首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Large thermal extractions and extensive implementation of groundwater heat pumps (GWHP) necessitate a validation of the sustainability of their use and possible detrimental effects on groundwater. The goal of this work is to develop a regional heat transport model (of ~13 km × 5 km) for real site conditions. This model should consider all relevant transport processes, despite the large area under investigation. The model is based on a two-dimensional, transient-calibrated groundwater flow model for the “Leibnitzer Feld” (Styria, Austria). The two-dimensional horizontal model is linked via the FEFLOW interface manager with a newly developed “Multi-Layer-Model”-tool, which reproduces thermal aquifer–atmosphere interaction. Based on the regional heat transport model, scenarios are delineated for heating and cooling purposes for large GWHPs, which are appropriate for a small manufacturing business, an administrative building and 10 family homes. First of all, these have large spacing and thereafter, effects of area-covering usage of geothermal systems are evaluated for five administrative buildings located in close proximity to one another (200–350 m) and also for a large number of smaller heat extractions (each representing a one family house system). Modeled spatial and temporal temperature effects on the shallow aquifer are discussed. It was possible to present a simulation of realistic heating and cooling scenarios. This simulation may be introduced into practice once some further simplifications to the system are made. Locally limited heat plumes (max. length: 625 m) were observed for the manufacturing business. Any thermal effects coming from the geothermal systems were shown to be temporally stable. As such, no distinct trend of reduced annual temperatures could be observed.  相似文献   

2.
The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to ?25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to ~15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3–8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of ~2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of ~10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2–3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.  相似文献   

3.
The use of renewable energy can be enhanced by utilising groundwater reservoirs for heating and cooling purposes. The urbanisation effect on the peak heating and peak cooling capacity of groundwater in a cold groundwater region was investigated. Groundwater temperatures were measured and energy potentials calculated from three partly urbanised aquifers situated between the latitudes of 60° 25′N and 60° 59′N in Finland. The average groundwater temperature below the zone of seasonal temperature fluctuations was 3–4 °C higher in the city centres than in the rural areas. The study demonstrated that due to warmer groundwater, approximately 50–60 % more peak heating power could be utilized from populated areas compared with rural areas. In contrast, approximately 40–50 % less peak cooling power could be utilised. Urbanisation significantly increases the possibility of utilising local heat energy from groundwater within a wider region of naturally cold groundwater. Despite the warming in urban areas, groundwater still remains attractive as a source of cooling energy. More research is needed in order to determine the long-term energy capacity of groundwater, i.e. the design power, in urbanised areas of cold regions.  相似文献   

4.
The low annual and seasonal variability of the shallow groundwater temperature in the alluvial plain aquifers of the Piemonte region (NW Italy) confirmed the potentiality of the low-enthalpy open-loop groundwater heat pumps (GWHP) diffusion to contribute to the reduction of regional greenhouse gas emissions. The distribution of mean groundwater temperatures ranged from a minimum of 10.3°C to a maximum of 17.9°C with a mean of 14.0°C. Differences among diverse areas were slight according with the modest variations in the general climatic condition. Like the air, temperature distribution of the shallow groundwater temperatures is generally similar to topographic elevations in reverse manner. Higher temperature values recorded were typical of summer months (June, July). On the opposite lower values were measured in January and February. No significant difference phase (time) difference between air and groundwater temperature appeared in the data analysis. Besides air-temperature influence (seasonal variability) seemed strictly connected to the depth to groundwater in the measure point and it was negligible when the value was over 9.5 m. For the application of the open-loop systems, extensive examinations of the hydrogeological local conditions should be conducted at site scale and groundwater heat transport modelling should be developed.  相似文献   

5.
The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.  相似文献   

6.
The impact of groundwater heat pumps on groundwater temperature is simulated by means of a 2D numerical groundwater model in the Leibnitzer Feld aquifer, Austria. The model provides a basis for assessing the regional use of groundwater temperature as an energy source. Since the groundwater table is shallow, the air temperature represents the main source controlling the groundwater temperature. A temperature input function depending on the depth of the groundwater table is delineated from an observed soil temperature profile and the air temperature. Given the diffuse and ubiquitous nature of the heat input, the heat exchange is implemented as a third type boundary condition to enable two-way heat transfer. The temperature of the reinjected water is limited to a decrease of 5 K and an absolute minimum of 5°C by Austrian law. The pumping rates needed to cover the heat requirements of three typical users are determined for selected locations. It is shown that the reduction of the ambient groundwater temperature approximately 300 m downstream of the reinjection wells is less than 0.5°C. Thus it can be concluded that aquifers in similar settings show substantial potential to provide heating and warm water supply for buildings without deteriorating the regional groundwater temperature regime.  相似文献   

7.
This paper focuses on a small back-barrier sand-island on the southeast coast of Queensland. The freshwater lens in the study area exhibits anomalously high short-range salinity gradients at shallow depths, which cannot be explained using a standard seawater intrusion model. The island groundwater system consists of two aquifers: a semiconfined aquifer hosting saline to hypersaline groundwater and an overlying unconfined freshwater aquifer. The deeper aquifer is semiconfined within an incised paleovalley, and groundwater flow is restricted to an east – west direction. Tidal response observations show that the tidal signal propagates far more rapidly and is of much higher magnitude in the semiconfined aquifer than the unconfined aquifer. The tidal wave-pulse amplitude is also subject to greater attenuation in the unconfined aquifer. A conceptual hydrogeological model illustrates how upwelling of hypersaline groundwater, induced by density-dependent flow and tidal pumping, has contaminated the shallow groundwater resource. Salinisation at shallow depths is restricted to an area proximal to the paleovalley aquifer. The spatial distribution of lithological heterogeneity is an initial limiting control on the movement of the upwelling saline plume. The extent of shallow groundwater contamination is also limited by the presence of a baroclinic field, resulting from lateral variations in fluid density. Hydrochemical signatures have been used to support the model hypothesis and link the salinisation of fresh groundwater with the semiconfined aquifer as opposed to the surrounding estuarine surface water. The geometry and thickness of the freshwater lens are further controlled by the presence of the largely impermeable bedrock paleosurface between 9 and 12 m depth. The combination of hypersaline groundwater and hydraulically restrictive lithology at shallow depths has produced excessive thinning of the freshwater lens, demonstrating that the application of a model such as the Dupuit – Ghyben – Herzberg relationship would grossly overestimate the available groundwater resource.  相似文献   

8.
朱巍 《地质与勘探》2024,60(1):113-120
本文就浅层地热能开发利用过程中出现的生态环境和地质环境问题从客观因素和人为因素进行了详细的研究,借助土壤温度的测试和地层冷热平衡的监测,分析在地源热泵运行过程中造成的热污染、地下水位下降、地面沉降、地下水质恶化污染等问题。研究认为长期利用地源热泵开发利用系统,如设计不合理或地下水回灌率低,将破坏地层的冷热平衡。北方地区供暖期大于制冷期时,地层温度将逐年下降,N2O和CH4会集中释放,造成生物生长速度缓慢。地下水源热泵运行时,如地下水回灌困难,将导致地下水资源浪费、水位下降等生态环境问题以及路面塌陷、地面沉降等地质环境问题。供暖期、制冷期运行时间差别较大时,将导致地下水温度的变化,直接影响地下水中污染物的降解,间接影响地下水的水质。抽取、回灌地下水的过程会造成空气中的氧气随之溶解于水中,导致地下水质的变化。通过分析浅层地热能开发利用存在的突出问题和影响因素,可为其科学合理开发利用提供科学依据和技术支撑。  相似文献   

9.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

10.
A multicriteria approach in studying hydrodynamics of a multilayer aquifer system has been used in the Lomellina region (Northern Italy). It involves the reconstruction of the hydrogeological framework coupled to the definition of the hydrochemical and isotopic features of the aquifers. A shallow phreatic aquifer, reaching depths of about 60–80 m from the surface, and deeper aquifers containing confined groundwater, were distinguished. Groundwater generally shows mineralisation decreasing with depth; dissolved ions depict calcium-bicarbonate hydrochemical facies and stable isotopes define the recharge mechanisms, the origin of groundwater, and the hydraulic confinement of deep aquifers. The phreatic aquifer is fed by local infiltration and by streams and irrigation channels. Tritium and Carbon-14 groundwater dating indicate long residence times (on the order of thousands of years) for confined aquifers. The confined aquifers show essentially passive hydrodynamic conditions and maintain a higher piezometric level than the phreatic aquifer. This inhibits the possibility of recent water penetrating far below the surface. The hydrogeological setting of the Lomellina region displays features which are common to other sectors of the Po plain. As a consequence, the results of this study, although conducted on a restricted area, are highly illustrative of groundwater hydrodynamics in large sedimentary aquifers.  相似文献   

11.

Urban areas are major contributors to the alteration of the local atmospheric and groundwater environment. The impact of such changes on the groundwater thermal regime is documented worldwide by elevated groundwater temperature in city centers with respect to the surrounding rural areas. This study investigates the subsurface urban heat island (SUHI) in the aquifers beneath the Milan city area in northern Italy, and assesses the natural and anthropogenic controls on groundwater temperatures within the urban area by analyzing groundwater head and temperature records acquired in the 2016–2020 period. This analysis demonstrates the occurrence of a SUHI with up to 3 °C intensity and reveals a correlation between the density of building/subsurface infrastructures and the mean annual groundwater temperature. Vertical heat fluxes to the aquifer are strongly related to the depth of the groundwater and the density of surface structures and infrastructures. The heat accumulation in the subsurface is reflected by a constant groundwater warming trend between +0.1 and?+?0.4 °C/year that leads to a gain of 25 MJ/m2 of thermal energy per year in the shallow aquifer inside the SUHI area. Future monitoring of groundwater temperatures, combined with numerical modeling of coupled groundwater flow and heat transport, will be essential to reveal what this trend is controlled by and to make predictions on the lateral and vertical extent of the groundwater SUHI in the study area.

  相似文献   

12.
Groundwater residence time in the Kulnura–Mangrove Mountain aquifer was assessed during a multi-year sampling programme using general hydrogeochemistry and isotopic tracers (H2O stable isotopes, δ13CDIC, 3H, 14C and 87Sr/86Sr). The study included whole-rock analysis from samples recovered during well construction at four sites to better characterise water–rock interactions. Based on hydrogeochemistry, isotopic tracers and mineral phase distribution from whole-rock XRD analysis, two main groundwater zones were differentiated (shallow and deep). The shallow zone contains oxidising Na–Cl-type waters, low pH, low SC and containing 3H and 14C activities consistent with modern groundwater and bomb pulse signatures (up to 116.9 pMC). In this shallow zone, the original Hawkesbury Sandstone has been deeply weathered, enhancing its storage capacity down to ~50 m below ground surface in most areas and ~90 m in the Peats Ridge area. The deeper groundwater zone was also relatively oxidised with a tendency towards Ca–HCO3-type waters, although with higher pH and SC, and no 3H and low 14C activities consistent with corrected residence times ranging from 11.8 to 0.9 ka BP. The original sandstone was found to be less weathered with depth, favouring the dissolution of dispersed carbonates and the transition from a semi-porous groundwater media flow in the shallow zone to fracture flow at depth, with both chemical and physical processes impacting on groundwater mean residence times.

Detailed temporal and spatial sampling of groundwater revealed important inter-annual variations driven by groundwater extraction showing a progressive influx of modern groundwater found at >100 m in the Peats Ridge area. The progressive modernisation has exposed deeper parts of the aquifer to increased NO3? concentrations and evaporated irrigation waters. The change in chemistry of the groundwater, particularly the lowering of groundwater pH, has accelerated the dissolution of mineral phases that would generally be inactive within this sandstone aquifer triggering the mobilisation of elements such as aluminium in the aqueous phase.  相似文献   

13.
In the coastal region of Bangladesh, groundwater is mainly used for domestic and agricultural purposes, but salinization of many groundwater resources limits its suitability for human consumption and practical application. This paper reports the results of a study that has mapped the salinity distribution in different aquifer layers up to a depth of 300 m in a region bordering the Bay of Bengal based on the main hydrochemistry and has investigated the origin of the salinity using Cl/Br ratios of the samples. The subsurface consists of a sequence of deltaic sediments with an alternation of more sandy and clayey sections in which several aquifer layers can be recognized. The main hydrochemistry shows different main water types in the different aquifers, indicating varying stages of freshening or salinization processes. The most freshwater, soft NaHCO3-type water with Cl concentrations mostly below 100 mg/l, is found in the deepest aquifer at 200–300 m below ground level (b.g.l.), in which the fresh/saltwater interface is pushed far to the south. Salinity is a main problem in the shallow aquifer systems, where Cl concentrations rise to nearly 8000 mg/l and the groundwater is mostly brackish NaCl water. Investigation of the Cl/Br ratios has shown that the source of the salinity in the deep aquifer is mixing with old connate seawater and that the saline waters in the more shallow aquifers do not originate from old connate water or direct seawater intrusion, but are derived from the dissolution of evaporite salts. These must have been formed in a tidal flat under influence of a strong seasonal precipitation pattern. Long dry seasons with high evaporation rates have evaporated seawater from inundated gullies and depressions, leading to salt precipitation, while subsequent heavy monsoon rains have dissolved the formed salts, and the solution has infiltrated in the subsoil, recharging groundwater.  相似文献   

14.
Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30–50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Electronic Publication  相似文献   

15.
Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency’s maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however.  相似文献   

16.
A heterogeneous anisotropic steady-state groundwater flow model for the multi-aquifer system of a part of southern Bengal Basin shows that human intervention has changed the natural groundwater flow system. At present, the shallow groundwater flow is restricted within the aquifer, with very short travel time of tens of years and vertical path length. The deep aquifer is fed by surface water or rainwater from distant locations with travel time of thousands of years and has no hydraulic connection with the arsenic-rich shallow aquifer. Numerical simulations indicate that the future pumping of deep groundwater is not likely to drive in arsenic from the shallow aquifer. Therefore, new wells may be installed in the deep aquifer. High pumping of shallow unpolluted aquifer consisting of brown sand will drive in groundwater containing organic matter from the post-Last Glacial Maximum aquifer-aquitard system. The organic matter drives reduction of manganese oxides at strip interfaces between palaeo-channel and palaeo-interfluve. After the completion of manganese reduction, FeOOH reduction may take place in the marginal palaeo-interfluvial aquifer and release sorbed arsenic. Arsenic then moves into the interior of palaeo-interfluvial aquifer polluting its fresh groundwater. Arsenic migration rates ranges between 0.21 and 6.3 and 1.3 × 10?2 and 0.4 m/year in horizontal and vertical directions, respectively. Therefore, palaeo-interfluvial aquifer will remain arsenic-free for hundreds to thousands of years to supply safe drinking water.  相似文献   

17.
Arsenic occurrence in groundwater near the Cimino-Vico volcanoes (central Italy) was analysed considering the hydrostratigraphy and structural setting and the shallow and deep flows interacting within the Quaternary volcanics. Groundwater is the local source of drinking water. As documented in the past, arsenic in the groundwater has become a problem, and the European maximum allowable contaminant level was recently lowered to 10 μg/L. Chemical analyses of groundwater were conducted, sampled over an area of about 900 km2, from 65 wells and springs representative of the volcanic aquifer and thermal waters. Considering the type of aquifer, the nature of the aquifer formation and its substratum, the hydrochemical data highlight that the arsenic content of the groundwater is mainly connected with the hydrothermal processes in the volcanic area. Thermal waters (54–60°C) fed from deep-rising fluids show higher arsenic concentrations (176–371 μg/L). Cold waters sampled from the volcanic aquifer are characterized by a wide variability in their arsenic concentration (1.6–195 μg/L), and about 62% exceed the limit of 10 μg/L. Where the shallow volcanic aquifer is open to deep-rising thermal fluids, relatively high arsenic concentrations (20–100 μg/L) are found. This occurs close to areas of the more recent volcano-tectonic structures.  相似文献   

18.
A significant component of domestic demand for water of urban areas located in the Gangetic plains is met by heavy pumping of groundwater. The present study is focused on the Patna municipal area, inhabited by 17 million people and spanning over 134 km2, where entire urban water demand is catered from pumping by wells of various capacities and designs. The present study examines the nature of the aquifer system within the urban area, the temporal changes in the water/piezometric level and the recharge mechanism of the deeper aquifers. The aquifer system is made up of medium-to-coarse unconsolidated sand, lying under a ~40-m-thick predominantly argillaceous unit holding 8- to 13-m-thick localised sand layers and continues up to 220 m below ground. Groundwater occurs under semi-confined condition, with transmissivity of aquifers in 5,500–9,200 m2 day?1 range. Hydraulic head of the deeper aquifer remains in 9–19 m range below ground, in contrast to 1–9 m range of that of the upper aquitard zone. The estimated annual groundwater extraction from the deeper aquifer is ~212.0 million m3, which has created a decline of 3.9 m in the piezometric level of the deeper aquifer during the past 30 years. Unregulated construction of deep tube wells with mushrooming of apartment culture may further exacerbate the problem. The sand layers within the aquitard zone are experiencing an annual extraction of 14.5 million m3 and have exhibited stable water level trend for past one and half decades. This unit is recharged from monsoon rainfall, besides contribution from water supply pipe line leakage and seepage from unlined storm water drains.  相似文献   

19.
At the Midway, Utah, USA fish hatchery, a groundwater development program was conducted to help transition the facility from surface to groundwater in response to contamination by whirling disease, which is caused by a trout parasite. The unconfined aquifer system that provided the hatchery water became infected through the recharge of infected irrigation water obtained from the Provo River. Whirling disease was first discovered in Utah in 1991 at a private fish farm. Infected fish from the farm quickly infected many of Utah’s waterways and infected the hatchery in 2000. Because the parasite completes its life cycle in multiple organisms and can survive for decades in a variety of harsh environments, a comprehensive study of the hydrostratigraphy and hydrodynamics at the hatchery was critical in order to understand the hazard and avoid further contamination. Drilling revealed the presence of a shallow unconfined (surface to 10 m) and two deeper confined aquifer systems (~20–35 m and >40 m bgs). Confinement is related to tufa layers, detected both by drilling and reflection seismology. The tufa layers are associated with past discharge of the thermal system. Vertical leakage is apparent from upward hydraulic head gradients and incrementally increasing unconfined aquifer discharge into downstream on-site drainage canals. High-resolution seismic profiles reveal small-offset faults that provide pathways for upward flow. Analysis of water quality data demonstrates an inverted geochemical gradient in that apparent 14C ages, solute concentrations, and temperatures decrease with depth. The origin of the inverted geochemical gradient is related to mixing of upwelling thermal, high-TDS waters with cold, low-TDS systems several kilometers up-gradient from the hatchery. Thermal upwelling appears to be fault controlled. Up-gradient of the hatchery, near-surface groundwater mixes with a larger proportion of thermal groundwater than does deeper groundwater. As these mixed systems flow toward the hatchery, a major locus of groundwater discharge, they are segregated into confined and unconfined compartments. Our study requires integration of hydrological, geochemical, and geophysical strategies in order to understand a complex natural hazard and thus may serve as a model for other similarly complex hydrological environments.  相似文献   

20.
Hydrochemical and isotope data in conjunction with hydraulic head and spring discharge observations were used to characterize the regional groundwater flow dynamics and the role of the tectonic setting in the Gidabo River Basin, Ethiopian Rift. Both groundwater levels and hydrochemical and isotopic data indicate groundwater flow from the major recharge area in the highland and escarpment into deep rift floor aquifers, suggesting a deep regional flow system can be distinguished from the shallow local aquifers. The δ18O and δ2H values of deep thermal (≥30 °C) groundwater are depleted relative to the shallow (<60 m below ground level) groundwater in the rift floor. Based on the δ18O values, the thermal groundwater is found to be recharged in the highland around 2,600 m a.s.l. and on average mixed with a proportion of 30 % shallow groundwater. While most groundwater samples display diluted solutions, δ13C data of dissolved inorganic carbon reveal that locally the thermal groundwater near fault zones is loaded with mantle CO2, which enhances silicate weathering and leads to anomalously high total dissolved solids (2,000–2,320 mg/l) and fluoride concentrations (6–15 mg/l) exceeding the recommended guideline value. The faults are generally found to act as complex conduit leaky barrier systems favoring vertical mixing processes. Normal faults dipping to the west appear to facilitate movement of groundwater into deeper aquifers and towards the rift floor, whereas those dipping to the east tend to act as leaky barriers perpendicular to the fault but enable preferential flow parallel to the fault plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号