首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In this work, the concept of entropy based on probability is applied in modeling the vertical distribution of velocity in open channel turbulent flow. Using the principle of maximum entropy, one-dimensional velocity distribution is derived by maximizing the Renyi entropy subject to some constraints by assuming dimensionless velocity as a random variable. The Renyi entropy-based equation is capable of modeling the velocity distribution from the channel bed to the water surface. The derived velocity distribution is tested with field and laboratory observations and is also compared with existing entropy-based velocity distributions. The present model has shown good agreement with observed data and its prediction accuracy is superior than the other existing models.  相似文献   

2.
Experimental results of the mean flow field and turbulence characteristics for flow in a model channel bend with a mobile sand bed are presented. Acoustic Doppler velocimeters (ADVs) were used to measure the three components of instantaneous velocities at multiple cross sections in a 135° channel bend for two separate experiments at different stages of clear water scour conditions. With measurements at multiple cross sections through the bend it was possible to map the changes in both the spatial distribution of the mean velocity field and the three Reynolds shear stresses. Turbulent stresses are known to contribute to sediment transport and the three‐dimensionality inherent to flow in open channel bends presents a useful case for determining specific relations between three‐dimensional turbulence and sediment entrainment and transport. These measurements will also provide the necessary data for validating numerical simulations of turbulent flow and sediment transport. The results show that the magnitude and distribution of three‐dimensional Reynolds stresses increase through the bend, with streamwise‐cross stream and cross stream‐vertical components exceeding the maximum principal Reynolds stress through the bend. The most intriguing observation is that near‐bed maximum positive streamwise‐cross stream Reynolds stress coincides with the leading edge of the outer bank scour hole (or thalweg), while maximum cross stream‐vertical Reynolds stress (in combination with high negative streamwise‐cross stream Reynolds stress near the bend apex) coincides with the leading edge of the inner bank bar. Maximum Reynolds stress and average turbulent kinetic energy appear to be greater and more localized over the scour hole before final equilibrium scour is reached. This suggests that the turbulent energy in the flow is higher while the channel bed is developing, and both lower turbulent energy and a broader distribution of turbulent stresses near the bed are required for cessation of particle mobilization and transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
An analytical model for predicting the vertical distribution of mean streamwise velocity in an open channel with double-layered rigid vegetation is proposed. The double-layered model was constructed in a laboratory flume with an array of steel cylinders of two heights. For each vegetation layer (i.e., the short- or tall-vegetation layer), the flow is vertically separated into a lower vegetation zone and an upper vegetation zone, and corresponding momentum equations for each zone are formulated. For the lower vegetation zone, a uniform velocity was adopted since turbulent shear is relatively small and the Reynolds stress is ignored. For the upper vegetation zone, a power series was used to solve the momentum equations. For the free-water zone, a new expression was suggested to obtain a zero velocity gradient at the water surface instead of the traditional logarithmic velocity distribution. Good agreement between the analytical predictions and experimental data demonstrated the validity of the model.  相似文献   

4.
The aim of this work is to compare macroturbulent coherent structures (MCS) geometry and organization between ice covered and open channel flow conditions. Velocity profiles were obtained using a Pulse‐Coherent Acoustic Doppler Profiler in both open channel and ice‐covered conditions. The friction imposed by the ice cover results in parabolic shaped velocity profiles. Reynolds stresses in the streamwise (u) and vertical (v) components of the flow show positive values near the channel bed and negative values near the ice cover, with two distinctive boundary layers with specific turbulent signatures. Vertically aligned stripes of coherent flow motions were revealed from statistics applied to space‐time matrices of flow velocities. In open channel conditions, the macroturbulent structures extended over the entire depth of the flow whereas they were discontinued and nested close to the boundary walls in ice‐covered conditions. The size of MCS is consequently reduced in scale under an ice cover. The average streamwise length scale is reduced from 2.5 to 0.4Y (u) and from 1.5 to 0.4Y (v) where Y is the flow depth. In open channel conditions, the vertical extent of MCS covers the entire flow depth, whereas the vertical extent was in the range 0.58Y–1Y (u) and 0.81Y–1Y (v) in ice‐covered conditions. Under an ice cover, each boundary wall generates its own set of MCS that compete with each other in the outer region of the flow, enhancing mixing and promoting the dissipation of coherent structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
River confluences are characterized by a complex mixing zone with three-dimensional (3D) turbulent structures which have been described as both streamwise-oriented structures and Kelvin–Helmholtz (KH) vertical-oriented structures. The latter are visible where there is a turbidity difference between the two tributaries, whereas the former are usually derived from mean velocity measurements or numerical simulations. Few field studies recorded turbulent velocity fluctuations at high frequency to investigate these structures, particularly at medium-sized confluences where logistical constraints make it difficult to use devices such as acoustic doppler velocimeter (ADV). This study uses the ice cover present at the confluence of the Mitis and Neigette Rivers in Quebec (Canada) to obtain long-duration, fixed measurements along the mixing zone. The confluence is also characterized by a marked turbidity difference which allows to investigate the mixing zone dynamics from drone imagery during ice-free conditions. The aim of the study is to characterize and compare the flow structure in the mixing zone at a medium-sized (~40 m) river confluence with and without an ice cover. Detailed 3D turbulent velocity measurements were taken under the ice along the mixing plane with an ADV through eight holes at around 20 positions on the vertical. For ice-free conditions, drone imagery results indicate that large (KH) coherent structures are present, occupying up to 50% of the width of the parent channel. During winter, the ice cover affects velocity profiles by moving the highest velocities towards the centre of the profiles. Large turbulent structures are visible in both the streamwise and lateral velocity components. The strong correlation between these velocity components indicates that KH vortices are the dominating coherent structures in the mixing zone. A spatio-temporal conceptual model is presented to illustrate the main differences on the 3D flow structure at the river confluence with and without the ice cover. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
7.
In the present study,vortices were generated in open channel flow with a cross-flow cylinder installed horizontally near the bed.Sediment pickup rates were then measured over the channel bed downstream the cylinder using a sediment lift.The experimental data show that the pickup rate increases exponentially in the presence of vortices.Two different relationships can be clearly observed between the pickup rate and the maximum root-mean-square (rms) value of the streamwise velocity fluctuation,one for the cylinder-obstructed flow and the other for the unobstructed flow.The results imply that the vortex-induced sediment pickup cannot be explained based on the traditional boundary layer theory.  相似文献   

8.
A three-dimensional k-ε-Ap two-fluid turbulence model is proposed to study liquid-particle two-phase flow and bed deformation.By solving coupled liquid-phase and solid-phase governing equations in a finite-volume method,the model can calculate the movement of both water and sediment.The model was validated by water-sediment transport in a 180° channel bend with a movable bed.The validation concerns two-phase time-averaged velocities,bed deformation,water depth,depth-averaged streamwise velocity,cross-stream bed profiles,and two-phase secondary flow velocity vectors.The agreement between numerical results and experimental results was generally good.The comparisons of the numerical results of different models show that the three-dimensional k-ε-Ap two-fluid turbulence model has a relatively higher accuracy than one-fluid model.  相似文献   

9.
To find turbulent flow structure inside meandering channels, three physical models of river meanders representing strongly curved bend, mild bend and elongated symmetrical meander loop were tested in this paper. Instantaneous velocity data in three dimensions were measured using Micro-ADV at different cross sections of these models. Depth averaged velocity vectors, streamwise velocity, secondary currents, turbulent and mean flow kinetic energy were investigated with respect to the sediment deposition pattern. In order to gain more regarding the force acting the sediment particles, three dimensional velocity fluctuations were analyzed in detailed inside the elongated symmetrical meander loop. Occurrence frequency, transition probability and angle of attack for different events were also computed for the points close to the bed. Of the present results, the importance of sweeps and ejections on sediment deposition can be detected. Further, distribution of bursting events is presented through the water column and compared the results with the previous works. Importantly, occurrence of fluctuating velocities in three dimensions at different locations inside the river meanders in addition to the effect of mean flow and turbulent components is responsible for sediment transport. Streamwise velocity distribution through the depth is also compared with some previous mathematical models. Researchers seeking the better control over the river morphology can apply this method without sacrificing much time and cost. This study is also included some insights to be pursued by future works.  相似文献   

10.
Results from a series of numerical simulations of two‐dimensional open‐channel flow, conducted using the computational fluid dynamics (CFD) code FLUENT, are compared with data quantifying the mean and turbulent characteristics of open‐channel flow over two contrasting gravel beds. Boundary roughness effects are represented using both the conventional wall function approach and a random elevation model that simulates the effects of supra‐grid‐scale roughness elements (e.g. particle clusters and small bedforms). Results obtained using the random elevation model are characterized by a peak in turbulent kinetic energy located well above the bed (typically at y/h = 0·1–0·3). This is consistent with the field data and in contrast to the results obtained using the wall function approach for which maximum turbulent kinetic energy levels occur at the bed. Use of the random elevation model to represent supra‐grid‐scale roughness also allows a reduction in the height of the near‐bed mesh cell and therefore offers some potential to overcome problems experienced by the wall function approach in flows characterized by high relative roughness. Despite these benefits, the results of simulations conducted using the random elevation model are sensitive to the horizontal and vertical mesh resolution. Increasing the horizontal mesh resolution results in an increase in the near‐bed velocity gradient and turbulent kinetic energy, effectively roughening the bed. Varying the vertical resolution of the mesh has little effect on simulated mean velocity profiles, but results in substantial changes to the shape of the turbulent kinetic energy profile. These findings have significant implications for the application of CFD within natural gravel‐bed channels, particularly with regard to issues of topographic data collection, roughness parameterization and the derivation of mesh‐independent solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The paper addresses the problem of the resistance due to vegetation in an open channel flow, characterized by partially and fully submerged vegetation formed by colonies of bushes. The flow is characterized by significant spatial variations of velocity between vertical profiles that make the traditional approach based on time averaging of turbulent fluctuations inconvenient. A more useful procedure, based on time and spatial averaging (Double-Averaging Method) is applied for the flow field analysis and characterization. The vertical distribution of mean velocity and turbulent stresses at different spatial locations has been measured with a 3D Acoustic Doppler Velocimeter (ADV) for two different vegetation densities where fully submerged real bushes (salix pentandra) have been used. Velocity measurements were completed together with the measurements of drag exerted on the flow by bushes at different flow depths. The analysis of velocity measurements allows depicting the fundamental characteristics of both the mean flow field and turbulence. The experimental data show that the contribution of form-induced stresses to the momentum balance cannot be neglected. The mean velocity profiles and the spatially averaged turbulent intensity profiles allow inferring that the vegetation density is a driving parameter for the development of a mixing layer at the canopy top in the case of submerged vegetation. Moreover, the net upward turbulent momentum flux, evaluated with the methodology proposed by Lu and Willmarth (1973), appears to be damped for increased vegetation density; this finding can rationally explain the reduction of the suspended sediment transport capacity typically observed in free surface flows over a vegetated bed.  相似文献   

12.
A three-dimensional hydrodynamic model is used to investigate intra-tidal and spring–neap variations of turbulent mixing, stratification and residual circulation in the Chesapeake Bay estuary. Vertical profiles of salinity, velocity and eddy diffusivity show a marked asymmetry between the flood and ebb tides. Tidal mixing in the bottom boundary layer is stronger and penetrates higher on flood than on ebb. This flood–ebb asymmetry results in a north–south asymmetry in turbulent mixing because tidal currents vary out of phase between the lower and upper regions of Chesapeake Bay. The asymmetric tidal mixing causes significant variation of salinity distribution over the flood–ebb tidal cycle but insignificant changes in the residual circulation. Due to the modulation of tidal currents over the spring–neap cycle, turbulent mixing and vertical stratification show large fortnightly and monthly fluctuations. The stratification is not a linear function of the tidal-current amplitude. Strong stratification is only established during those neap tides when low turbulence intensity persists for several days. Residual circulation also shows large variations over the spring–neap cycle. The tidally averaged residual currents are about 50% stronger during the neap tides than during the spring tides.  相似文献   

13.
Depth profiles of particle streamwise velocity, concentration and bedload sediment transport rate were measured in a turbulent and supercritical water flow. One‐size 6 mm diameter spherical glass beads were transported at equilibrium in a two‐dimensional 10% steep channel with a mobile bed. Flows were filmed from the side by a high‐speed camera. Particle tracking algorithms made it possible to determine the position, velocity and trajectory of a very large number of particles. Approximately half of the sediment transport rate was composed by rolling grains, and the other half by saltation. This revealed a complex structure, with several concentration and flux peaks due to rolling, and one peak due to saltation. With an increase of the sediment transport rate, the depth structure remained the same at the water/granular interface, with peak value increases but with no shift in elevations. The saltation region expanded towards higher elevations with an increase of the particle velocity commensurate to the water velocity. The proportion of the sediment transport rate in saltation did not vary significantly. The particle streamwise velocity profiles exhibited three segments: an exponential decay in the bed, a linear increase where rolling and saltation co‐existed, and above this, a logarithmic‐like shape due to saltating particles. These results are comparable to profiles measured and modelled in dry granular free surface flows and in more intense bedload such as sheet flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steady-nonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of two-dimensional flow in open channels.  相似文献   

15.
In a compound meandering channel, patterns of flow structures and bed variations change with increasing water depth owing to complex momentum exchange between high-velocity flow in a main channel and low-velocity flows in flood plains. We have developed a new quasi-three-dimensional model without the shallow water assumption, i.e., hydrostatic pressure distribution; our method is known as the general bottom velocity computation (BVC) method. In this method, a set of depth-integrated equations, including depth-integrated momentum and vorticity equations, are prepared for evaluating bottom velocity and vertical velocity distributions. The objective of this study is to develop a bed variation calculation method for both single and compound meandering channels by using the BVC method coupled with a sediment transport model. This paper shows that the BVC method can reproduce the pattern change of bed variation in a compound meandering channel flow with increasing relative depth. The variation in sediment transport rate due to overbank flow is explained by experimental and computational results.  相似文献   

16.
In this experimental study,the turbulent flow in a channel with vegetation by using sprouts of wheat on channel bed was investigated.Two different aspect ratios of channel were used.An Acoustic Doppler Velocimetry was used to measure parameters of turbulent flow over submerged sprouts of wheat,such as velocity profiles.The log law and the Reynolds shear stress distribution were applied. Results indicate that the position of the maximum turbulence intensity superposes on the inflection point situated over the top of submerged vegetation cover.Quadrant analysis shows that near the vegetation bed,the sweeps and ejections appear to be the most dominant phenomenon,while far from the vegetated bed,the outward is dominant event.Results also show that the aspect ratio plays an important role on the contribution of the different bursting events for Reynolds stress determination.  相似文献   

17.
Abstract

The vertical profiles of streamwise velocities are computed on flood plains vegetated with trees. The calculations were made based on a newly developed one-dimensional model, taking into account the relevant forces acting on the volumetric element surrounding the considered vegetation elements. A modified mixing length concept was used in the model. An important by-product of the model is the method for evaluating the friction velocities, and consequently bed shear stresses, in a vegetated channel. The model results were compared with the relevant experimental results obtained in a laboratory flume in which flood plains were covered by simulated vegetation.  相似文献   

18.
The particle size distribution of bed materials in the sandy river bed of alluvial rivers is important in the study of topics such as friction, river bed evolution, erosion, and siltation. It also can reflect the dependency relation between river bed sediment and flow intensity. In this paper, the critical pattern of sediment movement in the near-wall region of a sandy river bed was analyzed. According to the principle of momentum balance, the critical settling-rising condition of bed material in a sandy river bed was found to be instantaneous turbulent velocity equal to 2.7 times the sediment settling velocity in quiescent water. Based on a vertical instantaneous turbulent velocity with a Gaussian distribution, a theoretical relation for calculating the particle size distribution of bed materials in a sandy river bed without pre-known characteristic grain sizes was developed by solving a stochastic equation. The for-mula is verified using measured data, and the results show that the proposed formula was in accordance with the measured data. This study has theoretical significance and practical value for determining the bed material particle size distribution of the sandy bed of alluvial rivers.  相似文献   

19.
Data collected from the York River estuary demonstrate the importance of asymmetries in stratification to the suspension and transport of fine sediment. Observations collected during two 24-h deployments reveal greater concentrations of total suspended solids during the flood phase of the tide despite nearly symmetric near-bed tidal current magnitude. In both cases, tidally averaged net up-estuary sediment transport near the bed was clearly observed despite the fact that tidally averaged residual near-bed currents were near zero. Tidal straining of the along-channel salinity gradient resulted in a stronger pycnocline lower in the water column during the ebb phase of the tide and appeared to limit sediment suspension. Indirect measurements suggest that the lower, more intense, pycnocline on the ebb acted as a barrier, limiting turbulent length scales and reducing eddy diffusivity well below the pycnocline, even though the lower water column was locally well mixed. In order to more conclusively link changes in stratification to properties of near-bed eddy viscosity and diffusivity, longer duration tripod and mooring data from an additional experiment are examined, that included direct measurement of turbulent velocities. These additional data demonstrate how slight increases in stratification can limit vertical mixing near the bed and impact the structure of the eddy viscosity below the pycnocline. We present evidence that the overlying pycnocline can remotely constrain the vertical turbulent length scale of the underlying flow, limiting sediment resuspension. As a result, the relatively small changes in stratification caused by tidal straining of the pycnocline allow sediment to be resuspended higher in the water column during the flood phase of the tide, resulting in preferential up-estuary transport of sediment.Responsible Editor: Iris Grabemann  相似文献   

20.
Experimental investigations have been done to analyze turbulent structures in curved sand bed channels with and without seepage. Measures of turbulent statistics such as time‐averaged near‐bed velocities, Reynolds stresses, thickness of roughness sublayer and shear velocities were found to increase with application of downward seepage. Turbulent kinetic energy and Reynolds normal stresses are increased in the streamwise direction under the action of downward seepage, causing bed particles to move rapidly. Analysis of bursting events shows that the relative contributions of all events (ejections, sweeps and interactions) increase throughout the boundary layer, and the thickness of the zone of dominance of sweep events, which are responsible for the bed material movement, increases in the case of downward seepage. The increased sediment transport rate due to downward seepage deforms the cross‐sectional geometry of the channel made of erodible boundaries, which is caused by an increase in flow turbulence and an associated decrease in turbulent kinetic energy dissipation and turbulent diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号