首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
The hydrodynamic performance of vertical and sloped plane, dentated and serrated seawalls were investigated using physical model studies. Regular and random waves of wide range of heights and periods were used. Tests were carried out for different inclinations of the seawall (i.e. θ=30, 40, 50, 60 and 90°) and for a constant water depth of 0.7 m. The wave reflection was measured to assess the dissipation character of the seawalls. It was observed that the serrated seawall was superior to the plane and dentated seawall in reducing the wave reflection. Even for the vertical case, the coefficient of reflection due to regular waves for dentated seawall ranged from 0.6–0.99 and for the vertical serrated seawall it was 0.45–0.98, whereas for the vertical plane wall, it was almost 1.0. It was found that the characteristic dimension of the seawall (i.e. L/W) and the relative water depth (i.e. d/L) were better influencing parameters compared to the conventionally used surf similarity parameter ‘ξ’ (ξ=tan θ/(Hi/L)0.5) in predicting the reflection from the dentated and serrated seawall, where L is the local wave length, W the width of the dent along the length of the seawall slope, d the water depth at the toe and Hi is the incident wave height. A similar trend was observed for the random waves too. The reduction in the wave reflection due to random waves for the dentated seawall as compared to the plane seawall was about 18% and for the serrated seawall, it was 20%. It was observed that the reflection due to random waves was lesser for all the three different walls than the regular waves, due to the mutual interaction of random waves. Multiple regression analysis on the measured data points was carried out and predictive equations for the reflection coefficient were obtained for both regular and random waves. This study will be useful in the design of energy dissipating type vertical quay walls in ports and harbours, sloped seawalls for shore protection from erosion and sloped caisson as breakwaters. Comparison of predictive formulae with the experimental results revealed that the prediction methods were good enough for practical purposes.  相似文献   

2.
In this study,we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall.Modified time-dependent mild-slope equations,which involve parameters of the porous medium,were used to calculate the wave height transformation and the mean water level change around a submerged breakwater.The numerical solution is verified with experimental data.The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall.In contrast to cases without a seawall,the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall.Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater.We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.  相似文献   

3.
In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, were used to calculate the wave height transformation and the mean water level change around a submerged breakwater. The numerical solution is verified with experimental data. The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall. In contrast to cases without a seawall, the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall. Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater. We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.  相似文献   

4.
The paper presents the results from model scale experiments on the study of forces in the moorings of horizontally interlaced, multi-layered, moored floating pipe breakwaters. The studies are conducted with breakwater models having three layers subjected to waves of steepness Hi/L (Hi is the incident wave height and L the wavelength) varying from 0.0066 to 0.0464, relative width W/L (W is the width of breakwater) varying from 0.4 to 2.65, and relative spacing S/D (S is the spacing of pipes and D the diameter of pipe) of 2 and 4. The variation of measured normalized mooring forces on the seaward side and leeward side are analyzed by plotting non-dimensional graphs depicting f/γW2 (f is the force in the mooring per unit length of the breakwater, γ the weight density of sea water) as a function W/L for various values of Hi/d (d is the depth of water). It is found that the force in the seaward side mooring increases with an increase in Hi/L for d/W values ranging between 0.081 and 0.276. The experimental results also reveal that the forces in the seaward side mooring decrease as W/L increases, up to a value of W/L=1.3, and then increases with an increase in W/L. It is also observed that the wave attenuation characteristics of breakwater model with relative spacing of 4 is better than that of the model with relative spacing of 2. The maximum force in the seaward side mooring for model with S/D=4 is lower compared to that for the breakwater model with S/D=2. A multivariate non-linear regression analysis has been carried out for the data on mooring forces for the seaside and leeside.  相似文献   

5.
This paper presents results obtained from a series of experiments conducted in wave flume to assess the influence of the offshore low-crested breakwater as a defence structure in reducing the wave forces on vertical seawall. The main aim of the tests was to know the effect of crest elevation of the offshore low-crested breakwater as a rehabilitation structure for the existing damaged shore protection structures. In this study five relative breakwater heights are used and associated flow evolution was analyzed. With the sections proposed in this study, it is possible to achieve considerable reduction of wave force on the seawall. Modification factor is proposed to estimate the shoreward force on the seawall defenced by low-crested breakwater.  相似文献   

6.
双消浪室局部开孔沉箱防波堤具有低反射、结构受力小、适宜较大水深和工程造价低等优点。为明确双消浪室局部开孔沉箱水动力特性的主要影响因素,采用理论分析和物理模型试验相结合的方法,对规则波和不规则波作用下双消浪室局部开孔沉箱防波堤的反射特性进行研究。基于势流理论,建立规则波和不规则波对局部开孔沉箱防波堤作用的三维解析解,采用二次压力损失边界条件考虑沉箱开孔墙对波浪运动的影响,利用周期性边界条件考虑防波堤结构沿长度方向的周期性变化。开展相应规则波和不规则波物理模型试验,验证理论模型的合理性。通过算例分析,研究不同波浪要素和结构参数对防波堤反射特性的影响。研究表明:双消浪室局部开孔沉箱相对消浪室宽度取值为0.08~0.20,沉箱前墙开孔率大于后墙开孔率时,防波堤在较大波浪频率范围内消波效果显著;当前后墙的开孔率相等时,防波堤反射系数的最小值随着开孔率增大而减小。  相似文献   

7.
The wave transmission, reflection and energy dissipation characteristics of ‘’-type breakwaters were studied using physical models. Regular and random waves in a wide range of wave heights and periods and a constant water depth were used. Five different depths of immersion (two emerged, one surface flushing and two submerged conditions) of this breakwater were selected. The coefficient of transmission, Kt, and coefficient of reflection, Kr, were obtained from the measurements, and the coefficient of energy loss, Kl was calculated using the law of balance of energy. It was found that the wave transmission is significantly reduced with increased relative water depth, d/L, whether the vertical barrier of the breakwater is surface piercing or submerged, where ‘d’ is the water depth and ‘L’ is the wave length. The wave reflection decreases and energy loss increases with increased wave steepness, especially when the top tip of the vertical barrier of this breakwater is kept at still water level (SWL). For any incident wave climate (moderate or storm waves), the wave transmission consistently decreases and the reflection increases with increased relative depth of immersion, Δ/d from −0.142 to 0.142. Kt values less than 0.3 can be easily obtained for the case of Δ/d=+0.071 and 0.142, where Δ is the height of exposure (+ve) or depth of immersion (−ve) of the top tip of the vertical barrier. This breakwater is capable of dissipating wave energy to an extent of 50–80%. The overall performance of this breakwater was found to be better in the random wave fields than in the regular waves. A comparison of the hydrodynamic performance of ‘’-type and ‘T’-type shows that ‘T’-type breakwater is better than ‘’-type by about 20–30% under identical conditions.  相似文献   

8.
The hydrodynamic response of a porous flexible circular-cylinder in regular waves was analytically studied. To simplify the problem, the cover and the bottom of the cylinder were ignored. Small amplitude water wave theory and structural responses were assumed. The velocity potentials were solved using the Fourier-Bessel series expansion method and the least squares approximation method. The convergence of the series was numerically tested to determine the number of terms in the series expansion. Two types of installations were considered for deformation, hydrodynamic forces, structural flexibility, drafts, and porosity. The present study represented a preliminary step in the study of the fish cage.  相似文献   

9.
The wave transmission characteristics and wave induced pressures on twin plate breakwater are investigated experimentally in regular and random waves.A total of twenty pressure transducers are fixed on four surfaces of twin plate to measure the wave induced dynamic pressures.The spatial distribution of dynamic wave pressure is given along the surface of the twin plate.The uplift wave force obtained by integrating the hydrodynamic pressure along the structure is presented.Discussed are the influence of different incident wave parameters including the relative plate width B /L,relative wave height /i H a and relative submergence depth s /a on the non-dimensional dynamic wave pressures and total wave forces.From the investigation,it is found that the optimum transmission coefficient,t K occurs around B /L 0.41 ~ 0.43,and the twin plate breakwater is more effective in different water depths.The maximum of pressure ratio decreases from 1.8 to 1.1 when the relative submergence depth of top plate is increased from 0.8to +0.8.  相似文献   

10.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

11.
This paper presents an analytical, computationally efficient method for the wave reflection and dynamic displacement of a submerged flexible breakwater. The solution of the two-dimensional linearized hydrodynamic problem introduced is based on the eigenfunction expansion technique. The breakwater is assumed to be thin, impermeable, flexible, moored to the bed through tethers and kept in tension by means of a floating buoy at its tip. The beam structure is considered to be either clamped or hinged at the sea bed, situated in an arbitrary water depth and subjected to normal linear waves. Numerical examples presented by this method are compared with those obtained by the Boundary Integral Equation Method, presented by Williams et al. Comparisons show an excellent agreement over a wide range of parameters for the wave reflection and the dynamic displacement. Numerical results are presented, mainly to show the effect of the breakwater rigidity and the method of fixation on the wave reflection and the structural displacement over a wide range of wave frequencies.  相似文献   

12.
The overall performance of pile-restrained flexible floating breakwaters is investigated under the action of linear monochromatic incident waves in the frequency domain. The aforementioned floating breakwaters undergo only vertical structural deflections along their length and are held in place by means of vertical piles. The total number of degrees of freedom equals the six conventional body modes, when the breakwater moves as a rigid body, plus the extra bending modes. These bending modes are introduced to represent the structural deflections of the floating breakwater and are described by the Bernoulli–Euler flexible beam equation. The number of bending modes introduced is determined through an appropriate iterative procedure. The hydrostatic coefficients corresponding to the bending modes are also derived. The numerical analysis of the flexible floating breakwaters is based on a three-dimensional hydrodynamic formulation of the floating body. A parametric study is carried out for a wide range of structural stiffness parameters and wave headings, to investigate their effect on the performance of flexible floating breakwaters. Moreover, this performance is compared with that of the corresponding pile-restrained rigid floating breakwater. Results indicated that the degree of structural stiffness and the wave heading strongly affect the performance of flexible floating breakwaters. The existence of an “optimum” value of structural stiffness is demonstrated for the entire wave frequency range.  相似文献   

13.
An autonomous above-water radiometer was operated during the summer of 2005 on the Gustaf Dalén Lighthouse Tower (GDLT) off the Swedish coast in the Baltic Proper. Normalized water leaving radiances, LWN(λ), produced from measurements performed with the autonomous system at various center-wavelengths λ in the 412–675 nm spectral range, were applied within the context of water quality monitoring and satellite ocean color validation activities. Specifically these in situ radiometric data were used to determine the chlorophyll a concentration through a regional band-ratio algorithm and to assess LWN(λ) derived from top-of-atmosphere Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The in situ measurements collected during a bloom occurring in July 2005 were also used to investigate the spectral and small scale temporal-spatial variability of LWN(λ) in the presence of cyanobacteria.  相似文献   

14.
In the present study, wave interaction with a fixed, partially immersed breakwater of box type with a plate attached (impermeable-permeable) at the front part of the structure is investigated numerically and experimentally. The large scale laboratory experiments on the interaction of regular waves with the special breakwater were conducted in the wave flume of Laboratori d’Enginyeria Marνtima (LIM) at Universitat Politecnica de Catalunya (UPC) in Barcelona. Experimental results are compared with numerical results obtained with the use of the Cornell breaking Wave and Structures (COBRAS) wave model. The effects of an impermeable as well as a permeable plate attached to the bottom of the breakwater on its hydrodynamic characteristics (wave transmission, reflection, dissipation, velocity and turbulence kinetic energy) are investigated. Computed velocities and turbulence kinetic energy in the vicinity of the structure indicate the effects of the breakwater with the attached (impermeable/permeable) plate on the flow pattern and the turbulence structure. The attached impermeable plate at the front part of the breakwater enhances significantly the efficiency of the structure in attenuating the incident waves. The permeable plate reduces the efficiency of the structure since wave energy is transmitted through the porous body of the plate. Based on the hydrodynamic characteristics it is inferred that the breakwater with an impermeable plate attached to its bottom is more efficient. The comparison of horizontal and vertical forces acting on the breakwater for all cases examined reveals that plate porosity influences slightly vertical force and severely horizontal force acting on the structure, reducing maximum values in both cases.  相似文献   

15.
The interaction of linear water waves with a semi-porous cylindrical breakwater surrounding a rigid vertical circular cylinder mounted on a storage tank is investigated theoretically. The cylindrical breakwater structure is porous in the vicinity of the free-surface, while at some distance below the water surface it becomes impermeable. Under the assumptions of linearized potential flow, the coupled problem of flow in the interior and exterior fluid regions is solved by an eigenfunction expansion approach. Analytical expressions are obtained for the wave motion in both the interior and exterior flow regions. Numerical results are presented which illustrate the effects of the various wave and structural parameters on the hydrodynamic loads and interior and exterior wave fields. It is found that for certain parameter combinations the semi-porous, cylindrical breakwater may result in a significant reduction in the wave field and hydrodynamic forces experienced by the interior structure.  相似文献   

16.
波浪溢流现象使得海堤受到了越浪和溢流的联合作用,复杂的水动力过程会引起海堤后坡产生严重的侵蚀破坏。基于FLUENT软件建立了二维数值波浪溢流水槽模型,该模型运用UDF速度边界造波法分析在不同超高条件下海堤后坡流量和水流厚度的水力学特性。结果表明数值模拟结果与前人物理模型试验结果吻合,该模型可以真实地模拟出海堤波浪溢流现象。在此基础上进一步研究了波浪溢流中越浪和溢流在不同相对超高条件下的主导性作用,而后建立了十分准确的波浪溢流海堤后坡稳定水流厚度计算公式。  相似文献   

17.
Yong Liu  Bin Teng 《Ocean Engineering》2008,35(16):1588-1596
This study examines the hydrodynamic performance of a modified two-layer horizontal-plate breakwater. The breakwater consists of an upper submerged horizontal porous plate and a lower submerged horizontal solid plate. By means of the matched eigenfunction expansion method, a linear analytical solution is developed for the interaction of water waves with the structure. Then the reflection coefficient, the transmission coefficient, the energy-loss coefficient and the wave forces acting on the plates are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a single submerged horizontal solid plate and a single submerged horizontal porous plate. Numerical results show that with a suitable geometrical porosity of the upper plate, the uplift wave forces on both plates can be controlled at a low level. Numerical results also show that the transmission coefficient will be always small if the dimensionless plate length (plate length versus incident wavelength) exceeds a certain moderate value. This is rather significant for practical engineering, as the incident wavelength varies over a wide range in practice. Moreover, it is found that the hydrodynamic performance of the present structure may be further enhanced if the lower plate is also perforated.  相似文献   

18.
The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission (kt ), reflection (kr) and energy dissipation (kd ) coefficients. Different wave and structural parameters affecting the breakwater efficiency are tested. It is found that, the transmission coefficient (kt ) decreases with the increase of the relative water depth (h/L), the wave steepness (Hi/L), the relative breakwater widths (B/L, B/h), the relative breakwater height (D/h), and the breakwater porosity (n). The reflection coefficient (kr) takes the opposite trend of kt when D/h=1.25 and it decreases with the increasing h/L, Hi/L and B/L when D/h 1.0. The dissipation coefficient (kd) increases with the increasing h/L, Hi/L and B/L when D/h 1.0 and it decreases when D/h=1.25. In which, it is possible to achieve values of kt smaller than 0.3, krlarger than 0.5, and kd larger than 0.6 when D/h=1.25, B/h=0.6, h/L 0.22, B/L 0.13, and Hi/L 0.04. Empirical equations are developed for the estimation of the transmission and reflection coefficients. The results of these equations are compared with other experimental and theoretical results and a reasonable agreement is obtained.  相似文献   

19.
The numerical and experimental investigations on the performance of an offshore-submerged breakwater in reducing the wave forces and wave run-up on vertical wall are presented. A two-dimensional finite-element model is employed to study the hydrodynamic performance of the submerged breakwater under the action of regular and random waves. The numerical prediction has been supported with experimental measurements. The wave forces and wave run-up on the vertical wall were measured for different breakwater configurations. The applicability of linear theoretical model in the prediction of wave forces on the wall by a submerged breakwater has been discussed.  相似文献   

20.
D.-S. Hur  K.-H. Lee  G.-S. Yeom   《Ocean Engineering》2008,35(17-18):1826-1841
In designing the coastal structures, the accurate estimation of the wave forces on them is of great importance. In this paper, the influences of the phase difference on wave pressure acting on a composite breakwater installed in the three-dimensional (3-D) wave field are studied numerically. We extend the earlier model [Hur, D.S., Mizutani, N., 2003. Coastal Engineering 47, 329–345] to simulate 3-D wave fields by introducing 3-D Navier–Stokes solver with the Smagorinsky's sub-grid scale (SGS) model. For the validation of the model, the wave field around a 3-D asymmetrical structure installed on a submerged breakwater, in which the complex wave deformations generate, is simulated, and the numerical solutions are compared to the experimental data reported by Hur, Mizutani, Kim [2004. Coastal Engineering (51, 407–420)]. The model is then adopted to investigate 3-D characteristics of wave pressure and force on a caisson of composite breakwater, and the numerical solutions were discussed with respect to the phase difference between harbor and seaward sides induced by the transmitted wave through the rubble mound or the diffraction. The numerical results reveal that wave forces acting on the composite breakwater are significantly different at each cross-section under influence of wave diffraction that is important parameter on 3-D wave interaction with coastal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号