首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new portable in situ flume(PISF)for measuring critical bed shear stress(CBSS)was developed in this study.The PISF consists of an open bottom sediment erosion chamber and an electrically-driven pump.Unlike most existing in situ flumes with similar designs,the new PISF does not rely on monitoring the flow conditions or particle density in the sediment erosion chamber;instead,it is a pre-calibrated flume.The calibration was performed by first determining CBSS of various selected sediment samples of known particle size and density(using the law of the wall),based on flow velocity-depth profiles measured in a 6 m straight open-channel flume using a Particle Image Velocimetry(PIV)system.These same particles of known CBSS were then used in the new in-situ flume under controlled lab conditions to obtain a series of calibration curves of CBSS vs.pump electrical power.A wide variety of particle types and sizes(simulated sediments)were used in this two-step calibration procedure to widen CBSS measurement range and simulate cohesive force effects.The size of the PISF is much smaller and more practical than other similar devices as lamellar flow conditions are not required and it can be applied to a wide range of sediment types including cohesive sediments.  相似文献   

2.
Riffle–pool sequences are maintained through the preferential entrainment of sediment grains from pools rather than riffles. This preferential entrainment has been attributed to a reversal in the magnitude of velocity and shear stress under high flows; however the Differential Sediment Entrainment Hypothesis (DSEH) postulates that differential entrainment can instead result from spatial sedimentological contrasts. Here we use a novel suite of in situ grain‐scale field measurements from a riffle–pool sequence to parameterize a physically‐based model of grain entrainment. Field measurements include pivoting angles, lift forces and high resolution digital elevation models (DEMs) acquired using terrestrial laser scanning, from which particle exposure, protrusion and surface roughness were derived. The entrainment model results show that grains in pools have a lower critical entrainment shear stress than grains in either pool exits or riffles. This is because pool grains have looser packing, hence greater exposure and lower pivoting angles. Conversely, riffle and pool exit grains have denser packing, lower exposure and higher pivoting angles. A cohesive matrix further stabilizes pool exit grains. The resulting predictions of critical entrainment shear stress for grains in different subunits are compared with spatial patterns of bed shear stress derived from a two‐dimensional computational fluid dynamics (CFD) model of the reach. The CFD model predicts that, under bankfull conditions, pools experience lower shear stresses than riffles and pool exits. However, the difference in sediment entrainment shear stress is sufficiently large that sediment in pools is still more likely to be entrained than sediment in pool exits or riffles, resulting in differential entrainment under bankfull flows. Significantly, this differential entrainment does not require a reversal in flow velocities or shear stress, suggesting that sedimentological contrasts alone may be sufficient for the maintenance of riffle–pool sequences. This finding has implications for the prediction of sediment transport and the morphological evolution of gravel‐bed rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Simulations of both currents and waves were performed throughout the year 2001 to assess the relative contribution of each to their overall erosive potential on the Gulf of Lions shelf. Statistical analysis of bottom shear stress (BSS) was compared to sediment grain-size distribution on the bottom. The hydrodynamic features of the bottom layer coincide with the distribution of surficial sediments, and three areas with different hydro-sedimentary characteristics were revealed. (i) The sandy inner shelf (<30 m) area is a high-energy-wave dominated area but may be subjected to intense current-induced BSS during on-shore winds along the coast and during continental winds mainly in the up-welling cells. (ii) The middle shelf (30–100 m) is a low-energy environment characterised by deposition of cohesive sediments, where the wave effect decreases with depth and current-induced BSS cannot reach the critical value for erosion of fine-grained sediments. (iii) The outer shelf, which has a higher bottom sand fraction than the middle shelf, may be affected by strong south-westward currents generated by on-shore winds, which can have an erosive effect on the fine-grained sediments.  相似文献   

4.
The largest grains found in samples of transported sediment are commonly used to estimate flow competence. With samples from a range of flows, a relationship between the flow and the largest mobile grain can be derived and used to estimate the critical shear stress for incipient motion of the different grain sizes in the bed sediment or, inversely, to estimate the magnitude of the flow from the largest grain found in a transport sample. Because these estimates are based on an extreme value of the transport grain-size distribution, however, they are subject to large errors and are sensitive to the effect of sample size, which tends to vary widely in sediment transport samples from natural flows. Furthermore, estimates of the critical shear stress based on the largest sampled moving grain cannot be scaled in a manner that permits reasonable comparison between fractions. The degree to which sample size and scaling problems make largest-grain estimates of fractional critical shear stress deviate from a true relationship cannot be predicted exactly, although the direction of such a deviation can be demonstrated. The large errors and unknown bias suggest that the largest sampled mobile grain is not a reliable predictor of either critical shear stress or flow magnitude. It is possible to define a single flow competence for the entire mixture, based on a central value of the transport grain-size distribution. Such a measure is relatively stable, does not require between-fraction scaling, and appears to be well supported by observation.  相似文献   

5.
In this study,annular flume experiments were carried out,using the sediment samples collected from the lower part of the inter-tidal zone at Xiaoyangkou,Jiangsu coast,China.The Ariathurai-Partheniades equation was used to determine the bed shear stress,by evaluating variations in the suspended sediment concentration within the water column.The derived relation between the bed shear stress and suspended sediment concentration shows that,at various stages of seabed erosion, suspended sediment concentration increases rapidly when the flow velocity is increased,but the pattern of change in the bed shear stress does not follow suit.At low concentrations,bed shear stress initially increases markedly with increasing flow velocity.However,when the concentration reaches an apparently critical level around 0.55 kg m"3,the rate of change in the bed shear stress abruptly slows down,or becomes almost constant,in response to further increases in the flow velocity.Results of experiments indicate that,from a critical level onward,suspended sediment concentration has a strong influence on the bed shear stress.  相似文献   

6.
A large number of rivers are frozen annually, and the river ice cover has an influence on the geomorphological processes. These processes in cohesive sediment rivers are not fully understood. Therefore, this paper demonstrates the impact of river ice cover on sediment transport, i.e. turbidity, suspended sediment loads and erosion potential, compared with a river with ice‐free flow conditions. The present sediment transportation conditions during the annual cycle are analysed, and the implications of climate change on wintertime geomorphological processes are estimated. A one‐dimensional hydrodynamic model has been applied to the Kokemäenjoki River in Southwest Finland. The shear stress forces directed to the river bed are simulated with present and projected hydroclimatic conditions. The results of shear stress simulations indicate that a thermally formed smooth ice cover diminishes river bed erosion, compared with an ice‐free river with similar discharges. Based on long‐term field data, the river ice cover reduces turbidity statistically significantly. Furthermore, suspended sediment concentrations measured in ice‐free and ice‐covered river water reveal a diminishing effect of ice cover on riverine sediment load. The hydrodynamic simulations suggest that the influence of rippled ice cover on shear stress is varying. Climate change is projected to increase the winter discharges by 27–77% on average by 2070–2099. Thus, the increasing winter discharges and possible diminishing ice cover periods both increase the erosion potential of the river bed. Hence, the wintertime sediment load of the river is expected to become larger in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
《国际泥沙研究》2020,35(5):467-483
The current study introduces a novel approach to estimate the incipient motion of sediments under a wide range of flow regimes by developing a fuzzy model with a fuzzy-band that refers to a transition from weak motion to general motion of sediment. The partial sediment entrainment is defined by fuzzy sets considering the uncertainty related to the individual ratio of inertia to viscous forces which is the definition of shear Reynolds number. In the current study, the Mamdani Fuzzy Inference System (Mamdani FIS) is used to develop a comprehensive fuzzy model of the incipient motion of sediment. The Mamdani FIS has a shortcoming regarding the training of the fuzzy model. To estimate the dimensionless shear stress, a new method is developed by combining a genetic algorithm with the fuzzy approach which is named the Geno-Mamdani Fuzzy Inference System (GMFIS) method. The performance of the GMFIS model is evaluated using experimental data by considering root mean square error (RMSE), Nash-Sutcliffe coefficient of efficiency (CE), degree of robustness (Dr), and concordance coefficient (CC) as evaluation criteria. The GMFIS model performed very well based on the RMSE, CE, Dr, and CC values and satisfactorily represented the three types of incipient motion. Finally, a new range of fuzzy, dimensionless, critical shear stress values is established in all flow conditions from weak to general sediment entrainment.  相似文献   

8.
The Shimian area of Sichuan sits at the junction of the Bayan Har block, Sichuan-Yunnan rhombic block, and Yangtze block, where several faults intersect. This region features intense tectonic activity and frequent earthquakes. In this study, we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region. We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area. Although some stations returned a polarization direction of NNW-SSE, a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area. The polarization directions of the fast shear wave were highly consistent throughout the study area. This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults. The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures. The mean delay time between fast and slow shear waves was 3.83 ms/km, slightly greater than the values obtained in other regions of Sichuan. This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.  相似文献   

9.
1 INTRODUCTION River erosion is a complex phenomenon. The rate of bank retreat is determined by flow, bed topography, sediment transport, bank properties, and water quality. Prediction of future river planform changes and the knowledge of river erosion and river meandering are required for land use planning in alluvial river valleys and determining locations for bridges and hydraulic structures. The control of riverbank erosion requires prediction of flow and bed features in a meanderin…  相似文献   

10.
Crop residues in conservation tillage systems are known to cause both a reduction in the erosive runoff power and an increase in the topsoil erosion resistance. In this study, the relative importance of both mechanisms in reducing soil loss by concentrated flow erosion is examined. Therefore, a method to calculate the effective flow shear stress responsible for soil detachment in the presence of a residue cover is applied. The determination of effective flow shear stress is based on the recalculation of the hydraulic radius for residue treatments. The method was tested in a laboratory flume by comparing soil detachment rates of identical pairs of soil samples that only differ in the presence or absence of crop residues. This shear stress partitioning approach and a soil detachment correction were then applied to a dataset of soil detachment measurements on undisturbed topsoil samples from a no‐till field plot on a loess‐derived soil, sampled during one growing season. Results indicate that only a small fraction (10% on average) of the difference in soil detachment rate between conventional and conservation tillage can be attributed to the dissipation of shear forces on the residues. The remaining decrease in soil detachment during concentrated runoff after a two‐year application of conservation tillage can be explained by the increased dry bulk density and root and crop residue content in the topsoil that reduces soil erodibility. After correcting for the presence of residues, the temporal variability in soil detachment rates (Dr) during concentrated flow for a given flow shear stress (τ) for both treatments can be predicted fairly well (R2 = 0·87) from dry soil bulk density (DBD, representing consolidation effects), soil moisture content (SMC, representing antecedent rainfall conditions), the dry mass of organic material (OM, representing root growth and residue decomposition) and saturated soil shear strength σs, sat using an equation of the form: This study is the first to show that the effect of conservation tillage on soil detachment rates is a result of soil property modifications affecting soil erodibility, rather than a result of the surface residue decreasing flow erosivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
《国际泥沙研究》2020,35(2):193-202
The current work focuses on locally resolving velocities,turbulence,and shear stresses over a rough bed with locally non-uniform character.A nonporous subsurface layer and fixed interfacial sublayer of gravel and sand were water-worked to a nature-like bed form and additionally sealed in a hydraulic flume.Two-dimensional Particle Image Velocimetry(2 D-PIV) was applied in the vertical plane of the experimental flume axis.Runs with clear water and weak sediment transport were done under slightly supercritical flow to ensure sediment transport conditions without formation of considerable sediment deposits or dunes.The study design included analyzing the double-averaged flow parameters of the entire measurement domain and investigating the flow development at 14 consecutive vertical subsections.Local geometrical variabilities as well the presence of sediment were mainly reflected in the vertical velocity component.Whereas the vertical velocity decreased over the entire depth in presence of sediment transport,the streamwise velocity profile was reduced only within the interfacial sublayer.In the region with decelerating flow conditions,however,the streamwise velocity profile systematically increased along the entire depth extent.The increase in the main velocity(reduction of flow resistance)correlated with a decrease of the turbulent shear and main normal stresses.Therefore,effects of rough bed smoothening and drag force reduction were experimentally documented within the interfacial sublayer due to mobile sediment.Moreover,the current study leads to the conclusion that in nonuniform flows the maximum Reynolds stress values are a better predictor for the bed shear stress than the linearly extrapolated Reynolds stress profile.This is an important finding because,in natural flows,uniform conditions are rare.  相似文献   

12.
Sediment erosion results from hydrodynamic forcing, represented by the bottom shear stress (BSS), and from the erodability of the sediment, defined by the critical erosion shear stress and the erosion rate. Abundant literature has dealt with the effects of biological components on sediment erodability and concluded that sediment processes are highly sensitive to the biota. However, very few sediment transport models account for these effects. We provide some background on the computation of BSS, and on the classical erosion laws for fine sand and mud, followed by a brief review of biota effects with the aim of quantifying the latter into generic formulations, where applicable.  相似文献   

13.
Sediment grains in a bedrock‐alluvial river will be deposited within or adjacent to a sediment patch, or as isolated grains on the bedrock surface. Previous analysis of grain geometry has demonstrated that these arrangements produce significant differences in grain entrainment shear stress. However, this analysis neglected potential interactions between the sediment patches, local hydraulics and grain entrainment. We present a series of flume experiments that measure the influence of sediment patches on grain entrainment. The flume had a planar bed with roughness that was much smaller than the diameters of the mobile grains. In each experiment sediment was added either as individual grains or as a single sediment pulse. Flow was then increased until the sediment was entrained. Analysis of the experiments demonstrates that: (1) for individual grains, coarse grains are entrained at a higher discharge than fine grains; (2) once sediment patches are present, the different in entrainment discharge between coarse and fine grains is greatly reduced; (3) the sheltering effect of patches also increases the entrainment discharge of isolated grains; (4) entire sediment patches break‐up and are eroded quickly, rather than through progressive grain‐by‐grain erosion; (5) as discharge increases there is some tendency for patches to become more elongate and flow‐aligned, and more randomly distributed across the bed. One implication of this research is that the critical shear stress in bedrock‐alluvial channels will be a function of the extent of the sediment cover. Another is that the influence of sediment patches equalizes critical shear stresses between different grain sizes and grain locations, meaning that these factors may not need to be accounted for. Further research is needed to quantify interactions between sediment patches, grain entrainment and local hydraulics on rougher bedrock surfaces, and under different types of sediment supply. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Shear velocity u* is an important parameter in geophysical flows, in particular with respect to sediment transport dynamics. In this study, we investigate the feasibility of applying five standard methods [the logarithmic mean velocity profile, the Reynolds stress profile, the turbulent kinetic energy (TKE) profile, the wall similarity and spectral methods] that were initially developed to estimate shear velocity in smooth bed flow to turbulent flow over a loose bed of coarse gravel (D50 = 1·5 cm) under sub‐threshold conditions. The analysis is based on quasi‐instantaneous three‐dimensional (3D) full depth velocity profiles with high spatial and temporal resolution that were measured with an Acoustic Doppler Velocity Profiler (ADVP) in an open channel. The results of the analysis confirm the importance of detailed velocity profile measurements for the determination of shear velocity in rough‐bed flows. Results from all methods fall into a range of ± 20% variability and no systematic trend between methods was observed. Local and temporal variation in the loose bed roughness may contribute to the variability of the logarithmic profile method results. Estimates obtained from the TKE and Reynolds stress methods reasonably agree. Most results from the wall similarity method are within 10% of those obtained by the TKE and Reynolds stress methods. The spectral method was difficult to use since the spectral energy of the vertical velocity component strongly increased with distance from the bed in the inner layer. This made the choice of the reference level problematic. Mean shear stress for all experiments follows a quadratic relationship with the mean velocity in the flow. The wall similarity method appears to be a promising tool for estimating shear velocity under rough‐bed flow conditions and in field studies where other methods may be difficult to apply. This method allows for the determination of u* from a single point measurement at one level in the intermediate range (0·3 < h < 0·6). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
横波各向异性在裂缝和应力分析中的应用   总被引:1,自引:0,他引:1  
针对裂缝性和低孔低渗地层的横波各向异性特征,反演得到横波各向异性参数,研究了裂缝的发育程度、方位和有效性,并对低孔低渗地层的应力场分布状态和方位进行了综合评价;通过对反演得到的快、慢弯曲波形进行频散分析以及计算单极横波各向异性大小,确定了引起横波各向异性的原因,并结合常规测井资料、岩心及FMI成像资料对分析结果进行了验证和对比,最后对研究区8口典型井的横波各向异性进行了综合处理和评价,得到了该区的横波各向异性特征以及和总的应力场走向.结果表明,利用横波的各向异性参数可以有效的评价裂缝的发育程度、走向及有效性,并能准确的确定地应力分布状态和最大水平应力方位.  相似文献   

16.
Bed shear stress is a fundamental variable in river studies to link ?ow conditions to sediment transport. It is, however, dif?cult to estimate this variable accurately, particularly in complex ?ow ?elds. This study compares shear stress estimated from the log pro?le, drag, Reynolds and turbulent kinetic energy (TKE) approaches in a laboratory ?ume in a simple boundary layer, over plexiglas and over sand, and in a complex ?ow ?eld around de?ectors. Results show that in a simple boundary layer, the log pro?le estimate is always the highest. Over plexiglas, the TKE estimate was the second largest with a value 30 per cent less than the log estimate. However, over sand, the TKE estimate did not show the expected increase in shear stress. In a simple boundary layer, the Reynolds shear stress seems the most appropriate method, particularly the extrapolated value at the bed obtained from a turbulent pro?le. In a complex ?ow ?eld around de?ectors, the TKE method provided the best estimate of shear stress as it is not affected by local streamline variations and it takes into account the increased streamwise turbulent ?uctuations close to the de?ectors. It is suggested that when single‐point measurements are used to estimate shear stress, the instrument should be positioned close to 0·1 of the ?ow depth, which corresponds to the peak value height in pro?les of Reynolds and TKE shear stress. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
In most aquatic ecosystems, hydrodynamic conditions are a key abiotic factor determining species distribution and aquatic plant abundance. Recently, local differences in hydrodynamic conditions have been shown to be an explanatory mechanism for the patchy pattern of Callitriche platycarpa Kütz. vegetation in lowland rivers. These local conditions consists of specific areas of increased shear zones, resulting in additional plant stress and erosion of the sediment on the one hand and local decreased shear zones resulting in zones favourable to plant growth and sedimentation of bed material on the other hand. In this study, the process of this spatial plant-flow-sedimentation interaction has been illustrated quantitatively by in situ flume measurements. By disturbing the incoming discharge on a single patch in such flume, we have quantified the behaviour and influence of a C. platycarpa patch under normal field conditions (base flow). Additionally, the behaviour of a C. platycarpa patch under different conditions of hydrodynamic stress has been examined in a laboratory flume. Indeed, flexible, submerged macrophytes are capable to adapt patch dimensions with changing stream velocities. At times of modest hydrodynamic stress, the species takes a position near the water surface and optimises its leaf stand, thereby maximising its photosynthetic capacity. At times of peak discharge, the patch will bend down towards the river bed and become more confined and streamlined, as such averting the stream velocity and diminishing the risk of breaking or being uprooted.In this paper, the processes of local hydrodynamic conditions on the patch and the patch’ intriguing life strategy of avoiding negative feedback was shown.  相似文献   

18.
The internal sediment release is a key factor controlling eutrophication processes in large,shallow lakes.Sediment resuspension is associated with the wave and current induced shear stress in large,shallow lakes.The current study investigated the wind field impacts on sediment resuspension from the bottom at Meiliang Bay of large,shallow Lake Taihu.The impacts of the wind field on the wave,current,and wave-current combined shear stresses were calculated.The critical wind speed range was 4–6 m/s after which wave and current shear stress started to increase abruptly,and onshore wind directions were found to be mainly responsible for greater shear stress at the bottom of Lake Taihu.A second order polynomial fitting correlation was found between wave(R^2 0.4756)and current(R^2 0.4466)shear stresses with wind speed.Wave shear stress accounted for 92.5% of the total shear stress at Meiliang Bay.The critical wave shear stress and critical total shear stress were 0.13 N/m^2 for sediment resuspension whereas the current shear stress was 0.019 N/m^2 after which suspended sediment concentrations(SSC)increased abruptly.A second order polynomial fitting correlation was found between wave(R^2 0.739),current(R^2 0.6264),and total shear stress(R^2 0.7394)with SSC concentrations at Meiliang Bay of Lake Taihu.The sediment resuspension rate was 120 to 738 g/m^2/d during 4–6 m/s onshore winds while offshore winds contributed ≥ 200 g/m^2/d.The study results reveal the driving mechanism for understanding the role of the wind field in sediment resuspension while considering wind speed and direction as control parameters to define wave and current shear stresses.  相似文献   

19.
《国际泥沙研究》2016,(3):251-256
The classic Engelund bed-load formula involves four oversimplified assumptions concerning the quantity of particles per unit bed area that can be potentially entrained into motion, the probability of sediment being entrained into motion at a given instant, the mean velocity of bed-load motion, and the dimen-sionless incipient shear stress. These four aspects are reexamined in the light of new findings in hydrodynamics, and a modified bed-load formula is then proposed. The modified formula shows promise as being reliable in predicting bed-load transport rates in a wide range of flow intensities.  相似文献   

20.
Continuous monitoring of bed shear stress in large river systems may serve to better estimate alluvial sediment transport to the coastal ocean.Here we explore the possibility of using a horizontally deployed acoustic Doppler current profiler(ADCP) to monitor bed shear stress,applying a prescribed boundary layer model,previously used for discharge estimation.The model parameters include the local roughness length and a dip correction factor to account for sidewall effects.Both these parameters depend on river stage and on the position in the cross-section, and were estimated from shipborne ADCP data.We applied the calibrated boundary layer model to obtain bed shear stress estimates over the measuring range of the HADCP.To validate the results,co-located coupled ADCPs were used to infer bed shear stress,both from Reynolds stress profiles and from mean velocity profiles. From HADCP data collected over a period of 1.5 years,a time series of width profiles of bed shear stress was obtained for a tidal reach of the Mahakam River,East Kalimantan,Indonesia.A smaller dataset covering 25 hours was used for comparison with results from the coupled ADCPs.The bed shear stress estimates derived from Reynolds stress profiles appeared to be strongly affected by local effects causing upflow and downflow,which are not included in the boundary layer model used to derive bed shear stress with the horizontal ADCP.Bed shear stresses from the coupled ADCP are representative of a much more localized flow,while those derived with the horizontal ADCP resemble the net effect of the flow over larger scales.Bed shear stresses obtained from mean velocity profiles from the coupled ADCPs show a good agreement between the two methods,and highlight the robustness of the method to uncertainty in the estimates of the roughness length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号