首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the thermo-mechanical properties beneath the young orogenic belt of Taiwan by constructing a shear strength profile from a vertical stratified rheological structure. The stratified rheological structure is estimated based on the recently developed thermal structure and its likely composition. Subduction–collision in the young orogenic belts and the thick accretionary wedge make a significant contribution to the growth of sialic crust in the hinterland. The sialic bulk crust not only results in a low seismic velocity but also produces weak crust in the hinterland. The earthquake depth–frequency distribution in the foreland and hinterland correlates very well with the regimes of the brittle/ductile transition revealed in the strength profile. Our results show that the observed two-layer seismicity in the foreland is due to a moderate geotherm and an intermediate mafic bulk composition; while single-layer seismicity in the hinterland is due to its felsic bulk composition. In the foreland, the mechanically strong crust (MSC) and the mechanically strong lithosphere (MSL) coincide with frequent seismicity. The shallow MSC in the hinterland is consistent with the 20- to 25-km seismicity occurring there. The total lithospheric integrated strength (LIS) in the hinterland is only about half of that in the foreland, suggesting a weak lower crust and lithosphere mantle in the hinterland. The results confirm that the earthquake cutoff depth is a proxy for temperature. The calculated decrease of effective elastic thickness (EET) from the orogenic margin (foreland) to the center (hinterland) is consistent with the results of flexure modeling in most orogenic belts. Due to the weak LIS in the hinterland, crustal thinning and rifting may occur in the future. Our results, thus, suggest that the mechanical structure is also closely related to the composition and is not directly reflected in the thermal structure.  相似文献   

2.
Intraplate compressional features, such as inverted extensional basins, upthrust basement blocks and whole lithospheric folds, play an important role in the structural framework of many cratons. Although compressional intraplate deformation can occur in a number of dynamic settings, stresses related to collisional plate coupling appear to be responsible for the development of the most important compressional intraplate structures. These can occur at distances of up to ±1600 km from a collision front, both in the fore-arc (foreland) and back-arc (hinterland) positions with respect to the subduction system controlling the evolution of the corresponding orogen. Back-arc compression associated with island arcs and Andean-type orogens occurs during periods of increased convergence rates between the subducting and overriding plates. For the build-up of intraplate compressional stresses in fore-arc and foreland domains, four collision-related scenarios are envisaged: (1) during the initiation of a subduction zone along a passive margin or within an oceanic basin; (2) during subduction impediment caused by the arrival of more buoyant crust, such as an oceanic plateau or a microcontinent at a subduction zone; (3) during the initial collision of an orogenic wedge with a passive margin, depending on the lithospheric and crustal configuration of the latter, the presence or absence of a thick passive margin sedimentary prism, and convergence rates and directions; (4) during post-collisional over-thickening and uplift of an orogenic wedge. The build-up of collision-related compressional intraplate stresses is indicative for mechanical coupling between an orogenic wedge and its fore- and/or hinterland. Crustal-scale intraplate deformation reflects mechanical coupling at crustal levels whereas lithosphere-scale deformation indicates mechanical coupling at the level of the mantle-lithosphere, probably in response to collisional lithospheric over-thickening of the orogen, slab detachment and the development of a mantle back-stop. The intensity of collisional coupling between an orogen and its fore- and hinterland is temporally and spatially variable. This can be a function of oblique collision. However, the build-up of high pore fluid pressures in subducted sediments may also account for mechanical decoupling of an orogen and its fore- and/or hinterland. Processes governing mechanical coupling/decoupling of orogens and fore- and hinterlands are still poorly understood and require further research. Localization of collision-related compressional intraplate deformations is controlled by spatial and temporal strength variations of the lithosphere in which the thermal regime, the crustal thickness, the pattern of pre-existing crustal and mantle discontinuities, as well as sedimentary loads and their thermal blanketing effect play an important role. The stratigraphic record of collision-related intraplate compressional deformation can contribute to dating of orogenic activity affecting the respective plate margin.  相似文献   

3.
A new 140‐km‐long seismic reflection profile provides a high‐resolution crustal‐scale image of the southern Dabieshan high‐pressure (HP) metamorphic belt and the Yangtze foreland fold‐and‐thrust belt. The seismic image of the stacked section shows that the southern Dabieshan metamorphic terrane and Yangtze foreland belt are separated by a large north‐dipping fault. In the foreland the upper crust is dominated by a series of folds and thrusts formed during the collisional stage in the mid‐Triassic; it was reworked by crustal extension resulting in the formation of a late Jurassic and Cretaceous red‐bed basin. The southern Dabieshan profile shows stacked crustal slabs developed along the margin of the collisional orogenic belt. The Moho reflectors at 10–11 s (~30–33 km) are seismically prominent and segmented by a number of south‐verging thrusts that were probably developed by foreland‐directed thrusting of the deeply subducted continental crust during exhumation. The seismic reflection profile suggests that structures related to the Triassic–Jurassic subduction and exhumation of the Yangtze plate are preserved despite the severe crustal extension superimposed during the late Mesozoic and Cenozoic.  相似文献   

4.
A large database of structural, geochronological and petrological data combined with a Bouguer anomaly map is used to develop a two‐stage exhumation model of deep‐seated rocks in the eastern sector of the Variscan belt. An early sub‐vertical fabric developed in the orogenic lower and middle crust during intracrustal folding followed by the vertical extrusion of the lower crustal rocks. These events were responsible for exhumation of the orogenic lower crust from depths equivalent to 18?20 kbar to depths equivalent to 8?10 kbar, and for coeval burial of upper crustal rocks to depths equivalent to 8–9 kbar. Following the folding and vertical extrusion event, sub‐horizontal fabrics developed at medium to low pressure in the orogenic lower and middle crust during vertical shortening. Fabrics that record the early vertical extrusion originated between 350 and 340 Ma, during building of an orogenic root in response to SE‐directed Saxothuringian continental subduction. Fabrics that record the later sub‐horizontal exhumation event relate to an eastern promontory of the Brunia continent indenting into the rheologically weaker rocks of the orogenic root. Indentation initiated thrusting or flow of the orogenic crust over the Brunia continent in a north‐directed sub‐horizontal channel. This sub‐horizontal flow operated between 330 and 325 Ma, and was responsible for a heterogeneous mixing of blocks and boudins of lower and middle crustal rocks and for their progressive thermal re‐equilibration. The erosion depth as well as the degree of reworking decreases from south to north, pointing to an outflow of lower crustal material to the surface, which was subsequently eroded and deposited in a foreland basin. Indentation by the Brunia continental promontory was highly noncoaxial with respect to the SE‐oriented Saxothuringian continental subduction in the Early Visean, suggesting a major switch of plate configuration during the Middle to Late Visean.  相似文献   

5.
We present a model that may explain deep crustal earthquakes observed, in particular, in several areas of highly reflective (laminated) lower continental crust. We combine observations from earthquake seismology, crustal reflection seismics and tectonic-rheological concepts. The study concentrates on parts of the northern Alpine foreland where many earthquakes occur inside the laminated lower crust, which is generally considered to be warm and weak. Thin mafic/ultramafic, sill-like intrusions and invisible dykes are assumed to form a corset-like network with high strength. This model can explain the observed strong and multiple reflections and the occurrence of rupture inside a stable structure within a weak lower crust. Tectonic stress transfer (from the Alpine collision zone or/and the Upper Rhine Graben) and its release may follow classical friction concepts. In addition, the heterogeneity of the laminated lower crust may also favour various viscous instabilities.  相似文献   

6.
《Gondwana Research》2003,6(3):501-511
Gravity modeling of an E-W profile across Dharwar Craton, India and Madagascar, integrated with the results of Deep Seismic Sounding (DSS) across the Dharwar Craton suggest a thick crust of 40-42 km under the eastern part of Eastern Dharwar Craton (EDC), the Western Dharwar Craton (WDC) and the central part of the Madagascar. Towards east of these blocks, the crustal thickness is reduced to 36-38 km along the Eastern Ghat Fold Belt (EGFB), shear zone between the EDC and the WDC and the east coast of Madagascar, respectively. These zones of thin crust are also characterized by high density lower crustal rocks associated with thrusts. The seismic section across Dharwar Craton shows domal- shaped reflectors in the lower crust and upper mantle under the WDC which may be related to asthenopheric upwelling during an extension phase. The occurrences of large schist belts with volcano-sedimentary sequences of marine origin of late Archean period (3.0-2.7 Ga) as rift basins in the WDC and Madagascar also suggest an extensional phase in this region during that period. It is followed by a convergence between the WDC and the EDC giving rise to collision-related shear and thrust zones between the WDC and the EDC associated with high density lower crustal rocks. The seismic section shows upwarped reflectors in the upper crust which may be related to this convergence. Eastward dipping reflectors under WDC and EDC and west verging thrusts suggest convergence from the west to the east which resulted in easterly subduction giving rise to subduction-related K-granite plutons of the EDC of 2.6-2.5 Ga. In this regard, the Closepet granite in the EDC which extends almost parallel to the shear zone between the WDC and EDC and shows an I-type calk-alkaline composition may represent relict of an island arc and the linear schist belts with bimodal volcanics of the EDC east of it might have developed as back arc rift basins. Subsequent collision between India and Antarctica along the EGFB during Middle Proterozoic, indicated by eastward dipping reflectors in the crust and the upper mantle and west verging thrust gave rise to contemporary high-grade rocks of the EGFB (1.6-1.0 Ga) and associated mafic and felsic intrusives of this belt. The part of adjoining Cuddapah basin contemporary to the EGFB towards the west consisting of marine shelf type of sediments which are highly disturbed and thickest at its contact with the EGFB may represent a peripheral foreland basin. Gravity modeling provides thickest crust of 42 km in the southern part of the WDC and does not support sharp increase in crustal thickness of 50-60 km with high velocity upper mantle as suggested from receiver function analysis. It may represent some foreign material of high density trapped in this section such as part of oceanic crust during convergence and subduction that is referred to above. It is supported from eastward dipping reflectors in lower crust and upper mantle in adjoining region.  相似文献   

7.
H. Laubscher 《地学学报》1990,2(6):645-652
Gravity surveys of the past century established that mountains have roots, seismic refraction lines shot in the second half of this century confirmed the downbulge of the Moho under the Alps, and recent reflection traverses provided new details on the behaviour of crustal layers in the deep part of the Alps. However, geophysical data are ambiguous geologically. For models of the root in terms of rock distribution to be tectonophysically acceptable, they must be the retrodeformable result of kinematic sequence that fits the geological surface data. For a cross-section through the Swiss Alps based on refraction data and somewhat modified by the recent reflection traverses, a kinematic model compatible with large-scale geological data may be obtained by the superposition of three Neogene phases with alternating vergence. Although Alpine collision is largely dextrally compressive in the central Alps, the N-S component may be discussed in a cross-section. Particularly puzzling geophysical features include a high-velocity body in the middle crust and the disappearance of the layered foreland crust in the root. In order to account for these phenomena, it is proposed that the crustal root is interpreted as the result of complex reshuffling of middle and lower crustal masses as well as large-scale phase transformations. The mid-crustal highvelocity body is interpreted as a delaminated section of the lower crust of the Adria plate that was wedged into the middle crust of the Alps in the middle Miocene. The disappearance of the foreland lower crust is attributed to eclogitization attendant on the subduction of continental crust. Material balance estimates suggest that during Alpine collision large volumes of continental crust have disappeared through subduction.  相似文献   

8.
In the Greater Himalayan sequence of far northwestern Nepal, detailed mapping, thermobarometry, and microstructure analysis are used to test competing models of the construction of Himalayan inverted metamorphism. The inverted Greater Himalayan sequence, which is characterized by an increase in peak metamorphic temperatures up structural section from 580 to 720 °C, is divided into two tectonometamorphic domains. The lower domain contains garnet‐ to kyanite‐zone rocks whose peak metamorphic assemblages suggest a metamorphic field pressure gradient that increases up structural section from 8 to 11 kbar, and which developed during top‐to‐the‐south directed shearing. The upper portion of the Greater Himalayan sequence is composed of kyanite‐ and sillimanite‐zone migmatitic gneisses that contain a metamorphic pressure gradient that decreases up structural section from 10 to 5 kbar. The lower and upper portions of the Greater Himalayan sequence are separated by a metamorphic discontinuity that spatially coincides with the base of the lowest migmatite unit. Temperatures inferred from quartz recrystallization mechanisms and the opening angles of quartz c‐axis fabrics increase up section through the Greater Himalayan sequence from ~530 to >700 °C and yield similar results to peak metamorphic temperatures determined by thermometry. The observations from the Greater Himalayan sequence in far northwestern Nepal are consistent with numerical predictions of channel‐flow tectonic models, whereby the upper hinterland part evolved as a ductile southward tunnelling mid‐crustal channel and the lower foreland part ductily accreted in a critical‐taper system at the leading edge of the extruding channel. The boundary between the upper and lower portions of the Greater Himalayan sequence is shown to represent a foreland–hinterland transition zone that is used to reconcile the different proposed tectonic styles documented in western Nepal.  相似文献   

9.
Lower crustal earthquake occurrence in the Central Indian Tectonic Zone(CITZ) of the Indian sub-continent was investigated using magnetotelluric(MT) data. MT models across the CITZ, including the new resistivity model across the 1938 Satpura lower crustal earthquake epicenter, show low resistive(80 ?m) mid-lower crust and infer small volume(1 vol%) of aqueous fluids existing in most part of lower crust. This in conjunction with xenoliths and other geophysical data supports a predominant brittle/semi-brittle lower crustal rheology. However, the local deep crustal zones with higher fluid content of 2.2%–6.5% which have been mapped imply high pore pressure conditions. The observation above and the significant strain rate in the region provide favorable conditions(strong/moderate rock strength, moderate temperature, high pore pressure and high strain rate) for brittle failure in the lower crust. It can be inferred that the fluid-rich pockets in the mid-lower crust might have catalyzed earthquake generation by acting as the source of local stress(fluid pressure), which together with the regional stress produced critical seismogenic stress conditions. Alternatively, fluids reduce the shear strength of the rocks to favor tectonic stress concentration that can be transferred to seismogenic faults to trigger earthquakes.  相似文献   

10.
We present results from a 484 km wide-angle seismic profile acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 km. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oceanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 km/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 km. The Zhongsha Massif in between is extremely stretched with only 6–10 km continental crust left. Crustal velocity is below 6.5 km/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.  相似文献   

11.
New phase equilibrium modelling, combined with U–Th/Pb petrochronology on monazite and xenotime, and 40Ar/39Ar geochronology on white mica, reveal the style of deformation and metamorphism near the southern tip of the extruded Himalayan metamorphic core (HMC). In the Jajarkot klippe, west Nepal foreland, greenschist to lower amphibolite facies metamorphism is entirely constrained to the Cenozoic Himalayan orogeny, in contrast with findings from other foreland klippen in the central Himalaya. HMC rocks exposed in the Jajarkot klippe yield short‐lived, hairpin pressure–temperature–time–deformation paths that peaked at 550–600°C and 750–1,200 MPa at 25 Ma. The Main Central thrust (MCT) and the South Tibetan detachment (STD) bound the base and the top of the HMC, respectively, and were active simultaneously for at least part of their deformation history. The STD was active at c. 27–26 Ma and possibly as late as c. 19 Ma, while the MCT may have been active as early as 27 Ma and was still active at c. 22 Ma. The tectonometamorphic conditions in the Jajarkot klippe are characteristic of crustal thickening and footwall accretion of new material at the tip of the extruding metamorphic orogenic core. Our new results reveal that collisional processes active in the middle to late Miocene at the base of the HMC now exposed in the hinterland were also active earlier, during the Oligocene, at the tip of the southward‐extruding middle crust.  相似文献   

12.
The geological inventory of the Variscan Bohemian Massif can be summarized as a result of Early Devonian subduction of the Saxothuringian ocean of unknown size underneath the eastern continental plate represented by the present-day Teplá-Barrandian and Moldanubian domains. During mid-Devonian, the Saxothuringian passive margin sequences and relics of Ordovician oceanic crust have been obducted over the Saxothuringian basement in conjunction with extrusion of the Teplá-Barrandian middle crust along the so-called Teplá suture zone. This event was connected with the development of the magmatic arc further east, together with a fore-arc basin on the Teplá-Barrandian crust. The back-arc region – the future Moldanubian zone – was affected by lithospheric thinning which marginally affected also the eastern Brunia continental crust. The subduction stage was followed by a collisional event caused by the arrival of the Saxothuringian continental crust that was associated with crustal thickening and the development of the orogenic root system in the magmatic arc and back-arc region of the orogen. The thickening was associated with depression of the Moho and the flux of the Saxothuringian felsic crust into the root area. Originally subhorizontal anisotropy in the root zone was subsequently folded by crustal-scale cusp folds in front of the Brunia backstop. During the Visean, the Brunia continent indented the thickened crustal root, resulting in the root's massive shortening causing vertical extrusion of the orogenic lower crust, which changed to a horizontal viscous channel flow of extruded lower crustal material in the mid- to supra-crustal levels. Hot orogenic lower crustal rocks were extruded: (1) in a narrow channel parallel to the former Teplá suture surface; (2) in the central part of the root zone in the form of large scale antiformal structure; and (3) in form of hot fold nappe over the Brunia promontory, where it produced Barrovian metamorphism and subsequent imbrications of its upper part. The extruded deeper parts of the orogenic root reached the surface, which soon thereafter resulted in the sedimentation of lower-crustal rocks pebbles in the thick foreland Culm basin on the stable part of the Brunia continent. Finally, during the Westfalian, the foreland Culm wedge was involved into imbricated nappe stack together with basement and orogenic channel flow nappes.  相似文献   

13.
冈底斯朱诺地区中新世板内热隆伸展成矿   总被引:1,自引:0,他引:1  
位于冈底斯构造成矿带中段西侧的朱诺地区具有良好的成矿前景,已发现有朱诺大型斑岩铜矿床和铁雅铁铜矿点。野外基础地质和矿床地质调查、构造分析和岩石化学的研究表明,朱诺斑岩铜矿床在构造上受近EW向和近SN向伸展断裂控制,时间上属于中新世青藏高原南部板内构造过程,含矿斑岩具有典型的埃达克质岩特征。朱诺及其所在的冈底斯构造成矿带在中新世处于板内构造环境,板内伸展构造—埃达克质岩—斑岩铜矿系统叠加在早期的俯冲—碰撞构造岩石组合之上。与埃达克质岩形成直接相关的下地壳流动导致冈底斯上地壳及下地壳显著加厚,发生部分熔融作用,下地壳物质可能源于地壳减薄的锡瓦利克盆地,流经喜马拉雅,穿过并改造了雅鲁藏布江缝合带中挤入地壳的洋壳地幔岩石,造成被混入洋壳地幔成分的冈底斯下地壳发生部分熔融,形成埃达克质岩浆,上升并顶托冈底斯上地壳,致使冈底斯上地壳先后发生近EW向和近SN向的伸展,在上地壳伸展扩容空间中含矿埃达克质岩浆沿伸展断裂上升、侵位,并富集成矿。  相似文献   

14.
A structural, petrological and geochronological (U‐Th‐Pb of zircon and monazite) study reveals that the lower crust sequences of the Variscan high‐grade basement cropping out between Solenzara and Porto Vecchio, south‐east Corsica (France) have been tectonically juxtaposed along with middle crustal rocks during the extrusion of the orogenic root of the Variscan chain. We propose that a system of high‐temperature, orogen‐parallel shear zones that developed under a transpressive dextral tectonic regime caused the exhumation of the entire sequence. This tectonic complex is thus made up of rocks having undergone different P–T conditions (eclogite‐?, high‐pressure granulite facies and amphibolite facies) at different times, reflecting the progressive foreland migration of the orogenic front. The Solenzara granulites were derived from burial of continental crust to high‐pressure (1.8–1.4 GPa) and high‐ to ultrahigh‐temperature conditions (900–1000 °C) during the Variscan convergence: U–Pb ELA‐ICPMS zircon dating constrained the timing of this metamorphism at c. 360 Ma. The gneisses cropping out at Porto Vecchio are middle crustal‐level rocks that reached their peak temperature conditions (700–750 °C at <1.0 GPa) at c. 340 Ma. The diachronism of the metamorphic events, the foliation patterns and their geometry suggest that the granulites were exhumed to middle crustal levels through channel flow tectonics under continuous compression. The amphibolite facies gneisses of Porto Vecchio and the granulites of Solenzara were accreted through the development of a major dextral mylonitic zone forming under amphibolite facies conditions: in situ monazite isotope dating (ELA‐ICPMS) revealed that this deformation occurred at c. 320 Ma and was accompanied by the emplacement of syntectonic high‐K melts. A final HTLP static overprint, constrained at 312–308 Ma by monazite U‐Th‐Pb isotope dating, is related to the emplacement of the igneous products of the Sardinia‐Corsica batholith and marks the transition from the Variscan orogenic event to the Permian extension.  相似文献   

15.
The Andes of southern Patagonia experienced a Miocene shift towards faster and higher angle subduction followed by the approach and collision of the Chile oceanic ridge. We present a kinematic study characterizing palaeostress fields computed from brittle tectonics to better constrain upper crustal deformation during this complex scenario. Although previous studies already suggested variable kinematics, it is striking that in a long‐lasting subduction environment, the computed palaeostress tensors are mostly strike‐slip (55%), while 35% are extensional, and only 10% compressive which are concentrated along a main frontal thrust. Cross‐cutting relationships and synsedimentary deformation indicate that a long‐lived strike‐slip regime was punctuated by a lower Miocene extensional event in the foreland before the main compressional event. The results are discussed in contrasting geodynamic models of plate coupling/decoupling versus direction and rate of convergence of the subducting plate, to explain the main mechanisms that control back‐arc deformation.  相似文献   

16.
Progress in the Study of Deep Profiles of Tibet and the Himalayas (INDEPTH)   总被引:5,自引:0,他引:5  
This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The upper crust, lower crust and mantle lithosphere beneath the blocks of the plateau form a "sandwich" structure with a relatively rigid-brittle upper crust, a visco-plastic lower crust and a relatively rigid-ductile mantle lithosphere. This structure is completely different from that of monotonous, cold and more rigid oceanic plates. (2) In the process of north-directed collision-compression of the Indian subcontinent, the upper crust was attached to the foreland in the form of a gigantic foreland accretionary wedge. The interior of the accretionary wedge thickened in such tectonic manners as large-scale thrusting, backthrusting and folding, and magmatic masses and partially molten masses participated in the crustal thickening. Between the upper crust and lower crust lies a large detachment (e.g  相似文献   

17.
后碰撞伸展环境下的盆地特征与成盆机制   总被引:3,自引:0,他引:3  
与造山带结合,动态、系统地探讨伸展盆地的成盆机制是大陆动力学研究的新思路。本文以后碰撞环境下的伸展盆地为对象,与其它类型伸展盆地相区别,尝试探讨其大陆构造属性和成盆机制。后碰撞伸展盆地一般平行于造山带展布,受相邻活动造山带控制,形成于造山带后碰撞构造环境。盆地的转换、叠合过程与相邻造山带的演化密切相关,表现为动态的耦合关系,即由前陆盆地与主碰撞造山带相耦合,发展为伸展盆地与后碰撞造山带相耦合。其成盆机制实质是地壳缩短增厚后的去"山根"作用,拆沉作用造成加厚地壳减薄,并诱发基性岩浆活动,在地表形成裂谷或断陷,接受河湖相沉积。  相似文献   

18.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

19.
The extensional architecture of the Northern Carnarvon Basin can be explained in terms of changes in lithospheric rheology during multiphase extension and lower crustal flow. Low‐angle detachments, while playing a minor role, are not considered to have been the primary mechanism for extension as suggested in previous models. Early extension (Cambrian‐Ordovician) in the Northern Carnarvon Basin is characterised by low‐angle detachment structures of limited regional extent. These structures have a spatial association with a Proterozoic mobile belt on the margin of the Pilbara Craton. Thermo‐mechanical conditions in the mobile belt may have predisposed the highly deformed crust to thin‐skinned extension and detachment development. Permo‐Carboniferous extension generated an extensive wide rift basin, suggesting ductile rheologies associated with intermediate lithospheric temperatures and crustal thickness. Thick Upper Permian to Upper Triassic post‐rift sequences and marked thinning of the lower crust occurred in association with only a small amount of extension in the upper crust. This observation can be reconciled by considering outward lower crustal flow, from beneath the basin towards the basin margin, following extension. Strong mid‐crustal reflectors, which occur over large areas of the Northern Carnarvon Basin, probably represent a boundary between flow and non‐flow regimes rather than detachment fault surfaces as in previous models. Crustal thinning and thermal decay following Permo‐Carboniferous extension contributed to the increased strength and brittle behaviour of the lithosphere. Consequently, Late Triassic to Early Cretaceous extension resulted in the development of far more localised narrow rift systems on the margins of the preceding wide rift basin. Diapiric intrusions are associated with the narrow rift basin development, resulting from either remobilisation of ductile lower crustal rock or the initial formation of sea‐floor spreading centres.  相似文献   

20.
青藏高原隆升机制新模式   总被引:25,自引:4,他引:21  
李德威 《地球科学》2003,28(6):593-600
作为创建大陆动力学理论体系的最佳野外实验室的青藏高原, 涉及当代固体地球科学前沿和热点的许多重大科学问题.迄今为止, 包括板块构造在内的众多模式不能合理地解释青藏高原重要的地质和地球物理现象.本文从下地壳与中上地壳、造山带与沉积盆地的耦合作用出发, 对青藏高原及邻区进行分尺度、分层块、分阶段的构造解析, 提出青藏高原隆升的下地壳层流构造模式, 认为青藏高原地壳增厚和构造隆升是晚新生代由于锡瓦利克盆地、塔里木盆地和四川盆地下地壳的热软化岩石大量流向青藏高原造成的.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号