煤层气开发生产具有指导意义。移动阅读   相似文献   

2.
为进一步厘清沁水盆地高阶煤煤层气富集机理,综合运用地球化学分析测试技术,系统刻画了沁水盆地南部煤层含气量和煤层气分子组成特征,初步探讨了其影响因素。研究结果显示沁水盆地南部各区块煤层含气量呈南高北低分布趋势。煤层含气量与煤化程度具有显著正相关性,这可能与煤层内有机孔隙发育关系密切;与煤层厚度,尤其薄煤层厚度(≤2m)具显著正相关性,当煤层厚度大于2m时这种相关性反而不甚明显,表明研究区煤层气赋存状态以吸附态为主,薄煤层中气体饱和度相对较低;含气量与煤层埋深和上覆地层剥蚀量之间在南部区块没有显著相关性,在北部区块呈现出弱相关性,表明煤层气主要以吸附态存在,北部区块保存状况可能相对较好。研究区煤层气属于典型干气,南部区块煤层气甲烷含量和稳定碳同位素值均较北部区块高,非烃气体含量则相对较低。煤化作用程度是控制煤层气分子组成和煤层甲烷稳定碳同位素组成的重要因素。煤层气吸附-解吸-扩散-运移散失可导致煤层气富含CO_2,甲烷稳定碳同位素值偏重。次生生物气的生成对部分煤层甲烷稳定碳同位素组成影响显著。该研究对于寻找沁水盆地煤层气"甜点"区具有重要意义。  相似文献   

3.
内蒙古二道岭矿区煤层含气量影响因素分析   总被引:1,自引:0,他引:1  
根据实测资料及前人研究成果,分析了二道岭矿区煤变质程度、区域构造、煤层埋深和顶底板岩性对煤层含气量的影响作用。研究认为:高异常地热场是导致该区域含气量偏高的主要原因;构造和顶底板对煤层气控气作用明显,二道岭向斜核部煤层的含气量高达24m3/t,矿区顶、底板多为泥岩及粉砂岩组成,利于煤层气的储存;煤层埋深与含气量之间的相关性密切,根据两者关系建立的数学模型,可以预测研究区深部一定范围内的煤层含气量。  相似文献   

4.
为研究沁水盆地东北部煤层气成藏特征与产出控制因素,基于寺家庄区块煤层气勘探和生产资料,从地质构造、煤厚与煤层结构、埋深和水文地质特征等方面研究了煤层含气性影响因素,并结合压裂排采工艺和煤体结构等因素探讨了煤层气井产能控制因素。结果表明:(1) 研究区煤储层含气性受构造影响较大,在褶皱的轴部及旁侧构造挤压带,多呈现出高含气量,尤其是向斜轴部。在陷落柱和水文地质条件叠加作用下,15号煤层含气量整体较8、9号煤层低,且8、9号煤层含气饱和度也整体高于15号煤层。(2) 8、9和15号煤层含气性均表现出随煤层埋深增加而增大的趋势,但随埋深增加,构造应力和地温场的作用逐渐增强,存在含气量随埋深变化的“临界深度”(700 m左右)。煤层含气性也表现出随煤层厚度增加而增大的趋势,煤层结构越简单,煤层含气性越好。(3) 研究区中部的NNE?NE向褶皱与EW向构造叠加地区,因较大的构造曲率和相对松弛的区域地应力,具备较好渗透率条件和含气性,故成为煤层气高产区。(4) 发育多煤层地区采用分压合采技术可以有效增加产气量,多煤层可以提供煤层气井高产能的充足气源,且多个层位的同时排水降压可使不同煤储层气体产出达到产能叠加,实现长期稳产,含气性较好及游离气可能存在的区域可出现长期持续高产井。   相似文献   

5.
煤层气化学组分、甲烷碳氢同位素特征对煤层气成因、分布规律和煤层气资源评价具有重要意义。为了查明河东煤田北部兴县地区山西组、太原组煤层甲烷及二氧化碳成因,采集研究区煤层气井解吸气样,通过组分分析、CH4碳氢同位素和CO2碳同位素测试,根据煤层气成因图版,分析了煤层气稳定同位素的地质影响因素,揭示了研究区煤层气成因。结果表明,区内主力煤层的甲烷碳同位素存在明显差异:8煤甲烷δ13C1值介于-55.1‰~-44.2‰,平均为-49.2‰;13煤δ13C1值介于-65.7‰~-55.7‰,平均为-59.8‰。同一煤层内甲烷碳同位素呈现出随煤层埋深增加而变重、随水动力条件增强变轻的特点;甲烷碳同位素偏轻,重烃组分偏少,表明受到一定因素或次生作用的影响。8煤以热成因气为主,13煤以次生生物成因气为主。研究区8煤δ13C (CO2)介于-17.3‰~-4.8‰,13煤δ13C (CO2)介于-26.3‰~-6.9‰,二氧化碳为煤热演化初期或最近一次煤层抬升再沉降后煤中有机质热裂解产生。研究成果为明确该区煤层气勘探开发方向提供了理论依据。   相似文献   

6.
含气量是影响煤层气井生产的关键参数,但是,多数煤层气井无法直接获得目标煤层含气量,且解吸法测定的低阶煤储层含气量误差较大。文章以大佛寺井田煤层含气量动态变化特征为研究目标,结合煤层气井排采数据对煤储层参数动态的同步反馈,采用“定体积法”分析煤层气井排采数据,进行4#煤储层实时含气量的动态反演。结果表明:(1)设定多个原始含气量,实时含气量随时间变化呈线性递减关系,且下降趋势一致,皆能得到实时含气量变化线性斜率相同的结果:产气量与含气量消耗同步,且与生产时间间隔无关。(2)分析1 d、3 d、5 d的不同时间步长,设定原始含气量分别为2 m3/t、3 m3/t、4 m3/t、5 m3/t、6 m3/t、8 m3/t时,煤储层实时含气量变化关系高度一致,认为煤层气井遵循“定体积”产气规律,即不存在压降漏斗的形成与扩展。(3)连续排采阶段,实时含气量与排采时间呈线性降低关系,排采间断前后两个阶段煤储层实时含气量线性降低速率不同:为-0.00546和 -0.00435;第二阶段较第一阶段实时含气量变化斜率减小,是因为排采过程产生煤粉,堵塞阻碍块煤的解吸作用,造成储层伤害,能够解吸的煤层体积缩小。  相似文献   

7.
庆阳—黄陵地区是鄂尔多斯盆地重要的低煤阶含煤区,是近几年煤层气勘探的热点地区之一。但该区煤层气钻探效果并不理想,急切需要认清该地区煤层气富集规律,以便有效指导煤层气的勘探开发。通过对该区煤层的展布特征、沉积环境、煤岩煤质特征、物性特征及含气性等进行综合分析,查明该区煤岩演化程度低,煤层厚5~30m,大部分地区煤层埋深小于1500m且分布稳定,延9煤层为该区的主力煤层,煤岩类型主要为半亮煤和半暗煤,煤岩煤质特征好,孔隙度、渗透率较高,灰分含量低,具有较高的煤层气勘探潜力。钻井资料揭示该区煤层含气性变化大,含气量介于0~8m~3/t之间。进一步分析构造和沉积作用对煤层气富集的影响,提出了煤层气保存条件好、含气量高、勘探潜力大的四个有利目标区。  相似文献   

8.
山西省煤层气资源丰富,开发条件优越。在以往研究成果的基础上,根据大量的煤田钻孔、煤层气井和煤样等温吸附实验等资料,分析了煤层含气性、煤级、储层压力、温度、煤的吸附能力、含气饱和度等特征,对山西省深部煤层含气量进行了预测,估算了煤层气资源量及可采潜力。研究结果表明,煤级、储层压力、温度、煤的吸附能力、含气饱和度等参数直接或间接受埋深控制,并通过等温吸附方程综合影响深部煤层含气量,含气量随埋深的增加而增加,但增加趋势变缓;估算2000m以浅煤层气资源量约8.3万亿m3,煤层气平均可采系数在30.0%~56.7%。  相似文献   

9.
庆阳—黄陵地区是鄂尔多斯盆地重要的低煤阶含煤区,是近几年煤层气勘探的热点地区之一。但该区煤层气钻探效果并不理想,急切需要认清该地区煤层气富集规律,以便有效指导煤层气的勘探开发。通过对该区煤层的展布特征、沉积环境、煤岩煤质特征、物性特征及含气性等进行综合分析,查明该区煤岩演化程度低,煤层厚5~30m,大部分地区煤层埋深小于1500m且分布稳定,延9煤层为该区的主力煤层,煤岩类型主要为半亮煤和半暗煤,煤岩煤质特征好,孔隙度、渗透率较高,灰分含量低,具有较高的煤层气勘探潜力。钻井资料揭示该区煤层含气性变化大,含气量介于0~8m~3/t之间。进一步分析构造和沉积作用对煤层气富集的影响,提出了煤层气保存条件好、含气量高、勘探潜力大的四个有利目标区。  相似文献   

10.
豫西地区煤层含气性分析   总被引:1,自引:0,他引:1  
龙胜祥  樊生利 《地质论评》1998,44(2):213-218
煤层含气性是煤层气资源评价的的重要参数。豫西地区石炭系二叠系煤层发育,本文依据大量的煤田地质资料和含气量测试、瓦斯涌出量等数据,分析了含气量测试数据的可信度,深入解剖了煤变质程度、埋深、构造、上覆连续沉积地层厚度、煤层厚度及煤层顶底板岩性等主要控制因素对煤层含气性的影响,进而建立了煤层含气量与煤级、埋深的拟合曲线及其函数关系,并对全区二_1煤层含气量空间分布规律进行了总结,得出了本区煤层含气量高、煤层气勘探开发前景十分广阔的结论。  相似文献   

11.
彬长矿区大佛寺井田为典型的黄陇侏罗纪低阶煤煤层气田。井田内煤层气井较多,但有关煤层气成因机制方面的研究较少。厘清井田内煤层气地球化学特征及成因机制,对深化煤层气的形成机理认识和科学评价煤层气资源量具有重要指导意义,可为煤层气高、低产井产能差异化分析提供重要依据。采集研究区内6口煤层气井井口排采气样品,22块4号煤层煤样及煤层水和地表水样各1件,开展显微煤岩组分、气体化学组分、碳同位素和水样水质检测,并结合部分研究区相关的文献数据,分析大佛寺井田煤层CH4碳同位素特征、成因类型及偏轻机理。结果表明:大佛寺井田主采的4号煤层显微煤岩组分中,有机组分含量明显趋高,平均为93.2%,其中,惰质组最具优势,平均68.2%;镜质组次之,平均22.8%,镜质体反射率Rmax平均0.65%。煤层气组分以CH4为主,CH4体积分数为73.805%~98.006%,平均83.753%;N2体积分数为1.259%~25.735%;平均15.220%;CO2体积分数为0.040%~2.380%,平均1.023%;C2及以上重烃含量平均不足0.0054%;C1/C1—n>0.999;CH4和N2含量呈明显负相关性,煤层气组分在成藏后期受空气影响明显。δ13C1为?80.516‰~?62.400‰,平均?73.000‰;δ13CCO2为?41.693‰~?7.065‰,平均?18.660‰。大佛寺井田煤层气为次生生物成因气,其显著标志为δ13C1偏轻和重烃含量极少,呈现典型特干气特征,偏轻机理在于其绝大部分由CO2还原而成,少量由乙酸发酵而成,且在这两种途径的生气过程中,最终均会出现生物甲烷富集轻碳同位素的结果,从而导致δ13C1偏轻。   相似文献   

12.
针对湘中地区邵阳凹陷二叠系龙潭组页岩气资源评价,部署了页岩气调查井2015H-D3井,通过现场解析气等相关样品测试定量分析了页岩含气性特征及其影响因素,并借助气体稳定碳、氢同位素对气体成因进行了初步探讨.结果显示:钻深从150m处开始出现气显,随深度增加,解析气含量呈现先逐渐增大后减小的趋势,300~425m为最高含气层段,累计厚度达125m,现场解析气含量全部大于0.5m^3/t,最高为2.35m^3/t,平均1m^3/t,证实龙潭组具良好页岩气资源潜力.当埋深大于300m时,解析气含量受有机碳含量控制,而埋深小于300m时,解析气含量并不简单受控于有机碳含量,而是受到保存条件的严重制约.气体碳、氢同位素测试显示δ13C1介于-29.87‰~-36.82‰,平均为-34.52‰,δ13C_2介于-29.45‰~-31.02‰,平均为-30.09‰,δD1介于-131.20‰~-178.40‰,平均为-167.40‰.气体成因分析揭示龙潭组页岩气属热成因中的油型气类型.基于沉积现象判断龙潭组为海陆过渡相环境,与氢同位素判断结果基本吻合,但目前还无法确定具体判定区间.  相似文献   

13.
低煤阶煤层气作为一种非常规天然气资源,具有良好的勘探开发前景。我国低煤阶煤层气资源丰富,进行低煤阶煤层气系统演化分析,对其富集成藏及开发具有重要的理论意义。鄂尔多斯盆地煤层甲烷的碳同位素δ13C1为–33.1‰~–80.0‰,氢同位素δCH4为–235‰~–268‰。该盆地侏罗系煤层气藏主要有次生生物气与热成因气构成的混合型煤层气藏和热成因气藏两种类型。据构造热事件、煤层气组分及成因,结合不同阶段的煤层埋深、变质程度和生气特征等,将鄂尔多斯盆地侏罗系低煤阶煤层气系统演化划分为4个阶段:煤系浅埋–原生生物气阶段﹑煤系深埋–热成因气阶段﹑煤系抬升–吸附气逃逸散失阶段﹑煤系局部沉降–次生生物气补充阶段。其中,煤系深埋–热成因气阶段和局部沉降–次生生物气阶段是低煤阶煤层气资源的主要形成阶段。次生生物气的补充是鄂尔多斯盆地侏罗系低煤阶煤层气成功开发的重要气源。鄂尔多斯盆地侏罗系煤层气藏应属于单斜式富气成藏模式。   相似文献   

14.
对淮北煤田祁东煤矿6个煤层的24个煤样和12个气样的稳定有机碳同位素分析,分别研究了煤和瓦斯中碳同位素的分布特征和变化趋势,为不同煤层及瓦斯源分析提供理论依据。研究表明:祁东煤矿煤的δ13C为-25.11‰~-22.76‰,6-1煤层至9煤层碳同位素均值呈波动变化,可能受当时成煤时期沉积环境的影响;瓦斯的δ13C1为-63.65‰~-52.51‰,表现出次生生物成因气的变化特征,二氧化碳碳同位素特征(-22.61‰~-17.96‰)表明其均是煤热解而来。   相似文献   

15.
青海木里煤田天然气水合物特征与成因   总被引:3,自引:0,他引:3  
青海木里煤田成功钻获天然气水合物实物样品,使我国成为世界上首次在中低纬度冻土区发现天然气水合物的国家。通过对钻获天然气水合物样品的分析,以及对以往异常可燃气体涌出钻孔的测井曲线的重新解释和对比分析,初步确定天然气水合物赋存于中侏罗统江仓组油页岩段的细粉砂岩夹层内的孔隙和裂隙中。研究结果显示,天然气水合物中的气体以重烃类为主,甲烷达52%~68%;其δ13C值为-50.5‰(PDB标准),并具有δl3Cl<δ13C2<δ13C3<δ13iC4<δl3nC4的特征,其δD值分别为-266‰和-262‰(VSMOW标准),显示出明显的深部热解气特征。结合木里煤田煤层气地质特征,认为煤层气是木里煤田天然气水合物的主要来源,并将其命名为“煤型气源”天然气水合物。   相似文献   

16.
为了查明保德地区煤层气地球化学特征及成因,采集煤样、煤层气样及水样,开展气体组分分析、煤层气井产出水水质检测和稳定同位素分析。结果表明:煤层气组成中烃类气体以CH4为主,体积分数为88.60%~97.59%;含有少量乙烷,体积分数仅为0.01%~0.14%;干燥系数均大于0.99,属于极干煤层气。非烃类组分中,主要含有CO2和N2,其中,CO2体积分数为1.74%~7.61%,N2体积分数为0.04%~8.18%。煤层气δ13C(CH4)值为–56.8‰~–47.7‰,δ13C(CO2)值为–6.6‰~13.9‰,δD(CH4)值为–252.6‰~–241.6‰。煤层产出水呈弱碱性,属于NaHCO3类型水,与地表水离子构成、矿化度、δD(H2O)和δ18O(H2O)值均相近,有地表水的补给,有利于产CH4菌大量繁殖,生成次生生物气。综合认为,研究区煤层气为热成因气和生物气的混合气,生物成因气主要是通过二氧化碳还原作用形成,受煤层解吸–扩散–运移作用、水溶作用和次生生物作用导致煤层气“变轻”。研究成果为后续煤层气勘探开发提供指导。   相似文献   

17.
通过煤层气成藏模拟实验,研究了水动力条件对煤层气成藏的控制作用。实验结果表明:在强烈的水动力交替作用下,煤层气藏中的甲烷碳同位素由-29.50‰变为-36.60‰,且变轻过程中具有阶段性特征;甲烷体积分数由96.35%减小为12.42%;二氧化碳由0.75%变为0.68%,随后增大到1.13%;氮气体积分数由2.9%变为86.45%。这些变化一方面说明煤层气成藏过程的复杂性,另一方面表明强烈的水动力作用对煤层气成藏会造成不利影响。通过对以高煤阶为典型特点的沁水盆地南部水动力条件的分析,认为径流强度与煤层含气量之间呈负相关性,弱径流区有可能成为高煤阶煤层气富集的高产区。   相似文献   

18.
鲍园  韦重韬  王超勇 《地球科学》2013,38(5):1037-1046
通过数理统计前人公开发表的国内外21个盆地或地区的324组煤型气地化数据, 分析不同成因类型煤型气地层分布和稳定碳、氢同位素组成及空间分布特征, 提出多个煤型气成因类型判识图版, 并以实例论证这些图版的可行性.研究结果表明: 与煤层相关的生物成因气不同于常规生物气, 最显著区别在于前者δ13C(CH4)上限值低, 即生物成因气δ13C(CH4)<-60‰, 热成因气δ13C(CH4)>-40‰, 混合成因气δ13C(CH4)介于二者之间.随着有机质演化程度增强, 从生物成因气至热成因气, δ13C(CH4)、δ13C(CO2-CH4)、δ13C(C2H6-CH4)及CH4/(C2H6+C3H8)具有变重趋势且相关性明显, δ13C(CH4)与δ13C(CO2-CH4)、δ13C(CH4)与δ13C(C2H6-CH4)及δ13C(CH4)与CH4/(C2H6+C3H8)是划分煤型气成因类型最可靠的图版.   相似文献   

19.
天然气成因机理复杂,鉴于在高-过成熟阶段烷烃气碳同位素系列倒转普遍存在,而高-过成熟阶段有机质中常富含芳环结构,利用芳香烃(甲苯)热裂解实验探讨高-过成熟阶段烷烃气碳同位素系列倒转成因.甲苯热裂解实验表明随着模拟温度的增加,烷烃气产率逐渐增大;模拟产物中H2产率也随着模拟温度的增加而增加.甲苯裂解产物中δ13C1、δ13C2和δ13C3分布区间分别为-31.8‰~-27.7‰,-31.0‰~-20.4‰和-31.0‰~-20.4‰.在甲苯热模拟实验450℃时,出现了烷烃气碳同位素系列的部分倒转(δ13C1>δ13C2 < δ13C3).发现无论是煤成气还是油型气,在高-过成熟阶段都会出现烷烃气碳同位素系列的倒转,结合本次模拟实验结果,认为芳香烃脱甲基作用可能是烷烃气高-过成熟阶段出现碳同位素系列倒转的一个重要原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号