首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
龙门山断裂带南段的芦山MS7.0级地震给雅安地区人民群众和当地社会带来巨大的损失,如何从地壳应力积累的角度来研究该次地震对于深入认识孕震发震机理将有很大的帮助.项目组在过去21年中在该区域积累了22个钻孔的应力实测资料,这些应力资料显示该区域的应力状态为逆冲断层应力状态,最大水平主压应力方向为N44°-64°W,而且在过去20多年里,该区域的应力状态是稳定的.文中提出利用平均差应力和平均有效应力之比μm来表征地壳应力积累的能力和水平.通过理论分析可知μm的物理意义与μ是近似的,完全可以用μm代替μ来开展分析.利用实测应力数据计算得到的μm范围为0.39~0.56,接近于Byerlee定律所定义的μ=0.6的下限值,该范围与龙门山断裂带震后断层泥稳态摩擦系数的范围完全吻合,芦山地震的发生说明研究区的地壳应处于摩擦极限平衡或者亚平衡状态.芦山地震的震源机制解反应的应力状态为逆冲断层应力状态,主压应力轴方向为122°,与该区域的应力测试数据所反应的应力状态一致.通过与他人的研究成果对比分析可知,芦山地震可看作汶川地震对龙门山断裂带南段区域的断层加载而诱发产生的一次地震.  相似文献   

2.
龙门山断裂带南段第四纪沉积差,断层出露不明显,晚第四纪构造活动性资料零星。为了提高对龙门山断裂带南段构造活动性的认识,探索芦山地震的发震构造,文中在分析龙门山断裂带南段的地貌以及构造演化的基础上,对跨盐井-五龙断裂、大川-双石断裂和芦山盆地的青衣江不同段的6级河流阶地进行了差分GPS连续测量和细致研究,结合对高分辨率航拍影像的地质解译,得到了龙门山断裂带南段青衣江各段的河流阶地横剖面,通过不同河段河流阶地的对比分析,建立了龙门山断裂带南段青衣江河流阶地纵剖面。通过对河流阶地的变形分析,发现龙门山断裂带南段晚第四纪以来,盐井-五龙断裂的平均垂向断错速率为0.6~1.2mm/a,大川-双石断裂没有明显的垂向活动,芦山地震的发震断层控制的山前褶皱最新活动。结合龙门山断裂带南段的地壳深部结构资料和芦山地震的精定位余震资料等,认为芦山地震的发震构造不是大川-双石断裂,而是龙门山断裂带南段的山前盲逆断层和反冲断层。  相似文献   

3.
为揭示汶川地震前龙门山及其周缘断裂的形变与应力累积状态,文中构建了包含龙门山、龙日坝、岷江和虎牙4条断裂的三维黏弹性有限元模型,以1999—2004年GPS结果为约束,模拟了龙门山断裂带及其周缘区域的形变运动。得到以下结论:1)平行于龙门山断裂带的速度分量主要被龙日坝断裂吸收,垂直于龙门山断裂带的速度分量主要被其自身吸收;岷江和虎牙断裂对龙门山断裂带北段起到一定的屏障作用,导致其北段压缩量明显低于南段。2)沿龙门山断裂带由SW向NE方向延伸,主压应力与断层走向的夹角由接近垂直逐步转至约45°;断层南段挤压、剪切应力累积速率高,且压应力大于剪应力,北段应力累积速率低,压应力与剪应力接近。这与龙门山断裂带SW段中小地震频发、地震活动强烈,NE段偶有小震、地震活动微弱相吻合;也与汶川M_S8.0地震逆冲兼具右旋走滑、芦山M_S7.0地震逆冲破裂的方式相一致。3)假设发生震级、类型相同的地震所需应力积累量相同,那么研究区内岷江断裂、龙门山断裂南段和虎牙断裂破裂以逆冲运动为主,3条断裂的地震复发周期依次变长;龙日坝断裂北段和龙门山断裂北段以逆冲兼具右旋走滑为主,前者地震复发周期短于后者;龙日坝断裂南段则以纯右旋走滑为主,地震复发周期有可能最短。  相似文献   

4.
青藏高原东缘低地形变速率的龙门山断裂带上相继发生了2008汶川Mw7.9级地震和2013芦山Mw6.6级地震.地震勘探与震源定位结果揭示了龙门山区域地震空间分布特征:纵向上,龙门山断裂带这两次地震主震均发生在龙门山断裂带上地壳的底部(14~19 km),绝大部分余震均发生在上地壳范围(5~25 km),而在其中、下地壳深度范围内鲜见余震发生;横向上,地震(Mw>3)在龙门山断裂带青藏高原一侧密集分布且曾有大震发生,而四川盆地地震稀少(Mw>3).为探讨龙门山断裂带地震发生机理,并解释以上龙门山区域地震空间分布特征,本文建立了龙门山断裂带西南段跨芦山地震震中区域的四种不同流变结构的龙门山断裂带三维岩石圈模型,以地表GPS观测资料为约束边界条件,数值模拟龙门山断裂带岩石圈在数千年以上长期匀速构造挤压作用下的应力积累特征,探讨了地壳分层流变性质对地壳应力积累的影响,分析了该区域地震空间分布与构造应力积累速率的关系.计算结果表明:该区域在数千年的应力积累过程中,脆性上地壳中应力表现近于恒定值的线性增长趋势,龙门山断裂带上地壳底部出现应力集中积累现象,这一应力集中现象可以解释龙门山断裂带汶川地震与芦山地震主震的发生,及其大部分余震在脆性上地壳中的触发;青藏高原一侧上地壳应力积累速率远远高于四川盆地的应力积累速率,这一应力积累分布现象可以解释龙门山区域青藏高原一侧地震密集而四川盆地地震稀少的地震空间分布特征;通过比较不同流变结构模型中的应力积累状态,认为导致这一应力积累空间分布状态的重要控制因素在于青藏高原中、下地壳较低的黏滞系数与四川盆地中、下地壳较高的黏滞系数的差异.在柔性的中、下地壳内,应力增长近于指数形式,稳定状态之后其应力增长速率近于零,构造应力积累难以达到岩石破裂强度,因而鲜见地震发生.地壳各层位的应力增长率差异与地震成层分布的现象共同揭示了龙门山区域岩石圈分层流变结构:脆性上地壳、韧性中、下地壳(青藏高原一侧较弱,四川盆地一侧较强)、韧性岩石圈上地幔.  相似文献   

5.
本文利用2013年芦山M_S7.0级地震同震GPS数据反演了芦山断层几何与断层滑动分布,结果表明:芦山地震发震断层具有南陡北缓、上陡下缓的特征,低倾角的区域位于发震断层北段且靠近映秀断层的一侧;滑动分布模型的最大滑动量为0.82m,其深度为13.67km与小震发生集中平均深度12.5km接近.我们选取1998—2014年龙门山断裂带区域地壳形变观测数据,拟合获得了龙门山断裂带走向方向上的速度分量,发现在汶川M_S8.0地震与芦山M_S7.0地震之间宽度约30km破裂空区,龙门山断裂带西南段与东北段的形变分量以破裂空区为界方向相反.断裂带东北段(汶川地震主要发震断层)的形变分量方向与断层右旋走滑运动方向一致,而在断裂带西南段(芦山地震发震断层)的形变分量方向与断层左旋走滑运动方向一致.芦山地震走滑方向与汶川地震走滑方向相反是因为该断裂带构造运动在特有几何构造下受青藏高原东南向挤压,遇龙门山中段岩石圈楔状构造的阻挡,在汶川M_S8.0地震与芦山M_S7.0地震间的地震空区,形成了构造运动向其两侧分流的结果.  相似文献   

6.
利用2010年和2013年两期一等水准测量数据分析了龙门山断裂带南段芦山MS7.0地震前的应变积累。结果表明:(1)汶川地震的发生明显加速了该区域应变积累的过程,龙门山断裂带南段主要断层区域垂直形变速率为6~9 mm/a,表明汶川地震的发生加速了此次芦山地震的孕育过程;靠近鲜水河断裂带区域垂直形变速率为1~5 mm/a,低于汶川地震前的隆升速度。(2)芦山地震并未释放该区域长期积累的应变能,龙门山断裂带南段仍然具有发生破坏性地震的可能。  相似文献   

7.
运用非连续变形分析法与三维有限元法相结合的方法,以GPS资料作为位移速率和震源机制的约束条件,通过数值模拟研究了青藏高原及其东侧邻区构造地块的运动、变形、相互作用及其与近30年来发生于该区的大地震之间的关系。研究中引入了以应力与摩擦强度的比值定义的断层“失稳危险度”,通过数值模拟计算得到了研究区地壳块体边界断层的失稳危险度分布。结果表明,失稳危险度高的地段与近期该区发生的MS≥7.0地震所在的位置基本一致,其中龙门山断裂带上包括汶川和芦山大地震的发震断层均为失稳危险度最高值地区。计算得到的应变率强度分布图显示,青藏高原东部边缘整条地带均为应变率强度的陡变带,特别是以龙门山断裂带上的陡变最为明显,其西侧应变率强度为东侧的近4倍,而且,这个带位于宽度相同、走向与龙门山断裂带走向相一致的高应变能密度带中,表明这两次大地震前,作为其发震断层的龙门山断裂带已积累了相当高的应变能,失稳危险度高,处于力学上的不稳定状态。模拟计算得到在上地壳层中,2001年昆仑山口西MS8.1地震引起汶川、芦山地震发震断层的库仑破裂应力增加约0.016 MPa,相当于龙门山断裂带约两年的应力积累,也就是说,使汶川、芦山地震发震断层的失稳破裂提前了约两年。 此外,关于2008年汶川MS8.0地震的模拟计算表明,汶川地震的发生也使包括芦山地震发震断层的龙门山断裂带西南段和东昆仑断裂带东南端的库仑破裂应力增大,应变能积累增强,这说明汶川MS8.0地震的发生对已处于失稳危险度较高状态的2013年芦山地震和2017年九寨沟地震发震断层的提前失稳破裂起到了促进作用。   相似文献   

8.
计算包括同震静态库仑破裂应力变化以及震后黏滞松弛引起的应力变化等,可以更好地解释余震分布、地震序列等地震观测结果。在芦山地震之前,从1900年以来龙门山区域发生了4次7级以上地震,分析这几次地震的同震应力变化以及震后黏弹性松弛对芦山地震的产生的影响,芦山地震以后区域断裂带上的应力伴随强震如何演化,芦山地震与汶川地震的破裂空段呈现何种应力状态,探讨这些问题可能会为了解芦山地震震源处震前的应力状态及该区域未来地震风险评估提供一定的依据。文中采用有限元数值模拟方法,根据地质构造、速度、密度结构深部反演结果以及GPS及应力观测资料等,建立龙门山地区三维黏弹性有限元模型进行研究。模拟结果显示:龙门山断裂带南段及鲜水河断裂带的库仑应力年变化速率在研究区域中相对更高,这与研究区域的地震活动性一致。芦山地震的前4次地震,除叠溪地震外,康定、松潘、汶川等3次地震在芦山地震震中位置产生的同震库仑破裂应力变化大于0,表明这3次地震可能促进了芦山地震的发生,汶川地震的同震库仑破裂应力超过了0.01MPa,同震触发效应十分显著。震间的黏弹性松弛对芦山震源处起加载作用,从1900年以来这种持续的加载作用也超过0.01MPa,因此在模拟应力演化的时候,介质的黏弹性松弛效应不能被忽略。从库仑破裂应力的角度计算龙门山区域断层的应力演化,可以发现龙门山断裂带上汶川地震和芦山地震破裂的空段,在芦山地震之后仍然属于相对应力水平较高的区域。  相似文献   

9.
横跨龙门山断裂带南段的连续GPS测网记录到了2013年4月20日芦山MS7.0地震孕育过程相关的地壳变形信息,为研究此次地震前孕震区地壳变形动态演化过程提供重要的基础资料.研究表明,汶川地震的发生导致茂县-汶川断裂南段及以东地区挤压应变和左旋剪切应变加载.GPS跨单条断裂的基线平均缩短速率约为1~2 mm/a,跨越整个断裂带的基线平均缩短速率约为8~10 mm/a,且均表现出随芦山地震临近年均缩短速率逐渐减小的特征;多站组合的应变参数时序结果显示,龙门山断裂带南段主压应变率自西向东逐渐减小,主压应变方向为N30°~45°W近似垂直于断裂带;北川-映秀断裂以东地区以挤压变形为主兼有明显的左旋剪切变形,且面应变和第一剪应变随着芦山地震的临近应变率逐渐减小;北川-映秀断裂以西则表现为在时间进程上逐渐增强的右旋剪切变形.区域GPS变形场结果显示汶川震后龙门山断裂带南段挤压应变积累速率显著大于震前,且茂县-汶川断裂以东地区表现出左旋剪切应变积累特征.综合分析认为,汶川地震后巴颜喀拉块体东向运动加速,运动速度自西向东递减,致使在汶川地震中未破裂的龙门山断裂带南段的挤压应变积累水平进一步增强.  相似文献   

10.
2013年4月20日在四川芦山发生了Ms7.0地震,震源深度17 km,发震断层位于龙门山断裂带南段的前山断裂附近,为逆冲断层机制,芦山地震震中位置位于2008年汶川Ms8.0地震西南方向85 km处,两个地震的余震分布区中间存在一个约20~30 km的破裂空段。首先计算汶川地震的静态库伦应力,明确汶川地震对芦山地震的触发影响,芦山地震的发震位置处于汶川地震后的应力加载区域;进一步计算芦山地震对周围的静态库仑应力,结果显示,芦山地震对二者之间破裂空段的影响为应力加载;最后计算汶川地震和芦山地震周围的静态库仑应力的综合影响,二者对川滇交界东部的应力加载作用是明确的,对中间存在的20~30 km的空段也存在一定的应力加载影响。  相似文献   

11.
以往的研究显示了2013年芦山MS7.0级地震发震断层的隐伏逆冲断层基本特征,但是破裂深部细节差异较大.本文以近场密集的同震形变数据约束芦山地震破裂面几何形状及滑动分布,结果显示芦山地震破裂面具有铲状结构,上部16km为43°~50°高角度断层,深部16~25km为小于27°的低角度断层,破裂深度与重定位的余震分布深度一致.破裂分布模型清楚显示上下两个断层上各有一个滑动幅度大于0.5m的峰值破裂区,最大滑动量1.5m位于13km深处.重定位的余震分布基本都落在最大滑动量等值线外部库仑应力增加的区域.芦山地震破裂面几何形状和滑动分布特征与2008年汶川MS8.0级地震映秀—北川破裂相似,支持龙门山冲断带发育大规模的近水平滑脱层,是青藏高原东缘地壳缩短增厚、龙门山挤压隆升的重要证据.  相似文献   

12.
芦山地震的发震构造迄今为止仍不明确。文中基于中国地震局地震预测研究所2008—2009年间布设于龙门山断裂带南段的流动地震台站观测剖面、芦山地震余震精定位结果等地球物理资料对深部构造单元进行了分析;同时基于阶地变形资料、遥感资料、区域地质资料等手段对地表构造变形进行了分析;综合两者建立芦山地震的构造变形模式并研究芦山地震的发震构造。初步认为由于断层面倾角的差异,芦山地震的构造变形模式和中北段与汶川地震有关的主要破裂段的变形模式有所不同。南段前山断裂近直立的断层面最终以对下盘的挤压作用为主,并在下盘地块内形成逆冲断层引发了芦山地震;而北段中央断裂陡倾的断层面使得仍然以上盘的逆冲作用为主。新生逆冲断层的上盘形成了1个活动背斜,第四纪以来该活动背斜之上的阶地面已经发生了显著的变形,该断层最新的1次活动导致了芦山地震的发生。大溪乡与太平镇之间向SE方向凸出的弧形断层段长期以来已经累积了巨大的位移量或构造变形量,是应变释放、构造运动都集中发生的段。芦山地震只是这种构造模式的长期演化过程中的1次地震事件,未来南段前山断裂下盘的这些新生活动逆冲断层仍然具有发生类似地震的危险性。  相似文献   

13.
基于四川区域地震台网记录的波形资料,利用CAP波形反演方法,同时获取了2013年4月20日芦山M7.0级地震序列中88个M≥3.0级地震的震源机制解、震源矩心深度与矩震级,进而利用应变花(strain rosette)和面应变(areal strain)As值,分析了芦山地震序列震源机制和震源区构造运动与变形特征.获得的主要结果有:(1)芦山M7.0级主震破裂面参数为走向219°/倾角43°/滑动角101°,矩震级为MW6.55,震源矩心深度15 km.芦山地震余震区沿龙门山断裂带走向长约37 km、垂直断裂带走向宽约16 km.主震两侧余震呈不对称分布,主震南西侧余震区长约27 km、北东侧长约10 km.余震分布在7~22 km深度区间,优势分布深度为9~14 km,序列平均深度约13 km,多数余震分布在主震上部.粗略估计的芦山地震震源体体积为37 km×16 km×16 km.(2)面应变As值统计显示,芦山地震序列以逆冲型地震占绝对优势,所占比例超过93%.序列主要受倾向NW、倾角约45°的近NE-SW向逆冲断层控制;部分余震发生在与上述主发震断层近乎垂直的倾向SE的反冲断层上;龙门山断裂带前山断裂可能参与了部分余震活动.P轴近水平且优势方位单一,呈NW-SE向,与龙门山断裂带南段所处区域构造应力场方向一致,反映芦山地震震源区主要受区域构造应力场控制,芦山地震是近NE-SW向断层在近水平的NW-SE向主压应力挤压作用下发生逆冲运动的结果.序列中6次非逆冲型地震均发生在主震震中附近,且主震震中附近P轴仰角变化明显,表明主震对其震中附近局部区域存在明显的应力扰动.(3)序列整体及不同震级段的应变花均呈NW向挤压白瓣形态,显示芦山地震震源区深部构造呈逆冲运动、NW向纯挤压变形.各震级段的应变花方位与形状一致,具有震级自相似性特征,揭示震源区深部构造运动和变形模式与震级无关.(4)不同深度的应变花形态以NW-NWW向挤压白瓣为优势,显示震源区构造无论是总体还是分段均以NW-NWW向挤压变形为特征.但应变花方位与形状随深度仍具有较明显的变化,可能反映了震源区构造变形在深度方向上存在分段差异.(5)芦山地震震源体尺度较小,且主震未发生在龙门山断裂带南段主干断裂上,南段长期积累的应变能未能得到充分释放,南段仍存在发生强震的危险.  相似文献   

14.
本文以龙门山及周边地区为研究对象,考虑区域地质构造差异、主要活动断裂带、地表附加重力影响,建立能反映地表起伏和岩石圈分层结构的龙门山地区三维粘弹性有限元模型。以地壳水平运动速率观测值为约束条件重建研究区现今构造背景应力场,在此基础上分别模拟了汶川地震和芦山地震的发生机理。通过分析同震库仑破裂应力变化与余震空间分布的关系,探讨了2次地震主震对余震的触发作用以及汶川地震对芦山地震的影响。研究表明,汶川地震和芦山地震的余震大部分由其主震触发,汶川地震对芦山地震的余震有约6.78%的触发作用。汶川地震的同震库仑破裂应力在芦山地震主震位置的增加值约为0.016MPa,如果龙门山断裂带南段库仑破裂应力年累积速率按照0.4×10-3-0.6×10-3MPa·a-1计算,汶川地震使芦山地震提前了约27-40年。计算还表明汶川地震和芦山地震的发生使鲜水河断裂带南段和虎牙断裂的库仑破裂应力增加,这些断裂带在未来发生地震的可能性增加。  相似文献   

15.
沈旭章 《地球物理学报》2013,56(6):1895-1903
地壳和岩石圈变形特征研究对于深入了解中强地震的深部孕震环境具有重要科学意义.本文联合P和S波远震接收函数偏移成像结果,对发生过芦山7.0地震和汶川8.0地震的龙门山断裂带及附近区域地壳和岩石圈结构进行分析.结果揭示出在青藏高原向四川盆地过渡的龙门山断裂带,Moho面和岩石圈底界面(LAB)呈现出强烈变形,特别是芦山地震和汶川地震震源区下方地壳出现了错断、下凹,岩石圈也呈现下凹变形特征.这种地壳及岩石圈变形所代表的高应力的积累可能是汶川和芦山地震发生的重要深部地球动力学背景.  相似文献   

16.
本文提出并试验了一种基于接收函数建立区域模型进行震源机制反演的方法.选取四川地震台网记录的M≥3且信噪比高的近震波形资料,反演得到了芦山地震序列中74个地震的震源机制.通过对震源深度和震源机制的综合分析,探讨了芦山地震的发震构造和区域应力场状态.采用接收函数方法反演获取了26个台站下方的S波速度结构,对不同区域的台站反演结果进行叠加平均,以此区域平均S波速度作为本文震源机制反演使用的区域模型的S波速度;区域模型的P波速度由经验公式给出.反演稳定性测试表明,使用不同模型或对原始波形记录加入随机噪声的反演结果与原始反演相比,震源深度最大误差为1km,断层面各参数误差水平也很低,且显示的发震类型是一致的,其中随机噪声带来的误差小于模型带来的误差.主震反演得到的震源机制解为:震源深度17km,矩震级6.47;节面Ⅰ走向213°,倾角51°,滑动角98°;节面Ⅱ走向20°,倾角40°,滑动角80°;显示芦山主震可视为纯逆冲型地震,发震构造可能是某个具有较大倾角的逆冲断层,而不是低缓的推覆构造的基底滑脱面.同时本文反演获取的73个M≥3余震的震源机制绝大多数也显示了类似的发震类型,逆冲型地震为67个,占92%,具有绝对优势;走滑型地震为5个,正断型地震为1个.其中5个走滑型地震中的4个均分布在震源区的东北端.整个芦山地震序列深度集中在12~20km,且沿震源区短轴的余震深度剖面有自西向东呈逐步变浅的趋势,呈现清晰的铲形断面结构,结合本地地质构造,可以推断芦山地震序列主要发生在龙门山前山断裂以东的逆冲推覆体内的一个隐伏断裂上.P轴方位角优势方位与区域应力场及汶川震源区南段的相一致,表明芦山序列地震活动主要受区域应力场控制,且汶川震后该区应该不存在应力场变化.P轴仰角随深度分布则显示了孕震层在浅部为脆性上地壳,而深部已经进入了中地壳低速层.断层面的几何形态简单,倾角均值在不同深度保持稳定在55°左右,与主震倾角接近,这与汶川震源区南段的研究结果明显不同,揭示了龙门山断裂带南段与此次芦山发震断裂在断层面几何形态上的明显差异.  相似文献   

17.
继2008年汶川MS8.0地震和2013年芦山MS7.0地震后,2022年6月1日在龙门山断裂带南段又发生了一次MS6.1强震,距离2013年芦山MS7.0地震震中位置仅10 km.为研究此次地震的发震断层及两次芦山地震的关系,对震后60天的余震序列进行重定位,获得了933个高精度定位结果,EW,NS和UD方向上的定位误差分别为0.15 km,0.13 km和0.23 km.余震序列在水平分布上沿北东—南西向略长,在深度上主要分布在12—20 km,10 km以浅余震很少.余震震源深度剖面显示发震断层面倾向南东,与2013年芦山MS7.0地震发震断层结构中的反冲断层倾向一致,两次芦山地震的发震断层结构相交为复式Y型断裂结构,此次芦山地震的发震断层为其中一条深度更深的反冲断层.此次地震没有产生地表破裂,推测发震断层为一条埋深较深的隐伏断层.两次芦山地震的余震震中分布区跨过了该区域的一条大型逆冲型断裂带,即双石—大川断裂带.深度剖面显示芦山MS7.0地震的南东...  相似文献   

18.
2013年4月20日,在青藏高原东缘的龙门山断裂带的南段发生了芦山7.0级地震.通过地壳剪切波分裂的分析,揭示了龙门山断裂带域的地壳主压应力方向及其与断裂之间的关联.芦山地震余震的定位结果显示,芦山地震的破裂与汶川地震的破裂没有贯通,在芦山与汶川之间形成了一个"破裂空段".本文建议,应关注芦山地震与汶川地震之间"破裂空段"的应力变化.采用不依赖于天然地震记录的井下人工源观测技术是一种有意义的科学尝试.  相似文献   

19.
利用1999-2007和2009-2011年中国大陆GPS水平速度场数据, 采用DEFNODE(反演计算弹性岩石圈块体旋转、 应变和块体边界断层闭锁或同震滑动的Fortran程序)负位错反演程序估算了芦山地震前龙门山断裂带的三维闭锁程度, 并结合剖面结果分析了断层深浅部变形特征. GPS反演结果表明, 1999-2007年, 龙门山断裂中北段(闭锁比例为0.99)处于强闭锁(本文将闭锁比例大于0.97的称为强闭锁)状态; 龙门山断裂南段地表以下深度16 km内为强闭锁, 深度16-21 km处闭锁比例降低为0.62, 深度21-24 km处整条断裂逐渐转变为蠕滑状态. 2009-2011年, 即汶川地震后, 龙门山断裂中北段处于震后蠕滑状态; 龙门山断裂南段深度16-21 km处闭锁比例降低为0.45, 其它位置闭锁程度保持不变. GPS剖面结果显示, 2009-2011年, 即汶川地震后, 龙门山断裂中北段为逆冲兼右旋走滑运动; 而南段断层不能自由滑动、 变形宽度较大. 综合分析认为, 汶川地震时, 龙门山断裂南段并没有发生破裂, 一直处于较强的闭锁状态, 汶川地震的发生又加速了芦山地震的孕育进程; 由于龙门山断裂带南段的闭锁深度较中北段浅, 因此芦山地震较汶川地震强度低、 震级小、 破裂范围窄.   相似文献   

20.
龙门山断裂带南段岩石圈磁场变化分析   总被引:4,自引:3,他引:1       下载免费PDF全文
根据巴颜喀拉块体东部2011—2014年3期岩石圈磁场年变化情况,结合地壳应力资料,重点分析龙门山断裂带南段的岩石圈磁场变化与应力积累的关系。该区域2011—2012年和2012—2013年岩石圈磁场变化明显弱于周边区域,实测地壳应力结果反映汶川M_S8.0地震震后应力积累水平很高。压磁效应分析认为汶川M_S8.0地震后该区域高应力积累、低应变率的动力学背景是控制该区域岩石圈磁场弱变化的主要因素。此外,芦山M_S7.0地震及康定M_S6.3地震前震中区存在局部岩石圈磁场水平矢量的弱变化现象,尤其是2012—2013年水平矢量大小和方向均与周边区域相比存在明显差异,这可能是两次地震的前兆异常。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号