首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
ABSTRACT

The Tafresh plutons that include Ahmadabab diorite, Vasfonjerd monzonite, Mehrezamin diorite and Chahak diorite, located to the east of Tafresh city, north-central Iran, are part of Urumieh-Dokhtar magmatic arc. U-Pb dating of zircon grains provides emplacement ages of 22.3 ± 1 Ma for the Ahmadabad diorite, and tightly clustered ages of 22.2 ± 0.2 Ma, 21.3 ± 0.2 Ma, and 21.7 ± 0.4 Ma for Vasfonjerd monzodiorite, Mehrezamin diorite-monzonite, and Chahak diorite-monzonite plutons, respectively. These rocks are metaluminous to weakly peraluminous, calc-alkaline, and characterized by enrichment in light rare earth elements, Nb-Ta negative anomalies, and high LILE/HFSE ratios. Tafresh plutonic rocks originated from a parental magma source and experienced different degrees of partial melting. Geochemical signatures of Tafresh plutonic rocks, such as a wide range of Y/Nb (2.7–8.4) and low Zr/Nb (19.5–35.) ratios, Nb/Ta (11.46–18.15), argue for mantle–crust interaction during generation of Tafresh magmas. Relatively low Nb/La ratios further indicate that the lithospheric mantle played a significant role in melt generation. HREE signatures (i.e. decrease Dy/Yb with increasing SiO2) preclude substantial involvement of garnet either in the residue, both during partial melting and fractionation of the magma. The plutons are a product of final stages of subduction-related magmatism prior to the collision between the Arabian and Eurasian tectonic plates.  相似文献   

2.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

3.
The relationship among magmatism, large-scale metallogenesis of Southeast China, and subduction of the Pacific plate has long been debated. The lower Yangtze River belt (LYRB) in the northeastern edge of Southeast China is characterized by intense late Mesozoic magmatism and associated polymetallic mineralization such as copper, gold, iron, tungsten, molybdenum, etc. The copper-related adakitic rocks (148–130 Ma) in this belt are the oldest episode of magmatism and intruded as small intermediate-acid intrusive bodies. The Huayuangong granitoids (HYG), located in the southern part of this belt, however, are copper-barren. Three granitoid samples from this pluton give zircon U–Pb ages of 126.4 ± 1.6 Ma, 125.9 ± 1.9 Ma, and 126.2 ± 1.2 Ma, respectively. The HYG has A-type affinity with metaluminous to weakly peraluminous, high FeOT/(FeOT+MgO) ratios, and high Zr+Nb+Ce+Yb contents. Meanwhile, 10 late Mesozoic mafic samples from the LYRB exhibit similar trace element characteristics to those of ‘continental arc andesite’ (CAA) and suggest an enriched lithospheric mantle source with depletion in high field strength elements (e.g. Nb, Ta, Zr, Hf, and Ti) and enrichment of large ion lithophile elements (e.g. Rb, Th, U, and Pb). Although the HYG exhibits similar Sr–Nd isotope composition with the mafic dikes, distinct whole-rock Pb isotope ratios imply that the granitoids and mafic magmas originated from heterogeneous mantle sources. Compared with coeval Baijuhuajian A-type rocks that are exposed along the Jiang–Shao fault of Southeast China, the HYG shows enriched Hf isotope ratios of zircon with εHf(t) values ranging from ?4.8 to ?11.1. In the Yb/Ta versus Y/Nb diagram, being different from the major asthenospheric mantle-origin Baijuhuajian pluton, a large range of and high Y/Nb ratios as well as high Zr contents of the HYG pluton suggest a magmatic source of mixing between the asthenospheric and enriched crustal component in the LYRB. Compared with early-stage copper-related adakitic rocks (148–130 Ma) with subduction-related affinities and high oxygen fugacity, the copper-barren HYG has with-plate A-type affinities and lower oxygen fugacity. Summarizing, the production of early-stage (i.e. subduction related) adakitic rocks followed by late-stage A-type granitoids in the LYRB is ascribed to the rollback of the Palaeo-Pacific plate beneath Southeast China and associated with asthenospheric upwelling and lithospheric thinning during the late Mesozoic era.  相似文献   

4.
The Aqishan-Yamansu belt in the Eastern Tianshan (NW China) contains many intermediate to felsic intrusive rocks and spatially and temporally associated Fe (-Cu) deposits. Zircon U-Pb dating of the Bailingshan granitoids, including diorite enclaves (in granodiorite), diorite, monzogranite and granodiorite, and andesitic tuff from the Shuanglong Fe-Cu deposit area yielded ages of 329.3 ± 2.1 Ma, 323.4 ± 2.6 Ma, 313.0 ± 2.0 Ma, 307.5 ± 1.7 Ma and 318.0 ± 2.0 Ma, respectively. These new ages, in combination with published data can be used to subdivide magmatism of the Bailingshan intrusive complex into three phases at ca. 329–323 Ma, ca. 318–313 Ma and ca. 308–297 Ma. Of the analyzed rocks of this study, the Shuanglong diorite enclave, diorite and andesitic tuff show calc-alkaline affinities, exhibiting LILE enrichment and HFSE depletion, with negative Nb and Ta anomalies. They have high MgO contents and Mg# values, with depleted εHf(t) and positive εNd(t) values, similar crustal-derived Nb/Ta and Y/Nb ratios, low Th/Yb and Th/Nb, and high Ba/La ratios, which are consistent with them being sourced from a depleted mantle wedge metasomatized by slab-derived fluids and crustal contamination. However, the monzogranite and granodiorite are metaluminous with characteristics of low- to high-K calc-alkaline I-type granites. The granitic rocks are enriched in LILE, depleted in HFSE and have significant Eu anomalies, with high Y contents and low Sr/Y ratios, resembling typical of normal arc magmas. Depleted εHf(t) and positive εNd(t) values with corresponding young TDMC ages of zircons, as well as Nb/Ta, Y/Nb, Th/U and La/Yb ratios suggest that the granitic rocks were probably formed by re-melting of juvenile lower crust or pre-existing mantle-derived mafic–intermediate igneous rocks. Integrating published data, we conclude that the Bailingshan granitoids (excluding the Shuanglong diorite and diorite enclave) were derived from re-melting of juvenile lower crust and mantle-derived mafic–intermediate igneous rocks, with mantle components playing a more prominent role in the formation of the younger and more felsic rocks. A comprehensive review, including our new data, suggests that the Aqishan-Yamansu belt formed as a fore-arc basin during the Carboniferous (ca. 350–300 Ma) when the Kangguer oceanic slab subducted beneath the Yili-Central Tianshan block. The ongoing southward subduction of the slab resulted in the closure of the Aqishan-Yamansu fore-arc basin (ca. 320–300 Ma), due to slab steepening and rollback followed by slab breakoff and rebound. During the Aqishan-Yamansu fore-arc basin inversion, the main phase of the Bailingshan granitoids emplaced in the Aqishan-Yamansu belt, accompanied by contemporary Fe and Fe-Cu mineralization.  相似文献   

5.
《International Geology Review》2012,54(17):2083-2099
ABSTRACT

The high Sr/Y geochemical feature of granitoids can be attributed to various mechanisms, and elucidating genesis of high Sr/Y granitoids provides insights into the material recycling and magmatic processes at depth. In southeastern Central Asian Orogenic Belt (CAOB), many Middle Permian granitoids exhibit high Sr/Y ratios, but their origins remain unclear, inhibiting a comprehensive understanding of the magmatic response to the final closure of the Palaeo-Asian ocean. Here we present new zircon U-Pb ages, Lu-Hf isotopes and whole-rock geochemical data for the Middle Permian high Sr/Y monzogranites from central Inner Mongolia, southeastern CAOB. LA-ICP-MS zircon U-Pb data shows that these high Sr/Y rocks were emplaced during 273–261 Ma. They are calc-alkaline, sodium-rich and metaluminous to weakly peraluminous, with enriched large-ion lithophile elements (Rb, Th, K and Pb) and depleted high field strength elements (Nb, Ta, P and Ti), suggesting a mafic lower crustal source rather than evolved potassic crustal materials. Their relatively low (Gd/Yb)N (1.1–2.0), (Dy/Yb)N (1.0–1.3), Nb/Ta (7.9–10.9) ratios and flat heavy rare earth element patterns are characteristics of derivation from a relatively shallow depth with amphibolite as dominant residue. They also have highly variable εHf(t) values (?8.2 to +10.0) and TDMC (1814 to 649 Ma), similar to those of the Early Palaeozoic high Sr/Y intrusions along the Bainaimiao arc belt. Combined with data from literatures, we suggest that the high Sr/Y monzogranites in this study were probably generated by reworking of the newly underplated juvenile high Sr/Y lower crust of the Bainaimiao arc belt. Moreover, taking into account the regional investigations, the sublinear distributed Middle Permian magmatic rocks in the southeastern CAOB were likely associated with the incipient slab break-off of the Palaeo-Asian oceanic lithosphere following initial collision between the North China craton and the South Mongolia terranes.  相似文献   

6.
Silurian plutonic suites in the Newfoundland Appalachians include abundant gabbro, monzogabbro and granite to granodiorite and lesser quartz diorite and tonalite. Most are medium- to high-K, but included are some low-K and shoshonitic mafic compositions. Felsic rocks are of both alkaline (A-type or within-plate granite (WPG)) and calc-alkaline volcanic arc granite (VAG) affinity. Mafic rocks include both arc-like (Nb/Th < 3) calc-alkaline and non-arc-like (Nb/Th > 3) transitional calc-alkaline basalt to continental tholeiitic affinity compositions. εNd(T) values range from − 9.6 to + 5.4 and δ18O (VSMOW) values range from + 3.1 to + 13.2‰.

A rapid progression from exclusively arc-type to non-arc-like mafic and then contemporaneous WPG plus VAG magmatism has been documented using precise U–Pb zircon dating. Earlier arc-like plutonism indicates subduction, while asthenosphere-derived mafic magmas support slab break-off, due to subduction of a young, warm back-arc basin. Contemporaneous mafic magmas with arc and non-arc geochemical signatures may reflect tapping of asthenospheric and subcontinental lithospheric mantle (SCLM) sources and/or contamination of asthenosphere-derived magmas by SCLM or crust.

The brevity (< 5 Ma) of the mafic magmatic pulse agrees with the transient nature of magmatism associated with slab break-off. The subsequent ca. 1 to 2 m.y. period of voluminous WPG and VAG plutonism likely reflects mafic magma-driven partial melting of both SCLM and crustal sources, respectively. Continuation of VAG-like magmatism for an additional 2 to 5 m.y. may reflect lower solidus temperatures of crustal materials, enabling anatexis to continue after mantle melting ceased. East to west spatial variation of εNd and (La/Yb)CN in Silurian plutons suggests a transition from shallow melting of juvenile sources proximal to the collision zone to deeper melting of old source materials in the garnet-stability field further inboard.

Previous work has demonstrated that geochemical discriminaton of post-collisional granitoid magmatism (PCGM) is difficult in the absence of other constraints. Our example should contribute to the understanding and identification of PCGM if it can be employed as a ‘fingerprint’ for slab break-off-related PCGM within the Paleozoic geological record.  相似文献   


7.
The margin of NE China, a part of the West Pacific metallogenic belt, contains innumerable low-sulphidation mineral deposits. Gold deposits in this region can be classified into three distinct types based on geology and ore mineral paragenesis: (1) low-sulphidation epithermal silver–gold deposits, (2) low-sulphidation tellurium–gold deposits, and (3) low-sulphidation epithermal tellurium–gold deposits. Ores formed during the late Early Cretaceous and the early Late Cretaceous reflect three distinct metallogenic periods: the Fuxin Stage at 115.98 ± 0.89 Ma, the Quantou Stage at 107.2 ± 0.6 Ma or <103 Ma, and the Qingshankou or Yaojiajie Stage at < 97 Ma and 88.2 ± 1.4 Ma. The Fuxin Stage is dominated by trachyandesitic magmatism, with magmas emplaced at hypabyssal depths. In comparison, the Quantou Stage is characterized by high-K calc-alkaline, calc-alkaline, and sodic andesitic, dacitic, and rhyolitic magmatism of three different suites. The first of these is a high-K calc-alkaline andesitic magmatic suite that was accompanied by the emplacement of a calc-alkaline sodic dacite during the formation of the Ciweigou and Wufeng ore deposits. The second suite is dominated by calc-alkaline sodic rhyolite and high-K calc-alkaline sodic dacite magmatism associated with the formation of the Sipingshan ore deposit. The third suite is typified by high-K calc-alkaline andesitic magmatism associated with the emplacement of calc-alkaline hypabyssal granitoid complexes accompanying the formation of the Dong'an and Tuanjiegou ore deposits. The Qingshankou or Yaojia Stage is characterized by calc-alkaline sodic dacite magmatism associated with the formation of the Wuxing ore deposit. Metallogenesis during the Fuxin Stage characterized by trachytic magmatism is closely related to the formation of a deep-seated fault within a magmatic arc or the back-arc region of an immature continental margin and is associated with the Early Cretaceous subduction of the Pacific plate beneath Eurasia. Ore deposits that formed during the Fuxin Stage were generally related to magmato-hydrothermal fluids associated with mantle-derived magmas. In contrast, metallogenesis during the Quantou and Qingshankou or Yaojiajie stages was closely related to the formation of a mature high-K calc-alkaline magmatic arc within a continental margin setting again associated with the westward subduction of the Pacific plate. This metallogenic event was a product of magmato-hydrothermal systems derived from crust–mantle interaction and mixing of magmas derived from partial melting of different sections of the continental crust.  相似文献   

8.
A new geochronological and geochemical study of the volcanic rocks of the Ponza and Palmarola Islands, Pontine Archipelago, has been carried out. This archipelago is located along the boundary between the Italian continental shelf and the opening Tyrrhenian basin. It is a key area to study volcanism related to the opening of the Tyrrhenian Sea. Ponza is the oldest felsic magmatic manifestation in the central Tyrrhenian area. Previous studies suggested that Ponza volcanic activity began before 5 Ma. Twenty-five new K–Ar ages constrain the volcanic activity (rhyolitic hyaloclastites and dykes) to the last 4.2 Ma, with two episodes of quiescence between 3.7 and 3.2 Ma and between 2.9 and 1.0 Ma. A new volcanic episode dated at 3.2–2.9 Ma has been identified on the central and southern Ponza, with emplacement of pyroclastic units. At 1.0 Ma, a trachytic episode ended the volcanic activity. The near island of Palmarola exhibits rhyolitic hyaloclastites and domes dated between 1.6 and 1.5 Ma, indicating that the island was entirely built during the Early Pleistocene in a short span of time of ca. 120 ka. Although only 6–8 km apart, the two islands display significantly different geochemical signatures. Ponza rhyolites show major and trace element compositions representative of orogenic magmas of subduction/collision zones: high-K calc-alkaline and metaluminous rhyolites (Agpaitic Index [AI] and Alumina Saturation Index [ASI] <1), high LILE/HFSE (Th/Ta=16–21) and LREE/HFSE ratios (La/Nb>3), and Nb–Ta negative anomalies. In Palmarola, the orogenic character is also present, but much less marked than in Ponza: rhyolites have a peralkaline character (AI>1), lower LILE/HFSE (Th/Ta=11–15), low LREE/HFSE ratios (La/Nb=1–2) close to those of anorogenic lavas, and the Nb–Ta negative anomalies are almost absent. Y/Nb ratios indicate different magmatic sources, one similar to island-arc or active continental margin basalts for Ponza rhyolites, and the others probably involving an OIB type component for Palmarola rhyolites and Ponza trachytes. Palmarola volcanics represent a transitional magmatism: although a preserved collisional geochemical imprint, they show geochemical features approaching those of anorogenic lavas erupted in a within-plate context. The change of magmatism evidenced in this study can be related to the tectonic evolution of the area. Indeed, Hf, Ta and Rb contents suggest that the oldest Pliocene rhyolites of Ponza would emplace in a syn- to late-collisional setting, while the younger Pleistocene rhyolites of Palmarola would be emplaced in a post-collisional setting in which the orogenic character (Th/Ta) decreases and mantle influence (Nb/Ta) increases. Geochemical modeling strongly suggests that the Palmarola rhyolites represent the waning stages of a subduction-related magmatism. The K–Ar datings allow us to estimate precisely the transition of magmatism to last less than 1.3 Ma. The transitional magmas may be the result of the upwelling of asthenospheric mantle inducing melting of a metasomatized lithospheric mantle and the mixing between these two sources. This upwelling could occur during the extension of the Tyrrhenian basin, caused by the slab retreat and steepening, or during a process of slab break-off starting in the Pliocene.  相似文献   

9.
Abstract

The granitoid suites encountered by drilling in the northern South China Sea (SCS) remain important for understanding the evolution of the late Mesozoic Southeast Asian continental margin. They comprise a range of rock types including diorite, tonalite, granodiorite, monzogranite and syenogranite with SiO2 spanning 56.4–76.8%. Newly acquired secondary ion mass spectrometry (SIMS) U–Pb ages of samples from 14 boreholes indicate two key magmatic episodes: Late Jurassic (161.6–148.2 Ma) and Early Cretaceous (136.5–101.7 Ma). Jurassic magmatism probably began in late Middle Jurassic time, documented by the dates of inherited zircons. The granitoids are dominated by metaluminous to weakly peraluminous I-type granites, are transitional between magnesian and ferroan, and encompass calc-alkaline, high-K calc-alkaline, and shoshonitic series. The geochemical signatures suggest that these granitoids were mostly generated in a normal continental arc environment. Notable features of the I-type samples are well-defined negative Nb–Ta–Ti anomalies typical of arc-related magmas. Taken together, the late Mesozoic arc granites of the SCS, the accretionary wedge of the Palawan terrane to the southeast, and the zone of lithospheric extension north of the SCS throughout Southeast China, define a southeast-to-northwest trench-arc-backarc architecture for the late Mesozoic Southeast Asian continental margin whose geodynamic setting is related to subduction of the Palaeo-Pacific slab beneath the Asian continent. Two key subduction episodes are recognized, one in Late Jurassic and the other in Early Cretaceous time.  相似文献   

10.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

11.
The area of Arghash in northeast Iran, prominent for its gold mineralization, was newly mapped on a scale of 1:20,000 with particular attention to the occurring generations of igneous rocks. In addition, geochronological and geochemical investigations were carried out. The oldest geological unit is a late Precambrian, hornblende-bearing diorite pluton with low-K composition and primitive isotope signatures. This diorite (U–Pb zircon age 554 ± 6 Ma) is most likely a remnant from a Peri-Gondwana island-arc or back-arc basin. About one-third of the map area is interpreted as an Upper Cretaceous magmatic arc consisting of a volcanic and a plutonic part. The plutonic part is represented by a suite of hornblende-bearing medium-K, I-type granitoids (minor diorite, mainly quartz–monzodiorite and granodiorite) dated at 92.8 ± 1.3 Ma (U–Pb zircon age). The volcanic part comprises medium-K andesite, dacite and tuffitic rocks and must be at least slightly older, because it is locally affected by contact metamorphism through the hornblende–granitoids. The Upper Cretaceous arc magmatism in the Arghash Massif is probably related to the northward subduction of the Sabzevar oceanic basin, which holds a back-arc position behind the main Neotethys subduction front. Small occurrences of pillow basalts and sediments (sandstone, conglomerate, limestone) tectonically intercalated in the older volcanic series may be relics of earlier Cretaceous or even pre-Cretaceous rocks. In the early Cenozoic, the Cretaceous magmatic arc was intruded by bodies of felsic, weakly peraluminous granite (U–Pb zircon age 55.4 ± 2.3 Ma). Another strong pulse of magmatism followed slightly later in the Eocene, producing large masses of andesitic to dacitic volcanic rocks. The geochemistry of this prominent Eocene volcanism is very distinct, with a high-K signature and trace element contents similar to shoshonitic series (high P, Zr, Cr, Sr and Ba). High Sr/Y ratios feature affinities to adakite magmas. The Eocene magmatism in the Arghash Massif is interpreted as related to thermal anomalies in crust and mantle that developed when the Sabzevar subduction system collapsed. The youngest magmatic activities in the Arghash Massif are lamprophyres and small intrusions of quartz–monzodiorite porphyries, which cut through all other rocks including an Oligocene–Miocene conglomerate cover series.  相似文献   

12.
This geochemical study of the Mexican subduction zone elucidates how metamorphic and dehydration reactions affecting the subducted oceanic plate at different depths can influence magmatic diversity. In the western Trans-Mexican Volcanic Belt, there is a narrow potassic volcanic front running in parallel to the Middle American Trench that becomes replaced by intraplate-like high-Nb rocks to the north, and by more typical calc-alkaline products to the southeast. Potassic rocks have high MgO and are enriched in incompatible trace elements, but have lower heavy rare earth element contents than more evolved calc-alkaline and high-Nb magmas, and slightly more enriched Sr, Nd and Pb isotopes. Potassic magmas also have higher Rb/Cs and Ba/Cs ratios than the calc-alkaline and high-Nb suites, and extend to unusually high Nb/Ta ratios that correlate positively with Rb/Ta, Zr/Ta, La/Ta and Gd/Yb. These chemical variations are inconsistent with different extents of melting of a peridotitic source, but are also incompatible with melting of a phlogopite-rich mantle (vein-plus-wall-rock relationship), unless mica is totally consumed during melting, and a titaniferous phase such as rutile remains in the residue together with garnet. This assemblage is unlikely in the source region of primitive hydrous magmas, but it is what would be expected during dissolution of phengite and monazite/allanite in the subducted slab, with the concurrent formation of an anhydrous rutile-bearing eclogite. The magmatic diversity of western Mexico can thus be explained by invoking contributions of chemically different subduction agents as a function of slab depth and residual mineralogy: a low-pressure/temperature aqueous fluid would induce melting of the peridotitic mantle wedge and form typical calc-alkaline volcanoes, whereas a deeper and hotter slab-derived melt (or supercritical liquid) would contribute to the formation of potassic magmas due to phengite/monazite/allanite disintegration. In this context, intraplate-like magmas derive from decompression melting of the upper mantle as a natural consequence of subduction geodynamics.  相似文献   

13.
Subduction of active spreading ridges most likely occurs throughout Earth's history. Interaction or collision between spreading center and trench, with the active spreading ridge downgoing and shallowly being buried in subduction zone, results in low-pressure but high-temperature near-trench magmatism in the forearc and accretionary prism setting. The Central Asian region, a complex orogenic belt created during the evolution and closure of the Paleo-Asian Ocean (PAO) at ~ 1000–300 Ma, provides an ideal place to study the subduction of PAO spreading ridges beneath ancient continental margins. It had been suggested that the low-pressure and high-temperature mafic and intermediate to felsic magmas from the Karamaili ophiolite (KO) in the NE corner of the Junggar basin (NW China) in Central Asia were likely produced by ridge subduction (Liu et al., 2007). In this paper, we combine our new geochemical data with previous results to show that the geochemical characteristics of the bulk of KO mafic rocks range from arc basalt-like to mid-ocean ridge basalt-like and ocean island basalt-like. Their trace element patterns range from depleted to enriched in highly incompatible elements, but depleted in Nb and Ta, indicating a subduction-influenced origin. The KO intermediate to felsic rocks are calc-alkaline and boninitic in composition and have trace element signatures similar to the associated mafic rocks. The low Nb/Ta ratios of some of the mafic rocks and boninitic character of some of the intermediate to felsic rocks reflect a highly depleted source, perhaps due to prior backarc magmatism. Major and trace element models indicate complex fractional crystallization histories of parental KO magmas to generate both the mafic and intermediate to felsic rocks, but in general, crystal fractionation occurred at 1000 to 1200 °C and moderate to low (0.5 kbar to 10 kbar) pressure or < 23 km depth. We conclude that the KO was formed in a forearc region of a subduction system that experienced ridge subduction.  相似文献   

14.
Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.  相似文献   

15.
The magmatic arc of the Fuegian Andes is composed mostly of Upper Mesozoic to Cenozoic calc-alkaline plutons and subordinated lavas. To the rear arc, however, isolated mid-Cretaceous monzonitic plutons and small calc-alkaline dykes and sills crop out. This calc-alkaline unit (the Ushuaia Peninsula Andesites, UPA) includes hornblende-rich, porphyritic quartz meladiorites, granodiorites, andesites, dacites and lamprophyres. Radiometric dating and cross-cutting relationships indicate that UPA is younger than the monzonitic suite. The geochemistry of UPA is medium to high K, with high LILE (Ba 500–2000 ppm, Sr 800–1400 ppm), HFSE (Th 7–23 ppm, Nb 7–13 ppm, Ta 0.5–1.1 ppm) and LREE (La 16–51 ppm) contents, along with relatively low HREE (Yb 1.7–1.3 ppm) and Y (9–19 ppm). The similar mineralogy and geochemistry of all UPA rocks suggest they evolved from a common parental magma, by low pressure crystal fractionation, without significant crustal assimilation. A pure Rayleigh fractionation model indicates that 60–65% of crystal fractionation of 60% hornblende + 34% plagioclase + 4% clinopyroxene + 1% Fe-Ti oxide, apatite and sphene (a paragenesis similar of UPA mafic rocks) can explain evolution from lamprophyres to dacites. The UPA has higher LILE, HFSE and LREE, and lower HREE and Y than the calc-alkaline plutons and lavas of the volcanic front. The HREE and Y are lower than in the potassic plutons as well. High concentrations of Th, Nb, Ta, Zr, Hf, LREE and Ce/Pb, and low U/Th, Ba/Th ratios in UPA, even in the least differentiated samples, suggest contributions from subducted sediments to the mantle source. On the other hand, relatively low HREE and Y, high LREE/HREE (La/Yb 11–38) ratios and Nb-Ta contents can be interpreted as mantle metasomatism by partial melts of either subducted garnetiferous oceanic sediment or basalt as well. Additionally, high LILE content in UPA, similar to the potassic plutons, suggests also a mantle wedge previously metasomatized by potassic parental magmas in their route to crustal levels. Therefore, UPA represents a unique suite in the Fuegian arc generated in a multiple hybridized source. UPA generation is related to a transition from normal to flat subduction which additionally caused the widening and landward migration of the magmatic arc, as well as crustal deformation. Rear-arc magmatism endured ca. 22 m.y.; afterwards, calc-alkaline magmatism remained at the volcanic front.  相似文献   

16.
为加深对中亚造山带西段石炭纪构造背景的认识,对准噶尔盆地西北缘中拐凸起金龙10井区石炭纪安山岩岩心样品开展岩相学、年代学和地球化学研究。安山岩的LA-ICP-MS锆石U-Pb定年结果显示,其结晶年龄为(322.4±1.1) Ma,属中石炭世。地球化学分析结果表明,研究区安山岩属于低钾-中钾钙碱性岩石系列,其稀土元素配分曲线均略向右倾,具微弱的Eu负异常;微量元素原始地幔标准化蛛网图显示整体相对富集Pb和大离子亲石元素Rb、Ba等,亏损高场强元素Nb、Ta、Zr等,具有消减带弧火山岩的特征。安山岩的Th/La、Th/Ce和Lu/Yb值均低于大陆地壳的平均值,而接近幔源岩浆的比值。研究区安山岩属于正常的岛弧火山岩,源于富水地幔楔,是由俯冲板片脱水产生的流体交代地幔楔发生部分熔融所形成的。结合区域地质背景并对比相近时期岩浆岩,综合认为研究区安山岩形成于大陆弧环境,为西准噶尔残余洋盆俯冲消减作用的产物,且残余洋盆在(322.4±1.1) Ma时还未完全关闭。  相似文献   

17.
The Roshtkhar area is located in the Khaf-Kashmar-Bardaskan volcano-plutonic belt to the northeastern Iran along the regional E–W trending Dorouneh Fault, northeastern of the Lut Block. There are several outcrops of subvolcanic rocks occurring mainly as dikes in the area, which intruded into Cenozoic intrusive rocks. We present U–Pb dating of zircons from a diabase dike and syenite rock using LA-ICP-MS that yielded an age of 1778 ± 10 Ma for the dike, indicating this Cenozoic dike has zircon xenocrysts inherited from deeper sources; and 38.0 ± 0.5 Ma, indicating an Late Eocene crystallization age for the syenite. Geochemically, the dikes typical of high-K calc-alkaline to shoshonitic magmas. Petrographic observations and major and trace element variations suggest that diabase melts underwent variable fractionation of clinopyroxene, olivine, and Fe-Ti oxides and minor crustal contamination during the differentiation process. Primitive mantle-normalized multi-element diagrams display enrichment in LILE, such as Rb, Ba, Th, U, and Sr compared to HFSE, as well as negative anomalies of Nb, Ta, P, and Ti, suggesting derivation from subduction-modified mantle. Chondrite-normalized REE plots show moderately LREE enriched patterns (<3.83 LaN/YbN <8.27), and no significant Eu anomalies. Geochemical modelling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of batch melting (~1–3%) of a phlogopite-spinel peridotite source to generate the mafic dikes. The geochemical signatures suggest that the Roshtkhar mafic dikes cannot be related directly to subduction and likely resulted from melting of upper mantle in an extensional setting where the heat flow was provided from deeper levels. These dikes presumably derived the zircon xenocrysts from the assimilation of upper crust of Gondwanian basement. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in NE Iran was triggered by heating due to asthenospheric upwelling in an extensional setting.  相似文献   

18.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

19.
Geochemical and petrological studies of the well-preserved greywacke horizon of the ‘Middle Aravalli Group’ were carried out to constrain the early evolution of the Aravalli basin. Petrological and geochemical attributes of Middle Aravalli greywackes (MAGs) such as very poor sorting, high angularity of framework grains, presence of fresh plagioclase and K-feldspars, variable Chemical Index of Alteration (CIA) index (46.7–74.5, avg. 61), and high Index of Compositional Variability (ICV) value (~1.05) suggest rapid physical erosion accompanying an active tectonic regime. The sediments record post-depositional K-metasomatism and extraneous addition of 0–25% (avg. ~10%) K is indicated. Assuming close system behaviour of immobile elements during sedimentation, various diagnostic element ratios such as Th/Sc, La/Sc, Zr/Sc, and Co/Th, Eu anomaly and rare earth element patterns of MAG suggest that the Archaean Banded Gneissic Complex (BGC) basement was not the major source of sediments. In conjunction with the dominant 1.8–1.6 Ga detrital zircon age peaks of Middle Aravalli clastic rocks, these data rather indicate that the sediments were derived from a young differentiated continental margin-type arc of andesite–dacite–rhyodacite composition. A highly fractionated mid-oceanic-ridge-basalt-normalized trace element pattern of MAGs, with characteristic enrichment of large-ion lithophile elements (LILEs), depletion of heavy rare earth elements, negative Nb-Ta, Ti and P anomalies, positive Pb anomaly, and distinctive Nb/Ta, Zr/Sm, Th/Yb, and Ta/Yb, Ce/Pb ratios envelop the composition of modern continental arc magmas (andesite–dacite) of the Andes, suggesting a subduction zone tectonic setting for precursor magma. High magnitude of LILE enrichment and high Th/Yb ratios in these sediments indicate that thick continental crust (~70 km) underlay the ‘Middle Aravalli’ continental arc, similar to the Central Volcanic Zone of the modern Andes. We propose that eastward subduction of Delwara oceanic crust beneath the BGC continent led to the formation of a continental volcanic arc, which supplied detritus to the forearc basin situated to the west. This model also explains the opening of linear ensialic basins in the Bhilwara terrain, such as in Rajpura–Dariba and Rampura–Agucha in a classical back-arc extension regime, similar to the Andean continental margin of the Mesozoic. On the basis of the recent 207Pb/206Pb detrital zircon age of Middle Aravalli sediment, a time frame between 1772 and 1586 Ma can be assigned for Middle Aravalli continental arc magmatism.  相似文献   

20.
《International Geology Review》2012,54(12):1484-1503
Windy Craggy is an approximately 300 Mt Cu-Co-Au volcanogenic massive sulphide (VMS) deposit in northwestern British Columbia, Canada. The Windy Craggy deposit is hosted by the Middle Tats Volcanics (MTV), a Late Triassic volcano-sedimentary sequence of intercalated mafic pillowed to massive volcanic flows and sills and calcareous argillite that are part of the Alexander terrane. The host footwall and hangingwall flows and sills are predominantly alkalic basalts (Nb/Y > 0.70). MTV alkali basalts at Windy Craggy are enriched in light rare earth elements (LREEs) >100X chondrite compared to chondrite, have steep REE patterns [(La/Yb)cn = 7.1–25.4], and generally lack the Ta and Nb depletions relative to primitive mantle (e.g. [Nb/Th]pm = 0.68–1.94) characteristic of arc environments, although most have [Nb/La]pm < 1. By contrast, volcanic rocks away from the deposit (and regionally; Lower Tats Volcanics, LTV) as well as late dikes that cross-cut all lithologies including metamorphic and deformational fabrics are sub-alkalic tholeiitic to calc-alkaline basalts and basaltic andesites that are less enriched in the LREEs (10–100X chondrite), have less steep REE patterns [(La/Yb)cn = 0.41–10.6], and show well-developed Ta and Nb depletions (arc signatures; [Nb/Th]pm = 0.20–0.79), consistent with formation in an oceanic arc environment. The co-occurrence of tholeiitic/calc-alkaline arc rocks with alkalic rocks indicates that the LTV (former) and MTV (latter) formed from melts that were influenced to varying degrees by subducted oceanic crust, and likely formed within a back-arc basin setting formed on a rifted oceanic arc. There is no geochemical or isotopic evidence for major involvement of continental crust. The LTV basalts likely were produced by progressive depletion in the source by partial melting of mantle overlying the subducting oceanic crust. The presence of the MTV alkalic Windy Craggy rocks overlying the LTV is consistent with the presence of a slab-window, perhaps related to subduction of a spreading centre, which allowed more enriched magmas to reach the surface with only minimal interaction with subduction-modified mantle. The presence of this slab-window might have provided the mechanism for the generation of anomalously high heat flow close to the seafloor, which initiated and sustained vigorous, long-lived hydrothermal activity necessary for the precipitation of large accumulations of massive sulphide. To our knowledge, this is the first example of a large VMS deposit associated with a slab-window.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号