首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas responsible for the calcite-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex (eastern Sayan, Russia). Primary melt and coexisting crystalline inclusions were found in the nepheline and calcite of these rocks. Diopside, amphibole (?), perovskite, potassium feldspar, apatite, calcite, pyrrhotite, and titanomagnetite were identified among the crystalline inclusions. The melt inclusions in nepheline from the ijolites are completely crystallized. The crystalline daughter phases of these inclusions are diopside, phlogopite, apatite, calcite, magnetite, and cuspidine. During thermometric experiments with melt inclusions in nepheline, the complete homogenization of the inclusions was attained through the dissolution of a gas bubble at temperatures of 1120–1130°C. The chemical analysis of glasses from the homogenized melt inclusions in nepheline of the ijolites revealed significant variations in the content of components: from 36 to 48 wt % SiO2, from 9 to 21 wt % Al2O3, from 8 to 25 wt % CaO, and from 0.6 to 7 wt % MgO. All the melts show very high contents of alkalis, especially sodium. According to the results of ion microprobe analysis, the average content of water in the melts is no higher than a few tenths of a percent. The most salient feature of the melt inclusions is the extremely high content of Nb and Zr. The glasses of melt inclusions are also enriched in Ta, Th, and light rare earth elements but depleted in Ti and Hf. Primary melt inclusions in calcite from the carbonatites contain a colorless glass and daughter phlogopite, garnet, and diopside. The silicate glass from the melt inclusions in calcite of the carbonatite is chemically similar to the glasses of homogenized melt inclusions in nepheline from the ijolites. An important feature of melt inclusions in calcite of the carbonatites is the presence in the glass of carbonate globules corresponding to calcite in composition. The investigation of melt inclusions in minerals of the ijolites and carbonatites and the analysis of the alkaline and ore-bearing rocks of the Belaya Zima Massif provided evidence for the contribution of crystallization differentiation and silicate-carbonate liquid immiscibility to the formation of these rocks. Using the obtained trace-element compositions of glasses of homogenized melt inclusions and various alkaline rocks and carbonatites, we determined to a first approximation the compositions of mantle sources responsible for the formation of the rock association of the Belaya Zima alkaline-carbonatite complex. The alkaline rocks and carbonatites were derived from the depleted mantle affected by extensive metasomatism. It is supposed that carbonate melts enriched in sodium and calcium were the main agents of mantle metasomatism.  相似文献   

2.
In this paper we describe the mineralogy and geochemistry of basanites and melt inclusions in minerals from the Tergesh pipe, northern Minusinsk Depression. The rocks are composed of olivine and clinopyroxene phenocrysts and a groundmass of olivine, clinopyroxene, titanomagnetite, plagioclase, apatite, ilmenite, and glass. Melt inclusions were found only in the olivine and clinopyroxene phenocrysts. Primary melt inclusions in olivine contain glass, rh?nite, clinopyroxene, a sulfide globule, and low-density fluid. The phase composition of melt inclusions in clinopyroxene is glass + low-density fluid ± xenogenous magnetite. According to thermometric investigations, the olivine phenocrysts began crystallizing at T = 1280–1320°C and P > 3.5 kbar, whereas groundmass minerals were formed under near-surface conditions at T ≤ 1200°C. The oxygen fugacity gradually changed during basanite crystallization from oxidizing (NNO) to more reducing conditions (QFM). The investigation of glass compositions (heated and unheated inclusions in phenocrysts and groundmass) showed that the evolution of a basanite melt during its crystallization included mainly an increase in SiO2, Al2O3, and alkalis, while a decrease in femic components, and the melt composition moved gradually toward tephriphonolite and trachyandesite. Geochemical evidence suggests that the primary basanite melt was derived from a mantle source affected by differentiation. Original Russian Text ? T.Yu. Timina, V.V. Sharygin, A.V. Golovin, 2006, published in Geokhimiya, 2006, No. 8, pp. 814–833.  相似文献   

3.
One-atmosphere, melting experiments, controlled at the fayalite-magnetite-quartz oxygen buffer, on mildly alkalic and transitional basalts from Iceland show that these begin to crystallize Fe-Ti oxide minerals (magnetite and/or ilmenite) at 1105±5°C, apparently independently of bulk composition and the order of silicate and oxide mineral crystallization. Most samples crystalline plagioclase and olivine as the first two crystalline phases, augite as the third phase, and an Fe-Ti oxide mineral as the fourth phase. The main effects of Fe-Ti oxide crystallization are a marked decrease in FeO and TiO2 in the liquid, and a notable increase in SiO2 and Al2O3, and the minor oxides K2O and P2O5, with decreasing temperature. The most silicic glasses are compositionally mugearitic and shoshonitic basaltic andesites. Because the smallest amount of glass that could be analyzed with the microprobe represents 20–55 percent liquid remaining, it can be expected that more silicic liquids will occur at lower temperatures. On normative, pseudoternary projections, the general effect of Fe-Ti oxide crystallization for mildly alkalic and transitional basalts is a marked increase in normative quartz. This is caused by a strong systematic convergence, with the appearance of Fe-Ti oxides, of the bulk solid precipitates toward the liquid compositions, as projected on the triangle plagioclase-diopside-olivine. For alkalic basalts, the bulk solid precipitate shows an increase in normative diopside with falling temperature and Fe-Ti oxide crystallization. This causes the liquids to move toward decreasing normative diopside and relatively little variation in nepheline. The experimental observations imply that mildly alkalic and transitional magmas, without stabilizing a Fe-Ti oxide mineral, will not evolve toward early silica saturation.  相似文献   

4.
The paper presents data on inclusions in minerals of the least modified potassic lamprophyres in a series of strongly carbonatized potassic alkaline ultramafic porphyritic rocks. The rocks consist of diopside, kaersutite, analcime, apatite, and rare phlogopite and titanite phenocrysts and a groundmass, which is made up, along with these minerals, of potassic feldspar and calcite. The diopside and kaersutite phenocrysts display unsystematic multiple zoning. Chemically and mineralogically, the rock is ultramafic foidite and most likely corresponds to monchiquite. Primary and secondary melt inclusions were found in diopside, kaersutite, apatite, and titanite phenocrysts and are classified into three types: sodic silicate inclusions with analcime, potassic silicate inclusions with potassic feldspar, and carbonate inclusions, which are dominated by calcite. Heating and homogenization of the inclusions show that the potassic lamprophyres crystallized from a heterogeneous magma, with consisted of mixing mafic sodic and potassic alkaline magmas enriched in a carbonatite component. The composition of the magmas was close to nepheline and leucite melanephelinite. The minerals crystallized at 1150–1090°C from the sodic melts and at 1200–1250°C from the potassic ones. The sodic mafic melts were richer in Fe than the potassic ones, were the richest in Al, Mn, SO3, Cl, and H2O and poorer in Ti and P. The potassic mafic melts were not lamproitic, as follows from the presence of albite in the crystallized primary potassic melt inclusions. The diopside, the first mineral to crystallize in the rock, started to crystallize in the magmatic chamber from sodic mafic melt and ended to crystallize from mixed sodic–potassic melts. The potassic mafic melts were multiply replenished in the chamber in relation to tectonic motions. The ascent of the melts to the surface and rapidly varying P–T parameters of the magma were favorable for multiple separations of carbonatite melts from the alkaline mafic ones and their mixing and mingling.  相似文献   

5.
The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.  相似文献   

6.
The paper presents data on primary carbonate–silicate melt inclusions hosted in diopside phenocrysts from kalsilite melilitite of Cupaello volcano in Central Italy. The melt inclusions are partly crystalline and contain kalsilite, phlogopite, pectolite, combeite, calcite, Ba–Sr carbonate, baryte, halite, apatite, residual glass, and a gas phase. Daughter pectolite and combeite identified in the inclusions are the first finds of these minerals in kamafugite rocks from central Italy. Our detailed data on the melt inclusions in minerals indicate that the diopside phenocrysts crystallized at 1170–1190°C from a homogeneous melilitite magma enriched in volatile components (CO2, 0.5–0.6 wt % H2O, and 0.1–0.2 wt % F). In the process of crystallization at the small variation in P-T parameters two-phase silicate-carbonate liquid immiscibility occurred at lower temperatures (below 1080–1150°C), when spatially separated melilitite silicate and Sr-Ba-rich alkalicarbonate melts already existed. The silicate–carbonate immiscibility was definitely responsible for the formation of the carbonatite tuff at the volcano. The melilitite melt was rich in incompatible elements, first of all, LILE and LREE. This specific enrichment of the melt in these elements and the previously established high isotopic ratios are common to all Italian kamafugites and seem to be related to the specific ITEM mantle source, which underwent metasomatism and enrichment in incompatible elements.  相似文献   

7.
Feldspar phenocrysts, microphenocrysts, groundmass feldspar, interstitial material of feldspar composition, and residual SiO2-K2O-rich glass in 24 rocks of the tholeiitic, alkalic, and nephelinic suites from Haleakala and West Maui volcanoes, Maui, Hawaii, were analyzed quantitatively with the electron microprobe. Rocks studied include tholeiite, olivine tholeiite, oceanite, alkalic olivine basalt, alkalic basalt, hawaiite, mugearite, trachyte, basanite, and basanitoid. Results and conclusions: i) In all rocks studied, An decreases and Or increases from phenocrysts to microphenocrysts to groundmass feldspar to interstitial material of feldspar composition. ii) Phenocrysts occur in rocks of the tholeiitic and alkalic suites and, in spite of differences in bulk rock compositions, overlap in composition. iii) Groundmass feldspar in rocks of the tholeiitic suite are nearly identical in composition; the same is true for rocks of the nephelinic suite. However, in the highly differentiated alkalic suite, groundmass feldspar composition ranges from labradorite to sanidine; i.e. the higher the bulk rock CaO, the higher is the An content, and the higher the bulk K2O, the higher is the Or content. iv) In general, rocks with phenocrysts have groundmass feldspar less An-rich than those without phenocrysts. v) In rocks of the tholeiitic suite, normative feldspar approaches modal feldspar. However, in rocks of the alkalic and nephelinic suites, normative feldspar, because of the presence of highly alkalic interstitial material and the absence of nepheline in the mode but its presence in the norm, is drastically different from modal feldspar. vi) Hawaiites contain labradorite and not andesine, as per definition, and mugearite contains andesine and not oligoclase, as groundmass feldspar. In fact, when considering phenocrysts and interstitial material of feldspar composition, hawaiites range from bytownite to sanidine and mugearite from andesine to sodic sanidine, but normative feldspar plots in the andesine field for hawaiites and the oligoclase field for mugearite. vii) Rocks of the three suites can be distinguished on the basis of Or and An in groundmass feldspar, the presence of thin rims of groundmass composition of phenocrysts of rocks of the alkalic suite, and the presence of interstitial material of anorthoclase to sanidine composition in rocks of the alkalic and nephelinic suites. iix) Rocks transitional between the tholeiitic and alkalic suites are observed and are characterized by transitional mineral compositions.This paper was first presented as a talk before the 68. Annual Meeting of the Cordilleran Section of the Geological Society of America, Honolulu, Hawaii, March 29–April 1, 1972.  相似文献   

8.
The Oroscocha Quaternary volcano, in the Inner Arc Domain of the Andean Cordillera (southern Peru), emitted peraluminous rhyolites and trachydacites that entrained decimetric to millimetric lamprophyric blobs. These latter show kersantite modal compositions (equal proportion of groundmass plagioclase and K-feldspar) and potassic bulk-rock compositions (1<K2O/Na2O<2; 6.7–7.2 wt.% CaO). Kersantite blobs have shapes and microstructures consistent with an origin from a mixing process between mafic potassic melts and rhyolitic melts. Both melts did exchange their phenocrysts during the mixing process. In addition to index minerals of lamprophyres (Ba–Ti–phlogopite, F-rich apatite, andesine and Ca-rich sanidine), the groundmass of kersantite blobs displays essenite-rich diopside (up to 22 mol%), Ti-poor magnetite microlites, Ti-poor hematite microlites and a series of Ca–Ti–Zr- and REE-rich accessory minerals that have never been reported from lamprophyres. Titanite [up to 5.3 wt.% ZrO2 and 5.2 wt.% (Y2O3 + REE2O3)] and Zr- and Ca-rich perrierite (up to 7.2 wt.% ZrO2 and 10.8 wt.% CaO) predate LREE- and iron-rich zirconolite and Fe-, Ti-, Hf-, Nb- and Ce-rich baddeleyite (up to 5.3 wt.% Fe2O3, 3.2 wt.% TiO2, 1.5 wt.% HfO2, 1.2 wt.% Nb2O5, 0.25 wt.% CeO2) in the crystallization order of the groundmass. Isomorphic substitutions suggest iron to occur as Fe3+ in all the accessory phases. This feature, the essenitic substitution in the clinopyroxene and the occurrence of hematite microlites, all indicate a drastic increase of the oxygen fugacity (from FMQ − 1 to FMQ + 5 log units) well above the HM synthetic buffer within a narrow temperature range (1100–1000 °C). Such a late-magmatic oxidation is ascribed to assimilation of water from the felsic melts during magma mixing, followed by rapid degassing and water dissociation during eruption of host felsic lavas. Thus, magma mixing involving felsic melt end-members provides a mechanism for mafic potassic melts to be oxidized beyond the HM synthetic buffer curve.  相似文献   

9.
The composition of S-rich apatite, of volatile-rich glass inclusions in apatite, and of interstitial glasses in alkaline xenoliths from the 1949 basanite eruption in La Palma has been investigated to constrain the partitioning of volatiles between apatite and alkali-rich melts. The xenoliths are interpreted as cumulates from alkaline La Palma magmas. Apatite contains up to 0.89 wt% SO3 (3560 ppm S), 0.31 wt% Cl, and 0.66 wt% Ce2O3. Sulfur is incorporated in apatite via several independent exchange reactions involving (P5+, Ca2+) vs. (S6+, Si4+, Na+, and Ce3+). The concentration of halogens in phonolitic to trachytic glasses ranges from 0.15 to 0.44 wt% for Cl and from <0.07 to 0.65 wt% for F. The sulfur concentration in the glasses ranges from 0.06 to 0.23 wt% SO3 (sulfate-saturated systems). The chlorine partition coefficients (DClapatite/glass) range from 0.4 to 1.3 (average DClapatite/glass = 0.8), in good agreement with the results of experimental data in mafic and rhyolitic system with low Cl concentrations. With increasing F in glass inclusions DFapatite/glass decreases from 35 to 3. However, most of our data display a high partition coefficient (~30) close to DFapatite/glass determined experimentally in felsic rock. DSapatite/glass decreases from 9.1 to 2.9 with increasing SO3 in glass inclusions. The combination of natural and experimental data reveals that the S partition coefficient tends toward a value of 2 for high S content in the glass (>0.2 wt% SO3). DSapatite/glass is only slightly dependent on the melt composition and can be expressed as: SO3 apatite (wt%) = 0.157 * ln SO3 glass (wt%) + 0.9834. The phonolitic compositions of glass inclusions in amphibole and haüyne are very similar to evolved melts erupted on La Palma. The lower sulfur content and the higher Cl content in the phonolitic melt compared to basaltic magmas erupted in La Palma suggest that during magma evolution the crystallization of haüyne and pyrrhotite probably buffered the sulfur content of the melt, whereas the evolution of Cl concentration reflects an incompatible behavior. Trachytic compositions similar to those of the (water-rich) glass inclusions analyzed in apatite and clinopyroxene are not found as erupted products. These compositions are interpreted to be formed by the reaction between water-rich phonolitic melt and peridotite wall-rock.  相似文献   

10.
Experimental study of natural alkalic lava compositions at low pressures (pO2QFM) reveals that crystallization of primitive lavas often occurs in the sequence olivine, plagioclase, clinopyroxene, nepheline without obvious reaction relation. Pseudoternary liquidus projections of multiply saturated liquids coexisting with plagioclase (±olivine±clinopyroxene±nepheline) have been prepared to facilitate graphical analysis of the evolution of lava compositions during hypabyssal cooling. Use of (TiAl2)(MgSi2)–1 and Fe3+ (Al)–1 exchange components is a key aspect of the projection procedure which is succesful in reducing a wide range of compositions to a systematic graphical representation. These projections, and the experiments on which they are based, show that low pressure fractionation plays a significant role in the petrogenesis of many alkalic lava suites from both continental and oceanic settings. However, the role of polybaric fractionation is more evident in the major element chemistry of these lava suites than in many tholeiitic suites of comparable extent. For example, the lavas of Karisimbi, East Africa, show a range of compositions reflecting a polybaric petrogenesis from primitive picrites at 1360° C/18 kb and leading to advanced low pressure differentiates. Evolved leucite-bearing potassic members of this and other suites may be treated in a nepheline-diopside-kspar (+olivine+leucite) projection. Compositional curvature on the plagioclase+clinopyroxene+olivine+leucite cotectic offers a mechanism to explain resorption of plagioclase in alkalic groundmass assemblages and the incompatibility of albite and leucite. This projection is useful for evaluating the extent of assimilation of the alkalic portions of crustal granulites. Assimilation appears to have played some role in the advanced differentiates from Karisimbi.  相似文献   

11.
Because orthopyroxenes do not occur in nephelinites, the widely used methods of calculating f(O2) based on the olivine + orthopyroxene + spinel paragenesis are not applicable in this case. The authors present new methods of calculation, three of which are based on published data detailing exchange reactions between two pyroxenes and the melt. The activities of MgSiO2 and FeSiO2 are calculated from the composition of the groundmass of effusives in equilibrium with clinopyroxenes, making it possible (considering the activities of olivine and titanomagnetite components of the rocks) to normalize f(O2) with regard to the quartz-fayalite-magnetite (QFM) buffer. In another version, the activities of enstatite are calculated considering the calcium content in rock olivines, using experimental data on the equilibrium of olivine with the two pyroxenes on which the well-known olivine geobarometer is based (Koehler and Brey, 1990). Still another method involves calculation of aFe.0 using the composition of the groundmass of nephelinites on the basis of equilibria of silicate melts with metallic iron (Ariskin et al., 1992), which then, in conjunction with magnetite, yields f (O2).

The five methods of estimating f (O2) by use of different sets of experimental data and thermodynamic constants for various solid phases yield a maximum spread that does not exceed 0.8 logarithmic units. The average value of log10 f(O2) for phenocryst and microphenocryst associations of nephelinites, obtained using all five methods, ranged from +1.6 to +1.8 above the level of the QFM buffer. These estimates support the conclusion that the mantle is in a relatively oxidized state in regions of intra-plate oceanic islands (Amundsen and Neumann, 1992). Coexisting microlites of titanomagnetite and ilmenite from the nephelinite groundmass point to an appreciably lower relative f(O2) (below the QFM), which evidently is explained by a drop in the redox potential under the conditions of a relatively closed system, with intensive deposition of titanomagnetite.

The phenocryst associations of phonolites yield f(O2) values normalized with respect to the QFM buffer that are close to analogous values for the phenocrysts and microphenocrysts of nephelinites (on average, 1.5 logarithmic units above the QFM on the basis of constants of the reaction between the components of titanomagnetite, clinopyroxene, nepheline, K-feldspar, and sphene). In all probability, differentiation in the magma chamber that led to the appearance of phonolite magmas in late stages occurred in a system that was open (with regard to oxygen). In this case, more intensive removal of magnetite resulted in silica activities in the residual magmas that were higher than in a closed system (phenocrysts of sphene are present in phonolites, but perovskite is observed in some cases in the groundmass of nephelinites, with sphene being absent).  相似文献   

12.
Three different types of carbonatite magma may be recognized in the Cambrian Fen complex, S.E. Norway: (1) Peralkaline calcite carbonatite magma derived from ijolitic magma; (2) Alkaline magnesian calcite carbonatite magma which yielded biotite-amphibole søvite and dolomite carbonatite; and (3) ferrocarbonatite liquids, related to (2) and/or to alkaline lamprophyre magma (damjernite). Apatite formed during the pre-emplacement evolution of (2) contains inclusions of calcite and dolomite, devitrified mafic silicate glass and aqueous fluid. All of these inclusions have a magmatic origin, and were trapped during a mid-crustal fractionation event (P4 kbars, T625° C), where apatite and carbonates precipitated from a carbonatite magma which coexisted with a mafic silicate melt. The fluid inclusions contain water, dissolved ionic species (mainly NaCl, with minor polyvalent metal salts) and in some cases CO2. Two main groups of fluid inclusions are recognized: Type A: CO2-bearing inclusions, of approximate molar composition H2O 88–90 CO 27-5 NaCl 5 (d=0.85–0.87 g/ cm3). Type B: CO2-free aqueous inclusions with salinities from 1 to 24 wt% NaCleq and densities betwen 0.7 and 1.0 g/cm3. More strongly saline type B inclusions (salinity ca. 35wt%, d=1.0 to 1.1 g/cm3) contain solid halite at room temperature and occur in overgrowths on apatite. Type A inclusions probably contain the most primitive fluid, from which type B fluids have evolved during fractionation of the magmatic system. Type B inclusions define a continuous trend from low towards higher salinities and densities and formed as a result of cooling and partitioning of alkali chloride components in the carbonatite system into the fluid phase. Available petrological data on the carbonatites show that the fluid evolution in the Fen complex leads from a regime dominated by juvenile CO2 + H2O fluids during the magmatic stage, to groundwater-derived aqueous fluids during post-magmatic reequilibration.  相似文献   

13.
The effect of sulfur on phosphorus solubility in rhyolitic melt and the sulfur distribution between apatite, ±anhydrite, melt and fluid have been determined at 200 MPa and 800–1,100 °C via apatite crystallization and dissolution experiments. The presence of a small amount of sulfur in the system (0.5 wt.% S) under oxidizing conditions increases the solubility of phosphorus in the melt, probably due to changing calcium activity in the melt as a result of the formation of Ca-S complexing cations. Apatite solubility geothermometers tend to overestimate temperature in Ca-poor, S-bearing system at oxidizing conditions. In crystallization experiments, the sulfur content in apatite decreases with decreasing temperature and also with decreasing sulfur content of the melt. The sulfur partition coefficient between apatite and rhyolitic melt increases with decreasing temperature (KdSapatite/melt=4.5–14.2 at T=1,100–900 °C) under sulfur-undersaturated conditions (no anhydrite). The sulfur partition coefficient is lower in anhydrite-saturated melt (~8 at 800 °C) than in anhydrite-undersaturated melt, suggesting that KdSapatite/melt depends not only on the temperature but also on the sulfur content of the melt. These first results indicate that the sulfur content in apatite can be used to track the evolution of sulfur content in a magmatic system at oxidizing conditions.Editorial responsibility: J. Hoefs  相似文献   

14.
The Hongge magmatic Fe-Ti-V oxide deposit in the Panxi region, SW China, is hosted in a layered mafic–ultramafic intrusion. This 2.7-km-thick, lopolith-like intrusion consists of the lower, middle, and upper zones, which are composed of olivine clinopyroxenite, clinopyroxenite, and gabbro, respectively. Abundant Fe-Ti oxide layers mainly occur in the middle zone and the lower part of the upper zone. Fe-Ti oxides include Cr-rich and Cr-poor titanomagnetite and granular ilmenite. Cr-rich titanomagnetite is commonly disseminated in the olivine clinopyroxenite of the lower parts of the lower and middle zones and contains 1.89 to 14.9 wt% Cr2O3 and 3.20 to 16.2 wt% TiO2, whereas Cr-poor titanomagnetite typically occurs as net-textured and massive ores in the upper middle and upper zones and contains much lower Cr2O3 (<0.4 wt%) but more variable TiO2 (0.11 to 18.2 wt%). Disseminated Cr-rich titanomagnetite in the ultramafic rocks is commonly enclosed in either olivine or clinopyroxene, whereas Cr-poor titanomangetite of the net-textured and massive ores is mainly interstitial to clinopyroxene and plagioclase. The lithology of the Hongge intrusion is consistent with multiple injections of magmas, the lower zone being derived from a single pulse of less differentiated ferrobasaltic magma and the middle and upper zones from multiple pulses of more differentiated magmas. Cr-rich titanomagnetite in the disseminated ores of the lower and middle zones is interpreted to represent an early crystallization phase whereas clusters of Cr-poor titanomagnetite, granular ilmenite, and apatite in the net-textured ores of the middle and upper zones are thought to have formed from an Fe-Ti-(P)-rich melt segregated from a differentiated ferrobasaltic magma as a result of liquid immiscibility. The dense Fe-Ti-(P)-rich melt percolated downward through the underlying silicate crystal mush to form net-textured and massive Fe-Ti oxide ores, whereas the coexisting Si-rich melt formed the overlying plagioclase-rich rocks in the intrusion.  相似文献   

15.
We studied the chemical composition of rock-forming minerals in gabbroids from the Chirii outcrop and the evolutionary features of parental basic melt during the crystallization of these rocks. Results were compared with data for basanites from pipes of the North Minusa depression. The mineralogical composition and thermobarogeochemical data of the gabbroids were examined in detail, and chemical analyses of rock-forming minerals (clinopyroxene, plagioclase, amphibole, biotite, titanomagnetite, and apatite) were carried out. Based on the homogenization temperatures of primary melt inclusions, we established the minimum temperatures and sequence of mineral crystallization in the gabbroids: clinopyroxene (>1160 °C), plagioclase, magnetite → amphibole (>950 °C) → biotite. The rock crystallization proceeded at shallow depths. Thermometric data are confirmed by results of modeling of equilibrium gabbroid crystallization. The crystallization of parental basic melt was accompanied by the accumulation of SiO2, Al2O3, alkalies, and Cl and depletion in femic components. The melt evolved to granodiorite and alkali-syenite compositions. Compared with basanites from pipes, the parental melt had a longer evolution. The geochemical features of the gabbroids indicate that they, like basanites, crystallized from intraplate alkali-basaltoid magmas. But in petrochemistry and mineralogy the Chirii gabbroids differ considerably from the pipe basanites.  相似文献   

16.
The nature of the petrogenetic links between carbonatites and associated silicate rocks is still under discussion (i.e., [Gittins J., Harmer R.E., 2003. Myth and reality of the carbonatite–silicate rock “association”. Period di Mineral. 72, 19–26.]). In the Paleozoic Kola alkaline province (NW Russia), the carbonatites are spatially and temporally associated to ultramafic cumulates (clinopyroxenite, wehrlite and dunite) and alkaline silicate rocks of the ijolite–melteigite series [(Kogarko, 1987), (Kogarko et al., 1995), (Verhulst et al., 2000), (Dunworth and Bell, 2001) and (Woolley, 2003)]. In the small (≈ 20 km2) Vuoriyarvi massif, apatite is typically a liquidus phase during the magmatic evolution and so it can be used to test genetic relationships. Trace elements contents have been obtained for both whole rocks and apatite (by LA-ICP-MS). The apatites define a single continuous chemical evolution marked by an increase in REE and Na (belovite-type of substitution, i.e., 2Ca2+ = Na+ + REE3+). This evolution possibly reflects a fractional crystallisation process of a single batch of isotopically homogeneous, mantle-derived magma.The distribution of REE between apatite and their host carbonatite have been estimated from the apatite composition of a carbonatite vein, belonging to the Neskevara conical-ring-like vein system. This carbonatite vein is tentatively interpreted as a melt. So, the calculated distribution coefficients are close to partition coefficients. Rare earth elements are compatible in apatite (D > 1) with a higher compatibility for the middle REE (DSm : 6.1) than for the light (DLa : 4.1) and the heavy (DYb : 1) REE.  相似文献   

17.
Ti-andradite (melanite) has been found in a metapyroxenite layer in the upper part of the Malenco ultramafics(Italy), coexisting with clinochlore, diopside and magnetite. Field observations, as well as major and trace elementbulk-rock composition, strongly suggest a cumulate origin for the layer. Textural relationships indicate thatTi-andradite formed during two different metamorphic stages. Under peak metamorphic conditions (400–450°C, 5±2 kbar)Ti-andradite grew in an assemblage of diopside, clinochlore, magnetite and rare ilmenite and perovskite. Later, retrograde brittle deformationinduced formation of veins containing the paragenesis Ti-andradite, vesuvianite, diopside, chlinochlore, magnetite and accessory perovskite.The Ti-andradite varies considerably in TiO2 (0.11–9.62 wt%), Fe2O3(14.3–30.5 wt%), Al2O3 (0.65–3.90 wt%), Cr2O3(>0.18–0.98 wt%) and SiO2 (32.1–36.1 wt%); this is mostly, but not entirely, due to distinct zoning.Ti-andradite contains 0.32 to 0.66 wt% H2O as determined by infrared spectroscopy and 0.83 to 1.76 wt% FeO. The CaO shows almost no variation (34.1±0.7 wt%) and Ca completely fills the dodecahedral site. Single crystal site refinements indicate that no tetrahedral Ti or Fe replaces Si. Titanium incorporation is attributed to similar degrees of substitution along the exchange vectors Ti3+ Fe3+, Ti4+ AlIV Al -1 VI Si-1 and (Fe2+, Mn2+, Mg2+)Ti4+ 2Fe -1 3+ . The presence of mixed valence states of both Fe and Ti suggests a low oxygen fugacity during crystallization of Ti-andradite. Mass balance calculations indicate an isochemical origin of the first generation of Ti-andradite in the clinopyroxenite layer. Its occurrence is restricted to antigorite-free mineral assemblages containing clinochlore of 0.95X Al>1.1. The hydrothermal crystallization of Ti-rich andradite in veins demonstrates Ti mobility in aqueous fluids under moderate P-T conditions. The zonation patterns indicate disequilibrium conditions during vein crystallization. As no fluorine-, carbonate- and phosphate-bearing minerals were found, OH- is most probably the ligand complexing Ti.  相似文献   

18.
The basic and ultrabasic alkaline rocks of western Makhtesh Ramon, Israel crop out in numerous lava flows and subvolcanic bodies. The rock suite is composed of tephrite, basanite, basanitic nephelinite, analcimite, olivine nephelinite, and melilite-olivine nephelinite and in many outcrops is represented by glass-bearing varieties. Melt and fluid inclusions have been studied in olivine, clinopyroxene, and plagioclase phenocrysts. The EP, SIMS and microthermometry methods were used for inclusion study. The geochemical data obtained on glasses of melt inclusions (major, REE, trace elements, volatiles) are compared with the data on whole-rock and groundmass glass compositions. The compositions of melt inclusions reflect the different stages of rock crystallization: the initial products of crystallization are similar to whole-rock compositions whereas final portions of melts are usually enriched in SiO2, Al2O3, and alkalis, and depleted in mafic components. The data on contemporaneous melt and CO2 inclusions were used for the evaluation of the PT conditions of rock generation. The following parameters were obtained: tephrite: P = 6.3–7.7 kbar and T = 1,150–1,250°C; basanite: P = 6.6–9.2 kbar and T = 1,150–1,250°C; olivine and analcime-olivine nephelinite: P = 5.6–8.2 kbar and T = 1,150–1,250°C; melilite-olivine nephelinite: 4.0–5.4 kbar and T mainly between 1,150 and 1,200°C. Magma genesis was restricted to PT conditions of spinel- and plagioclase-lherzolite fields. These data suggest the shallowest depth of magma genesis occurred in Makhtesh Ramon compared to other occurrences of Early Cretaceous magmatism at the Middle East. Differences in the degree of batch partial melting of the same source rocks best explain the diversity of the igneous suite in western Makhtesh Ramon.  相似文献   

19.
Perovskite and melilite crystals from melilitolites of the ultramafic alkaline Gardiner complex (East Greenland) contain crystallised melt inclusions derived from: (1) melilitite; (2) low-alkali carbonatite; (3) natrocarbonatite. The melilitite inclusion (1) homogenisation temperature of 1060 °C is similar to liquidus temperatures of experimentally investigated natural melilitites. The compositions are peralkaline, low in MgO (ca.␣5 wt%), Ni and Cr, and they are low-pressure fractionates of more magnesian larnite-normative ultramafic lamprophyre-type melts of primary mantle origin. Low-alkali carbonatite compositions (2) homogenise at 1060–1030 °C and are compositionally similar to immiscible calcite carbonatite dykes derived from the melilitolite magma. Natrocarbonatite inclusions (3) homogenise between 1030 and 900 °C and are compositionally similar to natrocarbonatite lava from Oldoinyo Lengai. Nephelinitic to phonolitic dykes which are related to the calcite carbonatite dykes, are very Zr-rich and agpaitic (molecular Na2O + K2O/Al2O3 > 1.2) and resemble nephelinites of Oldoinyo Lengai. The petrographic, geochemical and temporal relationships indicate unmixing of carbonatite compositions (ca. 10% alkalies) from evolving melilitite melt and continued fractionation of melilitite to nephelinite. It is suggested that the natrocarbonatite compositions represent degassed supercritical high temperature fluid formed in a cooling body of strongly larnite-normative nephelinite or evolved melilitite. The Gardiner complex and similar melilitolite and carbonatite-bearing ultramafic alkaline complexes are believed to represent subvolcanic complexes formed beneath volcanoes comparable to Oldoinyo Lengai and that the suggested origin of natrocarbonatite may be applied to natrocarbonatites of Oldoinyo Lengai. Received: 18 January 1996 / Accepted: 2 September 1996  相似文献   

20.
Basaltic andesites are the dominant Tongan magma type, and are characterized by phenocrysts of augite, orthopyroxene (or rarely pigeonite), and calcic plagioclase (modally most abundant phase, and interpreted as the liquidus phase). The plagioclase phenocrysts exhibit slight oscillatory reverse zoning except for abrupt and thin more sodic rims, which are interpreted to develop during eruptive quenching. These rim compositions overlap those of the groundmass plagioclase. The pyroxene phenocrysts also exhibit only slight compositional zoning except for the outermost rim zones; the compositions of these rims, together with the groundmass pyroxenes, vary throughout the compositional range of subcalcic augite to ferroaugite through pigeonite to ferropigeonite, and are interpreted in terms of quench-controlled crystallization. This is supported, for example, by the random distribution of Al solid solution in the groundmass pyroxenes, compared to the more regular behaviour of Al in the phenocryst pyroxenes. The analysed Niua Fo'ou olivine tholeiites are aphyric; groundmass phases are plagioclase (An17–88), olivine (Fa18–63), titanomagnetite (usp. 59–73), and augite-ferroaugite which does not extend to subcalcic compositions; this is interpreted to be due to higher quenching temperatures and lower viscosities of these tholeiites compared to the basaltic andesites.Application of various geothermometers to the basaltic andesites suggest initial eruptive quenching temperatures of 1,008–1,124 ° C, plagioclase liquidus temperatures (1 bar) of 1,210–1,277 ° C, and orthopyroxene-clinopyroxene equilibration of 990–1,150 ° C. These calculated temperatures, together with supporting evidence (e.g. absence of olivine and amphibole, liquidus plagioclase, and plagioclase zoning patterns) are interpreted in terms of phenocryst crystallization from magmas that were either strongly water undersaturated, nearly anhydrous, or at best, water saturated at very low pressures (< 0.5 kb). This interpretation implies that these Tongan basaltic andesites did not originate by any of the currently proposed mechanisms involving hydrous melting within or above the Benioff zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号