首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The sedimentology of an 8.22-m long core of late-Holocene deposits in the submerged Crescent Island Crater basin of Lake Naivasha, Kenya, is used to reconstruct decade-scale fluctuations in lake-surface elevation during the past 1800 yrs. Lake-depth inference for the past 1000 yrs is semi-quantitative, based on (1) relationships between lake level and bottom dynamics predicted by wave theory, and (2) historical validation of the effects of lake-level fluctuation and hydrologic closure on sediment composition in Crescent Island Crater and nearby Lake Oloidien. In these shallow fluctuating lakes, organic-carbon variation in a lithological sequence from clayey mud to algal gyttja is positively correlated with lake depth at the time of deposition, because the focusing of oxidized littoral sediments which dilute autochthonous organic matter before burial is reduced during highstands. The lake-level reconstruction for Lake Naivasha agrees with other adequately dated lake-level records from equatorial East Africa in its implication of dry climatic conditions during the Mediaeval Warm Period and generally wet conditions during the Little Ice Age. Crescent Island Crater survived widespread aridity in the early-19th century as a fresh weedy pond, while the main basin of Lake Naivasha and many other shallow East African lakes fell dry and truncated their sediment archive of Little Ice Age climatic variability.  相似文献   

2.
Sediment lithology and mineralogy, as well as ostracode, plant macrofossil and stable isotope stratigraphies of lake sediment cores, are used to reconstruct late Holocene hydrologic changes at Kenosee Lake, a relatively large, hyposaline lake in southeastern Saskatchewan. Chronological control is provided by AMS radiocarbon ages of upland and shoreline plant macrofossils. All indicators outline an early, low-water, saline phase of lake history (4100–3000 BP), when the basin was occupied by a series of small, interconnected, sulfate-rich brine pools, as opposed to the single, topographically-closed lake that exists today. A rapid rise in lake-level (3000–2300 BP) led to the establishment of carbonate-rich, hyposaline lake conditions like those today. Lithostratigraphic data and ostracode assemblages indicate peak salinities were attained early in this period of lake infilling, suggesting that the lake-level rise was initially driven by an influx of saline groundwater. Lake-level and water chemistry have remained relatively stable over the last 2000 years, compared to earlier events. Because of a lack of datable organic material in sediments deposited during the last 2000 years, the chronology of recent events is not well resolved. Plant macrofossil, lithostratigraphic and ostracode evidence suggests that lake draw-down, accompanied by slightly higher than present salinites, occurred sometime prior to 600 BP, followed by peak lake-level and freshwater conditions. This most recent high lake stand, indicative of a high water table on the surrounding upland, may also have led to the establishment of an extensive cover of Betula in the watershed, possibly in response to paludification. Ostracode assemblages indicate that peak freshwater conditions occurred within the last 100 years. Since historically documented lake-level fluctuations correlate with decadal scale climatic fluctuations in the meteorological record, and late-Holocene hydrologic dynamics correspond to well documented climatic excursions of the Neoglacial and Little Ice Age, Kenosee Lake dynamics offer insight into the susceptibility of the region's water resources to climate change.  相似文献   

3.
Paleohydrology studies at Mathews Pond and Whitehead Lake in northern Maine revealed synchronous changes in lake levels from about 12,000 14C yrs BP to the present. We analyzed gross sediment structure, organic and carbonate content, mineral grain size, and macrofossils of six cores from each of the two lakes, and obtained 72 radiocarbon dates. Interpretation of this paleo-environmental data suggests that the late-glacial and Younger Dryas climate was dry, and lake levels were low. Early Holocene lake levels were considerably higher but declined for an interval from about 8000 to 7200 14C yrs BP. Sediment of both lakes contains evidence of a dry period at ∼7400 14C yrs BP (8200 cal yr). Lake levels of both sites declined abruptly about 4800 14C yrs BP and remained low until 3000 14C yrs BP. Modern lake levels were achieved only within the past 600 years. The west-to-east, time-transgressive nature of lake-level changes from several sites across northeastern North America suggests periodic changes in atmospheric circulation patterns as a driving force behind observed moisture balance changes. Electronic supplementary material to this article is available at and accessible for authorized users.  相似文献   

4.
In this study, a 6 m long core (16,000 BP) at the center of the dry Lake Yiema, a closed lake of Shiyang River drainage in Minqin Basin of the arid northwestern China, was retrieved to recover the history of climate changes and lake evolution in the area. Five radiocarbon dates on organic matter were obtained. A chronological sequence is established based on these five dates and other dates from nearby sites. Magnetic susceptibility, particle size and chemical composition were analysized for climate proxies. The proxies indicate that a drier climate prevailed in the Shiyang River drainage during the last glacial. Lake Yiema was dry and eolian sand covered most part of the lake basin. During the early and middle Holocene, a moister climate prevailed in the drainage. Climate became dry stepwise with an abrupt transition from one stage to another during the entire Holocene and became driest since about 4,200 BP. Maximum dry climate spells occurred at about 12,000-10,000 BP and after about 4,200 BP. A dry climate event also existed at about 7,600 BP. Periodical sand storms with about 400-yr cycle happened during the middle Holocene. Desiccation processes of the lake started at 4,200 BP, and were accelerated since the last 2,500 yrs by the inflow water diversion for agriculture irrigation. During the past 2,500 yrs, the lake size has been closed associated with the human population, implying that the human impact has been accelerating the lake desiccation superimposed on the natural climate deterioration.  相似文献   

5.
Lakes have received considerable attention as long-term sinks for organic carbon(C) at regional and global scales. Previous studies have focused on assessment and quantification of carbon sinks, and few have worked on the relationship between millennial-scale lake C sequestration, hydrological status and vegetation, which has important scientific significance in improving our understanding of lake C stocks and storage mechanisms. Here, we present a comprehensive study of pollen records, organic geochemical proxies, lake-level records, sediment accumulation rate(SAR) and organic C accumulation rate(CAR) in China since the Holocene. We also include numerical climate classification and lake-level simulations, to investigate variations of lake C sequestration, hydrological status and vegetation during the Holocene. Results indicate that the evolution of lake C accumulation showed an out-of-phase relationship with hydrological status and vegetation in China. Lake C accumulation exhibited an overall trend of increasing from the early to late Holocene in response to gradually increasing terrestrial organic matter input. However, China as a whole experienced the densest vegetation cover in the middle Holocene, corresponding to the mid-Holocene optimum of a milder and wetter climate. Optimal hydrological conditions were asynchronous in China; for example, early Holocene in Asian monsoon dominated areas, and middle Holocene in westerlies controlled regions. Our synthesis indicated that climate change was the main factor controlling the long-term variability in lake C accumulation, hydrologic conditions, as well as vegetation, and human influences were usually superimposed on the natural trends.  相似文献   

6.
The character and impact of climate change since the last glacial maximum (LGM) in the eastern Mediterranean region remain poorly understood. Here, two new diatom records from the Ioannina basin in northwest Greece are presented alongside a pre-existing record and used to infer past changes in lake level, a proxy for the balance between precipitation and evaporation. Comparison of the three records indicates that lake-level fluctuations were the dominant driver of diatom assemblage composition change, whereas productivity variations had a secondary role. The reconstruction indicates low lake levels during the LGM. Late glacial lake deepening was underway by 15.0 cal kyr BP, implying that the climate was becoming wetter. During the Younger Dryas stadial, a lake-level decline is recorded, indicating arid climatic conditions. Lake Ioannina deepened rapidly in the early Holocene, but long-term lake-level decline commenced around 7.0 cal kyr BP. The pattern of lake-level change is broadly consistent with an existing lake-level reconstruction at Lake Xinias, central Greece. The timing of the apparent change, however, is different, with delayed early Holocene deepening at Xinias. This offset is attributed to uncertainties in the age models, and the position of Xinias in the rain shadow of the Pindus Mountains.  相似文献   

7.
李育  刘媛 《地理学报》2016,71(11):1898-1910
为了探讨中国长时间尺度湖泊时空演变规律和潜在的驱动机制,本文在柯本气候分区和中国季风—非季风区的划分基础上,对中国34个有明确数据的典型湖泊运行CCSM 3.0气候模拟系统和水量能量平衡模型模拟其水位变化,同时利用NCEP/NCAR再分析资料对中国按水汽输送划分的季风区进行验证。结果表明,末次盛冰期以来中国湖泊演化主要受千年尺度大气环流的驱动影响,在各个柯本气候区内没有明显的规律性。末次盛冰期以来,在季风区中国湖泊演化主要有早中全新世湖泊水位相对较高以及末次盛冰期和早全新世湖泊水位均较高2种演变规律;在东亚干旱区主要有中晚全新世期间湖泊水位相对较高以及末次盛冰期和中全新世湖泊水位均较高2种演变规律。本文为中国过去气候变化及湖泊演化机制研究提供新的证据,同时为人类全面认识末次盛冰期以来湖泊水位变化提供了新的视角。  相似文献   

8.
区域性的湖泊水位能反映有效降水及气候变化,已成为重建第四纪降水和水量平衡最重要的指标。亚洲分布着几乎全球各种成因类型的湖泊,第四纪湖泊演化在全球第四纪研究中占有重要地位。多年来通过对地貌学、沉积学、生物地球化学和考古学的研究重建了各个区域的湖泊水位变化,并据此建立了湖泊演变数据库,作为研究第四纪亚洲区域气候变化的重要基础。本文介绍湖泊水位气候理论的发展历程,回顾晚第四纪亚洲湖泊水位研究的历史;分析晚第四纪亚洲从西到东不同区域湖泊水位变化历史和地域特征,并根据晚第四纪冰期和间冰期的两个特征期湖泊空间变化特征,从古气候模拟的角度探讨了气候驱动机制下湖泊水位变化的成因。  相似文献   

9.
A diatom study of lacustrine sediments in the southern part of the Bolivian Altiplano (Salar of Coipasa) provides a continuous record of the period 21,000–17,500 14C yr BP. Constrained by seven AMS 14C dates, this record provides evidence that the Coipasa basin was filled by a shallow body of water during this time. Diatom/salinity and diatom/ionic composition transfer functions indicate that the lake was saline, dominated by sodium-chloride throughout all the period.A comparison with regional data shows that Lake Titicaca could not have overflowed towards the southern Bolivian Altiplano at that time. As this dry phase was not registered in Lake Coipasa, this lake was probably supplied by winter precipitation originating from the Pacific. But, recent data from the deep basin of Lake Titicaca show that the lake-level was higher during this time interval, and the question arises whether precipitation from Atlantic and Amazonia sources could have played an important role on the Altiplano during the Last Glacial Maximum (LGM). This hypothesis needs to match other available paleoclimatic data from the lowlands of tropical South America, where there is evidence that during the LGM, conditions were drier than today. Global climate simulations suggest a positive P-E on the Altiplano, due to a strong cooling, reducing evaporative demand more than any increase in precipitations. An increase of winter precipitation from the Pacific is in agreement with data from the Chilean coast showing a northward locations of the Westerlies during the LGM. This paleoclimatic hypothesis is also in agreement with a coupled ocean-atmosphere model, which indicates weaker summer precipitation and stronger winter precipitation in the tropical areas.  相似文献   

10.
We inferred late Holocene lake-level changes from a suite of near-shore gravity cores collected in Lake 239 (Rawson Lake), a headwater lake in the Experimental Lakes Area, northwestern Ontario. Results were reproduced across all cores. A gravity core from the deep central basin was very similar to the near-shore cores with respect to trends in the percent abundance of the dominant diatom taxon, Cylcotella stelligera. The central basin, however, does not provide a sensitive site for reconstruction of lake-level changes because of the insensitivity of the diatom model at very high percentages of C. stelligera and other planktonic taxa. Quantitative estimates of lake level are based on a diatom-inferred depth model that was developed from surficial sediments collected along several depth transects in Lake 239. The lake-level reconstructions during the past ~3,000 years indicate that lake depth varied on average by ±2 m from present-day conditions, with maximum rises of ~3–4 m and maximum declines of ~3.5–5 m. The diatom-inferred depth record indicates several periods of persistent low levels during the nineteenth century, from ~900 to 1100 AD, and for extended periods prior to ~1,500 years ago. Periods of inferred high lake levels occurred from ~500 to 900 AD and ~1100 to 1650 AD. Our findings suggest that near-shore sediments from small drainage lakes in humid climates can be used to assess long-term fluctuations in lake level and water availability.  相似文献   

11.
Palaeogeographic and lake-level reconstructions provide powerful tools for evaluating competing scenarios of biotic, climatic and geological evolution within a lake basin. Here we present new reconstructions for the northern Lake Tanganyika subbasins, based on reflection seismic, core and outcrop data. Reflection seismic radiocarbon method (RSRM) age estimates provide a chronological model for these reconstructions, against which yet to be obtained age dates based on core samples can be compared. A complex history of hydrological connections and changes in shoreline configuration in northern Lake Tanganyika has resulted from a combination of volcanic doming, border fault evolution and climatically induced lake-level fluctuations. The stratigraphic expression of lake-level highstands and lowstands in Lake Tanganyika is predictable and cyclic (referred to here as Capart Cycles), but in a pattern that differs profoundly from the classic Van Houten cycles of some Newark Supergroup rift basins. This difference results from the extraordinary topographic relief of the Western Rift lakes, coupled with the rapidity of large-scale lake-level fluctuations. Major unconformity surfaces associated with Lake Tanganyika lowstands may have corresponded with high-latitude glacial maxima throughout much of the mid- to late Pleistocene.
Rocky shorelines along the eastern side of the present-day Ubwari Peninsula (Zaire) appear to have had a much more continuous existence as littoral rock habitats than similar areas along the north-western coastline of the lake (adjacent to the Uvira Border Fault System), which in turn are older than the rocky shorelines of the north-east coast of Burundi. This model of palaeogeographic history will be of great help to biologists trying to clarify the evolution of endemic invertebrates and fish in the northern basin of Lake Tanganyika.
  相似文献   

12.
A 6,500-year diatom stratigraphy has been used to infer hydrochemical changes in Lake Awassa, a topographically closed oligosaline lake in the Ethiopian Rift Valley. Conductivity was high from ~6400-6200 BP, and from 5200-4000 BP, with two brief episodes of lower conductivity during the latter period. Although the timing of the conductivity changes is similar to the timing of lake-level change in the nearby Zwai-Shalla basin, their directions are the reverse of that expected from a climatic cause. Dissolution of the tephras which precede both phases of high conductivity cannot explain the increases in salinity, because rhyolitic tephras are only sparingly soluble. Instead, the pulsed input of groundwater made saline by the reaction of silicate minerals and volcanic glass with carbonic acid, formed from the solution of carbon dioxide degassed from magma under the Awassa Caldera, is suggested as a plausible mechanism for the observed change in lake chemistry. Diatom-inferred hydrochemistry cannot therefore be used to reconstruct climate change in Lake Awassa.  相似文献   

13.
14.
15.
Closed-basin alkaline lakes record climate change particularly well because they generally contain a sedimentary record that is high in carbonate mineral content from which climate proxies can be determined. Various approaches are used to estimate paleo-lake level and volume (δ18O, dating of “shoreline” tufas, biotic proxies, etc.), yet all carry certain caveats that limit their usefulness. Ultimately, the relationship between the chemistry of the lake, the volume of the lake, and the response of the proxy will determine how well a proxy serves a paleolimnologic purpose. Here, we discuss the use of carbonate-associated sulfate (CAS), the sulfate contained within the lattice of carbonate minerals that precipitate in lake water, as a proxy for lake water chemistry and by extension, lake volume. Walker Lake, an alkaline closed-basin lake in western Nevada, has experienced a well-documented lake-level decline since 1880 and provides a test case for CAS as a lake-level proxy. By extracting the CAS from sedimentary carbonate and tufas that have been age dated, we can relate these values to lake sulfate content based on historical or other proxy data. We confirm that CAS tracks lake sulfate. Our study of sedimentary carbonates demonstrates that CAS is a linear function of lake sulfate through a range of 10–25 mM, which corresponds to a change in lake level of 30 m. As confirmation of the CAS technique, we analyzed a stromatolitic tufa dated using AMS 14C. The CAS trend in the stromatolite suggested that it grew during a lake-level decline, a result consistent with other proxy data. Finally, laboratory experiments were conducted that demonstrate CAS is monotonically correlated with sulfate concentration and that precipitation kinetics are not likely a major control on CAS in alkaline lakes, but that ionic strength of the solution exerts a strong control on CAS.  相似文献   

16.
The sensitivity of East African rift lakes to climate fluctuations   总被引:1,自引:0,他引:1  
Sequences of paleo-shorelines and the deposits of rift lakes are used to reconstruct past climate changes in East Africa. These recorders of hydrological changes in the Rift Valley indicate extreme lake-level variations on the order of tens to hundreds of meters during the last 20,000 years. Lake-balance and climate modeling results, on the other hand, suggest relatively moderate changes in the precipitation-evaporation balance during that time interval. What could cause such a disparity? We investigated the physical characteristics and hydrology of lake basins to resolve this difference. Nine closed-basin lakes, Ziway-Shalla, Awassa, Turkana, Suguta, Baringo-Bogoria, Nakuru-Elmenteita, Naivasha, Magadi-Natron, Manyara, and open-basin Lake Victoria in the eastern branch of the East African Rift System (EARS) were used for this study. We created a classification scheme of lake response to climate based on empirical measures of topography (hypsometric integral) and climate (aridity index). With reference to early Holocene lake levels, we found that lakes in the crest of the Ethiopian and Kenyan domes were most sensitive to recording regional climatic shifts. Their hypsometric values fall between 0.23–0.29, in a graben-shaped basin, and their aridity index is above unity (humid). Of the ten lakes, three lakes in the EARS are sensitive lakes: Naivasha (HI = 0.23, AI = 1.20) in the Kenya Rift, Awassa (HI = 0.23, AI = 1.03) and Ziway-Shalla (HI = 0.23, AI = 1.33) in the Main Ethiopian Rift (Main Ethiopian Rift). Two lakes have the graben shape, but lower aridity indices, and thus Lakes Suguta (HI = 0.29, AI = 0.43) and Nakuru-Elmenteita (HI = 0.30, AI = 0.85) are most sensitive to local climate changes. Though relatively shallow and slightly alkaline today, they fluctuated by four to ten times the modern water depth during the last 20,000 years. Five of the study lakes are pan-shaped and experienced lower magnitudes of lake level change during the same time period. Understanding the sensitivity of these lakes is critical in establishing the timing or synchronicity of regional-scale events or trends and predicting future hydrological variations in the wake of global climate changes.  相似文献   

17.
Late glacial changes in the vegetation were studied in and around a former lake on the southeastern side of a coversand ridge near Milheeze (southern Netherlands). Analyses of microfossils and macroremains and AMS 14C dating were performed on four sediment cores along a transect from sand ridge to the lake centre. Small-scale vegetation patterns and lake-level fluctuations were reconstructed in detail based on the information provided by the transect. For the first time in The Netherlands, cores along a transect within one lake were used to reconstruct the amplitude of late glacial lake-level fluctuations. Near Milheeze, a small and shallow lake was formed during the Bølling. The large increase in the water level during the Bølling and early Allerød, and the transition to more eutrophic conditions at the start of the Allerød, were probably related to the disappearance of permafrost. During the Allerød, open birch and pine woodlands developed in the area. In the lake, organic deposits accumulated, and the lake size and depth fluctuated. At the start of the Younger Dryas, higher lake water levels were recorded and woodlands became more open as a result of both a drop in the temperature and an increase in the effective precipitation. During the late Younger Dryas the lake water level dropped as the climate became drier and temperatures slightly increased. Accumulation of organic deposits in the lake ceased at the end of the Younger Dryas, which was caused by a drop in the water level in combination with the hydroseral succession process within the lake itself. The climatic signal reflected in the late glacial flora and lake-level fluctuations agree well with other published data from The Netherlands.  相似文献   

18.
天山小尤尔都斯盆地湖积物的沉积学和孢粉分析研究表明,全新世以来,该区距今4000年以前及以后至少有两次湖泊发育期。该区湖泊的兴衰历史表明,全新世环境变化显著,气候呈现冷暖与干湿波动。  相似文献   

19.
Lacustrine basins and their deposits are good paleoclimate recorders and contain rich energy resources. Shelf-margin clinoforms do exist in deep lacustrine basins, but with striking differences from those in deep marine basins, caused by a correlation between the river-derived sediment supply and the lake level. This study uses empirical relationships to calculate the water and sediment discharge from rivers and coeval lake level during wet–dry cycles at 10 s of ky time scale. Sediment supply and lake-level changes are used for a stratigraphic forward model to understand how lacustrine clinoforms develop under different climate conditions. The results show that both wet and dry cycles can be associated with thick deep-water fan deposits, supporting the existing climate-driven lacustrine model proposed based on field data (e.g. Neogene Pannonian Basin and Eocene Uinta Basin). The wet period with high sediment supply and rising lake level creates the highly aggradational shelf, progradational slope and thick bottomset deposits. This is contrary from marine basin settings where the presence of rising shelf-margin trajectory commonly indicates limited deep-water fan deposits. This work suggests marine-based stratigraphic models cannot be directly applied to lacustrine basins.  相似文献   

20.
Sediment layers of uniform age within lakes (isochrones) and their patterns reflect accumulation processes which can be correlated with hydrologic conditions in lake basins. The sedimentary archives in three small dystrophic lakes in northeastern Poland are described based on the correlation of local pollen assemblage zones in cores that were collected from the centers and margins of each lake. Past regional groundwater levels could be discerned from the shape of the isochrones, whether plane parallel or concave in configuration in relation to the lake basin shape. The concave configuration of the isochrones in the studied lakes shows that regional groundwater levels remained mostly high and stable throughout their history. The water levels in each lake during the Late Glacial and throughout the Holocene were different and no single, common water-level fluctuation pattern was identified in the three water bodies. The lack of such a finding suggests that the lakes are influenced dominantly by local hydrological factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号