首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The well‐constrained seismic stratigraphy of the offshore Canterbury basin provides the opportunity to investigate long‐term changes in sediment supply related to the formation of a transpressive plate boundary (Alpine Fault). Reconstructions of the relative motion of the Australian and Pacific plates reveal divergence in the central Southern Alps prior to ~20.1 Ma (chron 6o), followed by increasing average rates of convergence, with a marked increase after ~6 Ma (late Miocene). A strike–slip component existed prior to 33.5 Ma (chron 13o) and perhaps as early as Eocene (45 Ma). However, rapid strike–slip motion (>30 mm yr?1) began at ~20.1 Ma (chron 6o). Since ~20.1 Ma there has been no significant change in the strike–slip component of relative plate motion. Sedimentation rates are calculated from individual sequence volumes that are then summed to represent sequence groups covering the same time periods as the tectonic reconstructions. Rates are relatively high (>22 mm yr?1), from 15 to ~11.5 Ma (sequence group 1). Rates decrease to a minimum (<15 mm yr?1) during the ~11.5–6 Ma interval (sequence group 2), followed by increased rates during the periods of ~6–2.6 Ma (21 mm yr?1; group 3) and 2.6–0 Ma (~25 mm yr?1; group 4). Good agreement between sedimentation and tectonic convergence rates in sequence groups 2–4 indicates that tectonism has been the dominant control on sediment supply to the Canterbury basin since ~11.5 Ma. In particular, high sedimentation rates of 21 and ~25 mm yr?1 in groups 3 and 4, respectively, may reflect increased plate convergence and uplift at the Southern Alps at ~6 Ma. The early‐middle Miocene (~15–11.5 Ma) high sedimentation rate (22 mm yr?1) correlates with low convergence rates (~2 mm yr?1) and is mainly a response to global climatic and eustatic forcing.  相似文献   

2.
Integrated geohistory analysis performed on high‐resolution stratigraphy of Venezia 1 and Lido 1 wells (Quaternary–Pliocene interval) and low‐resolution stratigraphy of a simulated well extending Lido 1 down to the base of Cenozoic (Palaeocene–Miocene interval) is used to reconstruct the interplay between subsidence and sedimentation that occurred in the Venice area (eastern Po Plain) during the last 60 Myr, and to discuss the relationships between calculated subsidence rates and time resolution of stratigraphic data. Both subsidence and sedimentation are mostly related to the tectonic evolution of the belts that surround the Venice basin, influencing the lithosphere vertical motions and the input of clastic sediments through time. In particular, two subsidence phases are recorded between 40–33.5 and 32.5–24 Myr (0.13 and 0.14 mm year?1, respectively), coeval with tectonic phases in the Dinaric belt. Vice versa, during the main South‐Alpine orogenic phase (middle–late Miocene), quiescence or little uplift (?0.03 mm year?1) reflects the location of the Venice area close to the peripheral bulge of the South‐Alpine foreland system. Early Pliocene evolution is characterised by a number of subsidence/uplift events, among which two uplifts occurred between 5–4.5 and 3–2.2 Myr (at ?0.4 and ?0.2 mm year?1, respectively) and can be correlated with tectonic motions in the Apennines. During the last million years, the Venice area was initially characterised by uplift (?0.6 mm year?1 rising to ?1.5 mm year?1 between 0.4 and 0.38 Myr), eventually replaced by subsidence at a rate ranging between 1.6 and 1.0 mm year?1 up to 0.12 Myr and then decreased to 0.4 mm year?1, as an average, up to present. Our results highlight that time resolution of the stratigraphic dataset deeply influences the order of magnitude obtained for the calculated subsidence rate. This is because subsidence seems to have worked through short‐lived peaks (in the order of 105 years), alternating with long relatively quiescent intervals. This suggests caution when components of subsidence are deduced by subtracting long‐term to short‐term subsidence rate.  相似文献   

3.
The North Sakhalin Basin in the western Sea of Okhotsk has been the main site of sedimentation from the Amur River since the Early Miocene. In this article, we present regional seismic reflection data and a Neogene–Recent sediment budget to constrain the evolution of the basin and its sedimentary fill, and consider the implications for sediment flux from the Amur River, in particular testing models of continental‐scale Neogene drainage capture. The Amur‐derived basin‐fill history can be divided into five distinct stages: the first Amur‐derived sediments (>21–16.5 Ma) were deposited during a period of transtension along the Sakhalin‐Hokkaido Shear Zone, with moderately high sediment flux to the basin (71 Mt year?1). The second stage sequence (16.5–10.4 Ma) was deposited following the cessation of transtension, and was characterised by a significant reduction in sediment flux (24 Mt year?1) and widespread retrogradation of deltaic sediments. The third (10.4–5.3 Ma) and fourth (5.3–2.5 Ma) stages were characterised by progradation of deltaic sediments and an associated increase in sediment flux (48–60 Mt year?1) to the basin. Significant uplift associated with regional transpression started during this time in southeastern Sakhalin, but the north‐eastward propagating strain did not reach the NE shelf of Sakhalin until the Pleistocene (<2.5 Ma). This uplift event, still ongoing today, resulted in recycling of older deltaic sediments from the island of Sakhalin, and contributed to a substantially increased total sediment flux to the adjacent basinal areas (165 Mt year?1). Adjusted rates to discount these local erosional products (117 Mt year?1) imply an Amur catchment‐wide increase in denudation rates during the Late Pliocene–Pleistocene; however, this was likely a result of global climatic and eustatic effects, combined with tectonic processes within the Amur catchment and possibly a smaller drainage capture event by the Sungari tributary, rather than continental‐scale drainage capture involving the entire upper Amur catchment.  相似文献   

4.
This paper discusses the Cenozoic interaction of regional tectonics and climate changes. These processes were responsible for mass flux from mountain belts to depositional basins in the eastern Alpine retro‐foreland basin (Venetian–Friulian Basin). Our discussion is based on the depositional architecture and basin‐scale depositional rate curves obtained from the decompacted thicknesses of stratigraphic units. We compare these data with the timing of tectonic deformation in the surrounding mountain ranges and the chronology of both long‐term trends and short‐term high‐magnitude (‘aberrant’) episodes of climate change. Our results confirm that climate forcing (and especially aberrant episodes) impacted the depositional evolution of the basin, but that tectonics was the main factor driving sediment flux in the basin up to the Late Miocene. The depositional rate remained below 0.1 mm year?1 on average from the Eocene to the Miocene, peaking at around 0.36 mm year?1, during periods of maximum tectonic activity in the eastern Southern Alps. This dynamic strongly changed during the Pliocene–Pleistocene, when the basin‐scale depositional rate increased to an average of 0.26 mm year?1 (Pliocene) and 0.73 mm year?1 (Pleistocene). This result fits nicely with the long‐term global cooling trend recorded during this time interval. Nevertheless, we note that the timing of the observed increase may be connected with the presumed onset of major glaciations in the southern flank of the Alps (0.7–0.9 Ma), the acceleration of the global cooling trend (since 3–4 Ma) and climate variability (in terms of magnitude and frequency). All these factors suggest that combined high‐frequency and high‐magnitude cooling–warming cycles are particularly powerful in promoting erosion in mid‐latitude mountain belts and therefore in increasing the sediment flux in foreland basins.  相似文献   

5.
The Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), recovered the first Cenozoic sedimentary sequence from the central Arctic Ocean. ACEX provided ground truth for basin scale geophysical interpretations and for guiding future exploration targets in this largely unexplored ocean basin. Here, we present results from a series of consolidation tests used to characterize sediment compressibility and permeability and integrate these with high‐resolution measurements of bulk density, porosity and shear strength to investigate the stress history and the nature of prominent lithostratigraphic and seismostratigraphic boundaries in the ACEX record. Despite moderate sedimentation rates (10–30 m Myr?1) and high permeability values (10?15–10?18 m2), consolidation and shear strength measurements both suggest an overall state of underconsolidation or overpressure. One‐dimensional compaction modelling shows that to maintain such excess pore pressures, an in situ fluid source is required that exceeds the rate of fluid expulsion generated by mechanical compaction alone. Geochemical and sedimentological evidence is presented that identifies the Opal A–C/T transformation of biosiliceous rich sediments as a potential additional in situ fluid source. However, the combined rate of chemical and mechanical compaction remain too low to fully account for the observed pore pressure gradients, implying an additional diagenetic fluid source from within or below the recovered Cenozoic sediments from ACEX. Recognition of the Opal A–C/T reaction front in the ACEX record has broad reaching regional implications on slope stability and subsurface pressure evolution, and provides an important consideration for interpreting and correlating the spatially limited seismic data from the Arctic Ocean.  相似文献   

6.
We use well data to investigate the timing and the origin of the lithospheric bulge in the West Taiwan Basin. The possibility that the subsidence patterns observed since Middle‐Upper Miocene are simply related to the flexural response of the Chinese continental margin to loading is examined by the reconstructions of the West Taiwan Basin evolution using two‐dimensional geometric and numerical flexural modelling of a purely elastic plate. Reconstructions of the forebulge and basin evolution since Middle Miocene are finally discussed in terms of plate strength and geological context. The results are finally placed in the framework of the geodynamic setting of the Philippines Sea Plate/Eurasia convergence in order to provide new insights on the early stage of the Taiwan arc‐continent collision. Modelling suggests that the initiation of the flexure in the West Taiwan Basin occurred at ca. 12.5–8.6 Ma. A good fit is obtained for Te of 10–20 km, consistent with earlier studies. During 5–6 m year?1 the growth of the bulge was static and associated with increasing plate curvature. Then, at 3–4 Ma the bulge migrated forelandward within the West Taiwan Basin in relation to the migration of the load and the increase in plate curvature. The passage of the forebulge into an inherited weaker portion of the Chinese margin produced an increase in plate curvature and renewed extension, leading to enhancement of the bulge uplift and to its localization for a prolonged period of time. Taking into account the age of the flexure initiation and plate convergence rates, we infer that the load might not be related to the arc‐continent collision. We conclude that a Middle Miocene obduction, already proposed by some authors, may explain the deflection of the Chinese margin at that time. It is not before 3–4 Ma that the bulge and the load propagated forelandward in association with the development of the Taiwan arc‐continent collision.  相似文献   

7.
Four Mesozoic–Cenozoic palaeothermal episodes related to deeper burial and subsequent exhumation and one reflecting climate change during the Eocene have been identified in a study of new apatite fission‐track analysis (AFTA®) and vitrinite reflectance data in eight Danish wells. The study combined thermal‐history reconstruction with exhumation studies based on palaeoburial data (sonic velocities) and stratigraphic and seismic data. Mid‐Jurassic exhumation (ca. 175 Ma) was caused by regional doming of the North Sea area, broadly contemporaneous with deep exhumation in Scandinavia. A palaeogeothermal gradient of 45 °C km?1 at that time may be related to a mantle plume rising before rifting in the North Sea. Mid‐Cretaceous exhumation affecting the Sorgenfrei–Tornquist Zone is probably related to late Albian tectonic movements (ca. 100 Ma). The Sole Pit axis in the southern North Sea experienced similar inversion and this suggests a plate‐scale response along crustal weakness zones across NW Europe. Mid‐Cenozoic exhumation affected the eastern North Sea Basin and the onset of this event correlates with a latest Oligocene unconformity (ca. 24 Ma), which indicates a major Scandinavian uplift phase. The deeper burial that caused the late Oligocene thermal event recognized in the AFTA data reflect progradation of lower Oligocene wedges derived from the uplifting Scandinavian landmass. The onset of Scandinavian uplift is represented by an earliest Oligocene unconformity (ca. 33 Ma). Late Neogene exhumation affected the eastern (and western) North Sea Basin including Scandinavia. The sedimentation pattern in the central North Sea Basin shows that this phase began in the early Pliocene (ca. 4 Ma), in good agreement with the AFTA data. These three phases of Cenozoic uplift of Scandinavia also affected the NE Atlantic margin, whereas an intra‐Miocene unconformity (ca. 15 Ma) on the NE Atlantic margin reflects tectonic movements of only minor amplitude in that area. The study demonstrates that only by considering episodic exhumation as an inherent aspect of the sedimentary record can the tectonic evolution be accurately reconstructed.  相似文献   

8.
《Basin Research》2018,30(2):169-186
Long‐term (106–7 yr) clastic sedimentary fluxes to the ocean provide first‐order constraints on the response of continental surfaces to both tectonic and climatic forcing as well as the supply that builds the stratigraphic record. Here, we use the dated and regionally correlated relict lateritic landforms preserved over Sub‐Saharan West Africa to map and quantify regional denudation as well as the export of main catchments for three time intervals (45–24, 24–11 and 11–0 Ma). At the scale of West Africa, denudation rates are low (ca. 7 m Myr−1) and total clastic export rate represents 18.5 × 103 km3 Myr−1. Export rate variations among the different drainage groups depend on the drainage area and, more importantly, rock uplift. Denuded volumes and offshore accumulations are of the same magnitude, with a noticeably balanced budget between the Niger River delta and its catchment. This supports the establishment of the modern Niger catchment before 29 Ma, which then provided sufficient clastic material to the Niger delta by mainly collecting the erosion products of the Hoggar hotspot swell. Accumulations on the remaining Equatorial Atlantic margin of Africa suggest an apparent export deficit but the sediment budget is complicated by the low resolution of the offshore data and potential lateral sediment supply from the Niger delta. Further distortion of the depositional record by intracontinental transient storage and lateral input or destabilization of sediments along the margin may be identified in several locations, prompting caution when deducing continental denudation rates from accumulation only.  相似文献   

9.
We present the first fission‐track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene–early Eocene Amiran–Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj‐Sirjan Zone. Only apatite fission‐track (AFT) data have been successfully obtained, including 26 ages and 11 track‐length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre‐middle Jurassic at ~171 and ~225 Ma, early–late Cretaceous at ~91 Ma, Maastrichtian at ~66 Ma, middle–late Eocene at ~38 Ma and Oligocene–early Miocene at ~22 Ma. The most widespread middle–late Eocene cooling phase, around ~38 Ma, is documented by a predominant grain‐age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle–late Eocene phase mostly produced a long‐lasting slow‐ or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj‐Sirjan domain and its Gaveh Rud fore‐arc basin. As evidenced in this study, the Zagros orogeny was long‐lived and multi‐episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation.  相似文献   

10.
The Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto the in situ Mesozoic and early Cenozoic rocks (predominantly Late Eocene–earliest Miocene) in northwestern New Zealand. Using low‐temperature thermochronology, we investigate the sedimentary provenance, burial and erosion histories of the rocks from both the hanging and footwalls of the allochthon. In central Northland (Parua Bay), both the overlying allochthon and underlying Early Miocene autochthon yield detrital zircon and partially reset apatite fission‐track ages that were sourced from the local Jurassic terrane and perhaps Late Cretaceous volcanics; the autochthon contains, additionally, material sourced from Oligocene volcanics. Thermal history modelling indicates that the lower part of the allochthon together with the autochthon was heated to ca. 55–100°C during the Late Oligocene and Early Miocene, most likely due to the burial beneath the overlying nappe sequences. From the Mesozoic basement exposed in eastern Northland, we obtained zircon fission‐track ages tightly bracketed between 153 and 149 Ma; the apatite fission‐track ages on the other hand, generally young towards the northwest, from 129 to 20.9 Ma. Basement thermochronological ages are inverted to simulate the emplacement and later erosion of the Northland Allochthon, using a thermo‐kinematic model coupled with an inversion algorithm. The results suggest that during the Late Oligocene, the nappes in eastern Northland ranged from ca. 4–6‐km thick in the north to zero in the Auckland region (over a distance >200 km). Following the allochthon emplacement, eastern Northland was uplifted and unroofed during the Early Miocene for a period of ca. 1–6 Myr at the rate of 0.1–0.8 km/Myr, leading to rapid erosion of the nappes. Since Middle Miocene, the basement uplift ceased and the erosion of the nappes and the region as a whole slowed down (ca. 0–0.2 km/Myr), implying a decay in the tectonic activity in this region.  相似文献   

11.
In order to evaluate the relationship between thrust loading and sedimentary facies evolution, we analyse the progradation of fluvial coarse‐grained deposits in the retroarc foreland basin system of the northern Andes of Colombia. We compare the observed sedimentary facies distribution with the calculated one‐dimensional (1D) Eocene to Quaternary sediment‐accumulation rates in the Medina wedge‐top basin and with a three‐dimensional (3D) sedimentary budget based on the interpretation of ~1800 km of industry‐style seismic reflection profiles and borehole data. Age constraints are derived from a new chronostratigraphic framework based on extensive fossil palynological assemblages. The sedimentological data from the Medina Basin reveal rapid accumulation of fluvial and lacustrine sediments at rates of up to ~500 m my?1 during the Miocene. Provenance data based on gravel petrography and paleocurrents reveal that these Miocene fluvial systems were sourced from Upper Cretaceous and Paleocene sedimentary units exposed to the west in the Eastern Cordillera. Peak sediment‐accumulation rates in the upper Carbonera Formation and the Guayabo Group occur during episodes of coarse‐grained facies progradation in the early and late Miocene proximal foredeep. We interpret this positive correlation between sediment accumulation and gravel deposition as the direct consequence of thrust activity along the Servitá–Lengupá faults. This contrasts with one class of models relating gravel progradation in more distal portions of foreland basin systems to episodes of tectonic quiescence.  相似文献   

12.
The Phan Rang Carbonate Platform located offshore south Vietnam covers more than 15 000 km2, making it one of the largest carbonate platforms in the South China Sea. Based on 2‐D seismic analysis, this paper outlines the platform evolution and analyzes the regional tectonic, climatic and oceanic factors that controlled the platform growth and demise. This study of the Phan Rang Carbonate Platform therefore provides an analogue to the regions late Neogene carbonates that form important targets for petroleum exploration. Platform growth initiated during the late middle Miocene along the open marine Vietnamese margin and continued throughout the late synrift to early postrift period of the area terminating around Pliocene time. During this period, the structural grain, local and regional tectonics as well as oceanographic effects exerted major controls on carbonate deposition. Optimal growth conditions existed during initial platform deposition and locally accumulation rates reached ca. 230 m Ma?1. Late Miocene regional uplift caused subaerial exposure that interrupted platform growth and caused intense karstification. A gradual reestablishment of marine conditions promoted renewed platform growth. However, carbonate production was stressed by increased terrigenous input caused by onshore uplift and by inorganic nutrification of the surface waters. Nutrification probably occurred in response to increased nutrient influx derived from onshore denudation, enhanced periodically by soil ravinement during transgression. The onset or intensification of summer upwelling along the southern platform margin occurred in response to the onshore uplift and most likely contributed to the nutrification. The deteriorated growth conditions and fast subsidence resulted in platform split‐up, backstepping and local drowning. Subsequently, isolated platforms nucleated on structural highs as transgression continued. The remaining platforms thrived for a period but eventually failed to keep pace with subsidence, backstepped and drowned. The longest surviving platform now crops out at the seafloor at ca. 500 m depth.  相似文献   

13.
Deep‐marine deposits provide a valuable archive of process interactions between sediment gravity flows, pelagic sedimentation and thermohaline bottom‐currents. Stratigraphic successions can also record plate‐scale tectonic processes (e.g. continental breakup and shortening) that impact long‐term ocean circulation patterns, including changes in climate and biodiversity. One such setting is the Exmouth Plateau, offshore NW Australia, which has been a relatively stable, fine‐grained carbonate‐dominated continental margin from the Late Cretaceous to Present. We combine extensive 2D (~40,000 km) and 3D (3,627 km2) seismic reflection data with lithologic and biostratigraphic information from wells to reconstruct the tectonic and oceanographic evolution of this margin. We identified three large‐scale seismic units (SUs): (a) SU‐1 (Late Cretaceous)—500 m‐thick, and characterised by NE‐SW‐trending, slope‐normal elongate depocentres (c. 200 km long and 70 km wide), with erosional surfaces at their bases and tops, which are interpreted as the result of contour‐parallel bottom‐currents, coeval with the onset of opening of the Southern Ocean; (b) SU‐2 (Palaeocene—Late Miocene)—800 m‐thick and characterised by: (a) very large (amplitude, c. 40 m and wavelength, c. 3 km), SW‐migrating, NW‐SE‐trending sediment waves, (b) large (4 km‐wide, 100 m‐deep), NE‐trending scours that flank the sediment waves and (c) NW‐trending, 4 km‐wide and 80 m‐deep turbidite channel, infilled by NE‐dipping reflectors, which together may reflect an intensification of NE‐flowing bottom currents during a relative sea‐level fall following the establishment of circumpolar‐ocean current around Antarctica; and (c) SU‐3 (Late Miocene—Present)—1,000 m‐thick and is dominated by large (up to 100 km3) mass‐transport complexes (MTCs) derived from the continental margin (to the east) and the Exmouth Plateau Arch (to the west), and accumulated mainly in the adjacent Kangaroo Syncline. This change in depositional style may be linked to tectonically‐induced seabed tilting and folding caused by collision and subduction along the northern margin of the Australian plate. Hence, the stratigraphic record of the Exmouth Plateau provides a rich archive of plate‐scale regional geological events occurring along the distant southern (2,000 km away) and northern (1,500 km away) margins of the Australian plate.  相似文献   

14.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

15.
The early Miocene Dumri Formation and middle Miocene–Pliocene Siwalik Group were deposited in the Himalayan foreland basin in response to uplift and erosion in the Himalayan fold‐thrust belt. We report magnetostratigraphic data from four sections of these rocks in Nepal. Three of these sections are in the Siwalik Group in the hanging wall of the Main Frontal thrust, and one section is from the Dumri Formation in the hanging wall of the Main Boundary thrust (MBT). Thermal demagnetization experiments demonstrate that laminated siltstones yield palaeomagnetic data useful for tectonic and magnetostratigraphic studies whereas other lithofacies yield data of questionable reliability. Magnetostratigraphic data have been acquired from 297 sites within a 4200‐m‐thick section of Siwalik deposits at Surai Khola. The observed sequence of polarity zones correlates with the geomagnetic polarity time scale (GPTS) from chron C5Ar.1n to chron C2r.2n, spanning the time frame ca. 12.5–2.0 Ma. At Muksar Khola (eastern Nepal), 111 palaeomagnetic sites from a 2600‐m‐thick section of the Siwalik Group define a polarity zonation that correlates with the GPTS from chron C4Ar.2n to chron C2Br.1r, indicating an age range of ca. 10.0–3.5 Ma. At Tinau Khola, 121 sites from a 1824‐m‐thick section of the Siwalik Group are correlated to chrons C5An.1n through C4r.1n, equivalent to the time span ca. 11.8–8.1 Ma. At Swat Khola, 68 sites within a 1200‐m‐thick section of lower Miocene Dumri Formation are correlated with chrons C6n through C5Bn.2n, covering the time span ca. 19.9–15.1 Ma. Together with previous results from Khutia Khola and Bakiya Khola, these data provide the first magnetostratigraphic correlation along nearly the entire NW–SE length of Nepal. The correlation demonstrates that major lithostratigraphic boundaries in the Siwalik Group are highly diachronous, with roughly 2 Myr of variability. In turn, this suggests that the major sedimentological changes commonly inferred to reflect strengthening of the Asian monsoon are not isochronous. Sediment accumulation curves exhibit a 30–50% increase in accumulation rate in four of the five sections of the Siwalik Group, but the timing of this increase ranges systematically from ~11.1 Ma in western Nepal to ~5.3 Ma in eastern Nepal. If this increase in sediment accumulation rate is interpreted as a result of more rapid subsidence owing to thrust loading in the Himalaya, then the diachroneity of this increase suggests lateral propagation of a major thrust system, perhaps the MBT, at a rate of ca. 103 mm year?1 across the length of Nepal.  相似文献   

16.
We analyse a regional 2D seismic section of the Mexican Ridges foldbelt (MRFB), western Gulf of Mexico, and construct excess‐area diagrams for each of the structures comprising the foldbelt to estimate shortening, the onset of folding and the degradation of the folded seafloor. From the chronostratigraphy, we derive rates of tectonic and superficial mass transport and illustrate how they change across the MRFB. The resulting tectonic transport in the MRFB is 11.8 km forming a train of twelve buckle folds above a detachment at a depth of ca. 6 s of two‐way travel time, with an average strain of ca. 10%. The fold train grew at a mean uplift rate of ca. 0.21 mm year?1. Cross‐sectional balancing demonstrates that shortening balances the down‐slip motion of the Quetzalcoatl extensional system (QES), suggesting that horizontal compaction, volume loss and other penetrative deformation mechanisms are negligible. By assuming steady‐state denudation, we are able to distinguish sediments derived locally from sediments transported from distant sources. The constant of mass diffusivity, a parameter controlling the degradation rate, is ca. 0.42 m2 year ?1, which is characteristic of rapid, episodic, superficial mass movements. The combined sedimentation rate from both, local and distal sources is ca. 0.23 mm year ?1. Those values are not constant; structures proximal to the continental shelf are rising rapidly and are being degraded more intensely than those in the distal part of the MRFB, where sedimentation outweighs tectonic uplift. Our results indicate deformation initiated up to 3 Myr earlier than estimated from stacking patterns. Moreover, we find deformation started synchronously during the Late Miocene throughout the MRFB and not in two episodes as the stacking relations suggest. The discrepancy can be explained by a delay in the sedimentary response to folding. During early fold growth, nearly constant thickness strata are deposited before a progressive unconformity and other converging geometries develop. The development of growth strata is fast in the folds near the QES, which are being uplifted rapidly and degraded vigorously. Under these conditions, the stratigraphic relations give only a broad estimate of the pretectonic/syntectonic limit when compared to the excess‐area method. On the other hand, the development of growth strata took twice as much time for folds near the abyssal plain, which are being uplifted at a slower rate and where degradation is less intense. Consequently, the delay takes more time, and the use of stratigraphic relations introduces an even more pronounced bias towards younger ages in the identification of the onset of folding.  相似文献   

17.
The Corinth rift (Greece) is one of the world's most active rifts. The early Plio‐Pleistocene rift is preserved in the northern Peloponnese peninsula, south of the active Corinth rift. Although chronostratigraphic resolution is limited, new structural, stratigraphic and sedimentological data for an area >400 km2 record early rift evolution in three phases separated by distinct episodes of extension rate acceleration and northward fault migration associated with major erosion. Minimum total N–S extension is estimated at 6.4–7.7 km. The earliest asymmetrical, broad rift accommodated slow extension (0.6–1 mm a?1) over >3 Myrs and closed to the west. North‐dipping faults with throws of 1000–2200 m defined narrow blocks (4–7 km) with little footwall relief. A N‐NE flowing antecedent river system infilled significant inherited relief (Lower group). In the earliest Pleistocene, significant fluvial incision coincided with a 15 km northward rift margin migration. Extension rates increased to 2–2.5 mm a?1. The antecedent rivers then built giant Gilbert‐type fan deltas (Middle group) north into a deepening lacustrine/marine basin. N‐dipping, basin margin faults accommodated throws <1500 m. Delta architecture records initiation, growth and death of this fault system over ca. 800 ka. In the Middle Pleistocene, the rift margin again migrated 5 km north. Extension rate increased to 3.4–4.8 mm a?1. This transition may correspond to an unconformity in offshore lithostratigraphy. Middle group deltas were uplifted and incised as new hangingwall deltas built into the Gulf (Upper group). A final increase to present‐day extension rates (11–16 mm a?1) probably occurred in the Holocene. Fault and fault block dimensions did not change significantly with time suggesting control by crustal rheological layering. Extension rate acceleration may be due to strain softening or to regional tectonic factors.  相似文献   

18.
This paper presents a three‐dimensional (3D) seismic analysis of sediment remobilization and fluid migration in a 2000‐km2 area above the Gjallar Ridge located in the Vøring Basin, offshore Norway. Three distinct types of mounded structures have been identified as resulting from focused fluid/gas migration and associated mud remobilization and intrusion. Type A structures are gently mounded, and we infer that these structures formed because of in situ remobilization of Middle Eocene to Lower–Middle Oligocene fine‐grained sediments in response to fluid and minor sediment injection via deep‐seated normal faults. Type B structures comprise relatively steep‐sided mounds and are restricted to the pre‐Miocene interval. They are often located above narrow zones of discontinuous low‐amplitude reflections resembling gas chimneys. Some of the Type B structures are associated with stacked amplitude anomalies and possible mud volcanoes at the base Pleistocene indicating their long‐term significance as vertical fluid conduits. Type C structures comprise discrete mound features that seem to jack up the Top Palaeocene (Top Brygge) horizon. These are similar to hydrothermal mounds found elsewhere on the Norwegian Margin and associated with igneous sill intrusion during North Atlantic breakup. This study highlights the utility of 3D seismic data for mapping of fluid and sediment mobilization through time over large basinal areas.  相似文献   

19.
A perplexing macrogeomorphic problem is the persistence of topography in mountain ranges that were initially formed by orogenic events hundreds of millions of years old. In this paper, we deconvolve the post-Triassic macrogeomorphic history of a portion of one of these ranges, the central and northern Appalachians, using a well-documented offshore isopach sedimentary record of the US Atlantic margin. Topography is an important signature of tectonic, eustatic and/or geomorphic processes that produces changes in the erodible thickness of the crust (ETC). We define ETC as the total thickness of crust that would have to be consumed by erosion to reduce the mean elevation of a landscape to sea level. We use the term ‘source flux’, designated by ν˙, to describe the rate of change in ETC attributed to deep-seated geological processes such as crustal thickening, crustal extension, magmatic intrusions or dynamic flow in the mantle. In a mountain belt, the rate of change of mean elevation with respect to a base level, designated by ? ′, can be represented as ? ′ = c(ν˙ ? k d z ′ ?; ? c ) ?& hairsp;l˙ , where k d is a proportionality constant relating the mean mechanical erosion rate to mean elevation, ? c is the mean chemcial erosion rate, c  is a compensation ratio (held constant for Airy isostasy at 0.21) and l˙  is the rate of eustatic sea-level change. This equation describes the sum of constructive source terms, two destructive erosion terms and a eustatic sea-level term. We use this simple linear equation to develop a landscape evolution model based on the concept of a unit response function. The unit response function is analogous to a unit hydrograph which describes the relationship between input (rainfall) and output (discharge) in a hydrological system. In our case, we solve for the general relationship between the source flux into the mountain belt and the erosional flux out of the belt. Offshore sediment volumes are used to determine the erosional flux. Drainage basin area is treated as either a constant (pinned drainage divide) or as increasing through time (migrating drainage divide). We use a third-order polynomial fit to a global sea-level curve to account for long-term eustatically driven changes in ETC and in drainage basin area. Chemical erosion is treated as a constant fixed at 5 m Myr?1. We consider two end-member models. The first is a ‘tectonic’ model in which the source flux is allowed to vary while k d is assumed to be constant over geological time and equal to its mean Pleistocene value of about 0.07 Myr?1. The second is an ‘erodibility’ model in which k d is allowed to vary, reflecting changes in climatic, climatic variables and rock-type erodibility, while the source flux is held constant at zero. The ‘tectonic’ model reveals four important increases in the source flux, ranging from 200 to 2000 m Myr?1 that occur over short (<10 Myr) time spans, followed by a protracted period (>25 Myr) where ν˙ drops below zero to values of ?1000 to ?6000 m Myr?1. The ‘erodibility’ model produces a topography that decays in a step-like fashion from an initial mean elevation that ranges between ~1800 and 2300 m. These models cannot unequivocally distinguish the relative importance of tectonic vs. climatic processes in the macrogeomorphic evolution of the post-rift Appalachians, but they do provide some first-order quantitative prediction about these two end-member options. In light of existing stratigraphic, geological and thermochronological data, we favour the tectonic model because most of the events correlate well in time and form with known syn- and post-rift magmatic events. Nevertheless, the most recent episode of increased sediment flux to the offshore basins during the Miocene remains difficult to explain by either model. Limited evidence suggests that this event may reflect asthenospheric flow-driven uplift and the development of dynamically supported topography at a time when mechanical erosion rates were increasing in response to a cooling terrestrial climate.  相似文献   

20.
Pervasive fracture networks are common in many reservoir‐scale carbonate bodies even in the absence of large deformation and exert a major impact on their mechanical and flow behaviour. The Upper Cretaceous Jandaíra Formation is a few hundred meters thick succession of shallow water carbonates deposited during the early post‐rift stage of the Potiguar rift (NE Brazil). The Jandaíra Formation in the present onshore domain experienced <1.5 km thermal subsidence and, following Tertiary exhumation, forms outcrops over an area of >1000 km2. The carbonates have a gentle, <5?, dip to the NE and are affected by few regional, low displacement faults or folds. Despite their simple tectonic history, carbonates display ubiquitous open fractures, sub‐vertical veins, and sub‐vertical as well as sub‐horizontal stylolites. Combining structural analysis, drone imaging, isotope studies and mathematical modelling, we reconstruct the fracturing history of the Jandaíra Formation during and following subsidence and analyse the impact fractures had on coeval fluid flow. We find that Jandaíra carbonates, fully cemented after early diagenesis, experienced negligible deformation during the first few hundreds of meters of subsidence but were pervasively fractured when they reached depths >400–500 m. Deformation was accommodated by a dense network of sub‐vertical mode I and hybrid fractures associated with sub‐vertical stylolites developed in a stress field characterised by a sub‐horizontal σ1 and sub‐vertical σ2. The development of a network of hybrid fractures, rarely reported in the literature, activated the circulation of waters charged in the mountainous region, flowing along the porous Açu sandstone underlying the Jandaíra carbonates and rising to the surface through the fractured carbonates. With persisting subsidence, carbonates reached depths of 800–900 m entering a depth interval characterised by a sub‐vertical σ1. At this stage, sub‐horizontal stylolites developed liberating calcite which sealed the sub‐vertical open fractures transforming them in veins and preventing further flow. During Tertiary exhumation, several of the pre‐existing veins and stylolites opened and became longer, and new fractures were created typically with the same directions of the older features. The simplicity of our model suggests that most rocks in passive margin settings might have followed a similar evolution and thus display similar structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号