首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent to which the evolution of instabilities and failure across multiple length scales can be reproduced with the aid of a bifurcation analysis is examined. We adopt an elastoplastic micropolar constitutive model, recently developed for dense cohesionless granular materials within the framework of thermomicromechanics. The internal variables and their evolution laws are conceived from a direct consideration of the dissipative mechanism of force chain buckling. The resulting constitutive law is cast entirely in terms of the particle scale properties. It thus presents a unique opportunity to test the potential of micromechanical continuum formulations to reproduce key stages in the deformation history: the development of material instabilities and failure following an initially homogeneous deformation. Progression of failure, initiating from frictional sliding and rolling at contacts, followed by the buckling of force chains, through to macroscopic strain softening and shear banding, is reproduced. Bifurcation point, marking the onset of shear banding, occurred shortly after the peak stress ratio. A wide range of material parameters was examined to show the effect of particle scale properties on the progression of failure. Model predictions on the thickness and angle of inclination of the shear band and the structural evolution inside the band, namely the latitudinal distribution of particle rotations and the angular distributions of contacts and the normal contact forces, are consistent with observations from numerical simulations and experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Xu  Wen-Jie  Liu  Guang-Yu  Yang  Han 《Acta Geotechnica》2020,15(10):2813-2828

Presented is a study on the geometrical characteristics of sand particles and the mechanical behavior of sand material under external loading. Based on computed tomography technique, a reconstruction method of granular particles was developed and used to build a database of 3D geometrical models for sand particles. The studied sand particles showed good regularities in morphological characteristics and thus were suitable to be used for the random generation of numerical samples. DEM tests using realistically shaped particles were proven to better simulate the mechanical behavior of the sample during elastoplastic loading stage, which was an issue for the simplified spherical particles. The generation, extension, and breakage of the force chains controlled the strain softening behavior of sands. Anisotropy analysis using the spherical harmonic series showed that the evolution of anisotropy directions and parameters corresponded well with the macroscopic mechanical behavior of the material. Pore volume computation based on Voronoi diagram was performed to illustrate the formation and evolution of localized shear zone. The mesoscopic analysis showed that particle shape significantly influences the mechanical behavior of sands and thus should be properly modeled in numerical simulations.

  相似文献   

3.
颗粒破碎对颗粒材料宏观力学行为有重要影响。 结合Hardin的破碎经验公式,将表征破碎程度的破碎参量与Cosserat连续体的内部长度参数相关联,形成一个基于Cosserat连续体且能考虑颗粒破碎的弹塑性模型。数值算例主要考察了颗粒破碎对颗粒材料承载能力、塑性应变及局部化行为的影响,数值结果表明,颗粒破碎主要发生在剪切带内,颗粒破碎使得剪切带明显变窄且剪切带内外等效塑性应变梯度明显增大。  相似文献   

4.
Sheng  Li-Tsung  Hsiau  Shu-San  Hsu  Nai-Wen 《Landslides》2021,18(6):2095-2110

From the understanding of dynamics and processes of rapid granular flows and the granular-segregation mechanism in gravity-driven flow, we can clarify the particle-composition structure in the downstream areas of avalanches in geophysical contexts, such as landslides, rock falls, and snow-slab avalanches. Such dynamics also provide a basis for geophysical studies. This study experimentally investigates the dynamic behavior and segregation phenomena of a density-bidisperse, rapid, granular flow down a quasi-2D, rough, inclined rectangular chute. Particles with two density ratios are used to investigate the mechanism of density-induced segregation, and four chute-inclination angles are tested to examine the influence of driving forces. The dynamics of the mixture flow—which includes the flow-depth evolution, stream-wise and depth-wise velocity profiles, shear rate, and granular temperature in the upper high-shear band of the flow—are obtained from particle image velocimetry (PIV) measurements. The two-dimensional concentration distributions of the particles in the stream-wise direction are also obtained using 2D image processing to determine the segregation state. In the upstream region, the variation in the concentration of heavier particles is defined as the strength of the density-induced segregation state, Sd. Our results indicate that the mixture-flow parameter—particularly the shear rate and the granular temperature in the upper high-shear band—crucially influence the strength of particle segregation in granular avalanches. In the upstream region, a higher shear rate and a higher granular temperature in the upper high-velocity band result in a smaller drag force in the mixture flow, causing stronger density-induced particle segregation. These results well describe the entire processes of dense granular flows, from upstream initiation to the downstream steady state. Therefore, they reveal the structure of the mixed flow in the depth direction and are expected to explain various gravity-driven mixture granular flows.

  相似文献   

5.
Geomaterials such as sand and clay are highly heterogeneous multiphase materials. Nonlocality (or a characteristic length scale) in modeling geomaterials based on the continuum theory can be associated with several factors, for instance, the physical interactions of material points within finite distance, the homogenization or smoothing process of material heterogeneity, and the particle or problem size-dependent mechanical behavior (eg, the thickness of shear bands) of geomaterials. In this article, we formulate a nonlocal elastoplastic constitutive model for geomaterials by adapting a local elastoplastic model for geomaterials at a constant suction through the constitutive correspondence principle of the state-based peridynamics theory. We numerically implement this nonlocal constitutive model via the classical return-mapping algorithm of computational plasticity. We first conduct a one-dimensional compression test of a soil sample at a constant suction through the numerical model with three different values of the nonlocal variable (horizon) δ. We then present a strain localization analysis of a soil sample under the constant suction and plane strain conditions with different nonlocal variables. The numerical results show that the proposed nonlocal model can be used to simulate the inception and propagation of shear banding as well as to capture the thickness of shear bands in geomaterials at a constant suction.  相似文献   

6.
The experimental evidence that cohesive and granular soils possess an elastic range in which the elasticity is both nonlinear and anisotropic—with stiffness and directional characteristics strongly dependent on stress and plastic strain (the so‐called ‘stress history’)—is given a formulation based on hyperelasticity. This is accomplished within the framework of elastoplastic coupling, through a new proposal of elastic potentials and a combined use of a plastic‐strain‐dependent fabric tensor and nonlinear elasticity. When used within a simple elastoplastic framework, the proposed model is shown to yield very accurate simulations of the evolution of elastic properties from initial directional stiffening to final isotropic degradation. Within the proposed constitutive framework, it is shown that predictions of shear band formation and evolution become closer to the existing experimental results, when compared to modelling in which elasticity does not evolve. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the existence of the critical force chain length and the buckling of unconfined grain columns in dense granular materials. Tests on assemblies of flat pentagon photoelastic particles were first carried out to demonstrate the maximum length of force chains. Then, the theoretical buckling analysis and distinct element method (DEM) simulations for grain columns composed of mono-sized elliptical particles were performed. The results revealed the existence of critical column length, which is generally affected by the particle shapes, the rotational resistance at particle contact points and the end constraints to the grain columns. The interparticle friction does not have explicit effect on the critical force chain length, but it has significant influence on the grain column’s curvature when collapse takes place. The thickness of shear band in granular soils can be determined as the critical length of grain columns by appropriately imposing the constraints on the boundaries, as confirmed by DEM simulations and experimental results.  相似文献   

8.
The paper provides an in-depth exploration of the role of particle crushing on particle kinematics and shear banding in sheared granular materials. As a two-dimensional approximation, a crushable granular material may be represented by an assembly of irregularly shaped polygons to include shape diversity of realistic granular materials. Particle assemblies are subjected to biaxial shearing under flexible boundary conditions. With increasing percentage of crushed particles, mesoscale deformation becomes increasingly unstable. Fragmented deformation patterns within the granular assemblies are unable to form stable and distinct shear bands. This is confirmed by the sparsity of large fluctuating velocities in highly crushable assemblies. Without generating distinct shear bands, deformation patterns and failure modes of a highly crushable assembly are similar to those of loose particle assemblies, which are regarded as diffuse deformation. High degrees of spatial association amongst the kinematical quantities confirm the key role that non-affine deformation and particle rotation play in the generation of shear bands. Therefore, particle kinematical quantities can be used to predict the onset and subsequent development of shear zones, which are generally marked by increased particle kinematic activity, such as intense particle rotation and high granular temperature. Our results indicate that shear band thickness increases, and its speed of development slows down, with increasing percentage of crushed particles. As particles crush, spatial force correlation becomes weaker, indicating a more diffuse nature of force transmission across particle contacts.  相似文献   

9.
Implementation and applications for a constitutive numerical model on F‐75 silica sand, course silica sand and two sizes of glass beads compressed under plane strain conditions are presented in this work. The numerical model is used to predict the stress versus axial strain and volumetric strain versus axial strain relationships of those materials; moreover, comparisons between measured and predicted shear band thickness and inclination angles are discussed and the numerical results compare well with the experimental measurements. The numerical model is found to respond to the changes in confining pressure and the initial relative density of a given granular material. The mean particle size is used as an internal length scale. Increasing the confining pressure and the initial density is found to decrease the shear band thickness and increase the inclination angle. The micropolar or Cosserat theory is found to be effective in capturing strain localization in granular materials. The finite element formulations and the solution method for the boundary value problem in the updated Lagrangian frame (UP) are discussed in the companion paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
赵仕威  周小文  刘文辉  刘攀 《岩土力学》2015,36(Z1):602-608
为了研究颗粒棱角对颗粒材料力学行为的影响,建立了具有不同棱角度的对称多面体颗粒,采用了一种简单并适合任意颗粒形状的接触本构模型,对三维离散元开源程序YADE进行了修改,研究了颗粒棱角度在模拟直剪试验中的影响以及接触力各向异性在剪切过程中的演化规律。研究结果表明,颗粒棱角度越小,颗粒间相互咬合自锁的作用越小,颗粒受剪更易转动,致使颗粒体系的剪切强度和剪胀性下降;竖向加载力越大,颗粒棱角度的影响越明显;法向接触力的各向异性在剪切过程中表现为先增后减最后趋向稳定的趋势;法向接触力的各向异性变化程度随颗粒棱角度的增大而增大。  相似文献   

11.
粗粒土的破碎耗能计算及影响因素   总被引:2,自引:1,他引:1  
贾宇峰  迟世春  杨峻  林皋 《岩土力学》2009,30(7):1960-1966
粗粒土的颗粒破碎直接改变了土体本身结构,对粗粒土的剪胀和内摩擦角都会产生影响。在土体剪切过程中,体积应力和剪切应力在体积应变和剪切应变上做功,这部分能量在剪切过程中转化为颗粒的弹性储能、颗粒间的摩擦耗能、颗粒剪胀时对外做功和颗粒破碎耗能4部分。准确计算剪切过程中粗粒土破碎耗能的目的是:从能量角度分析颗粒破碎对土体本构关系的影响,为建立考虑颗粒破碎的粗粒土本构关系创造条件。通过分析粗粒土的常规三轴试验数据,计算得到了剪切过程中的粗粒土破碎耗能。计算结果表明,常规三轴试验条件下粗粒土破碎耗能主要受固结应力、土体摩擦系数M等因素的影响。  相似文献   

12.
In this work, the interface behavior between an infinite extended narrow granular layer and a rough surface of rigid body is investigated numerically, using finite element method in the updated Lagrangian (UL) frame. In this regard, the elasto‐plastic micro‐polar (Cosserat) continuum approach is employed to remove the limitations caused by strain‐softening of materials in the classical continuum. The mechanical properties of cohesionless granular soil are described with Lade's model enhanced by polar terms, including Cosserat rotations, curvatures, and couple stresses. Furthermore, the mean grain diameter as the internal length is incorporated into the constitutive relations accordingly. Here, the evolution and location of shear band, within the granular layer in contact with the rigid body, are mainly focused. In this regard, particular attention is paid to the effects of homogeneous distribution and periodic fluctuation of micro‐polar boundary conditions, prescribed along the interface. Correspondingly, the effects of pressure level, mean grain diameter, and stratified soil are also considered. The finite element results demonstrate that the location and evolution of shear band in the granular soil layer are strongly affected by the non‐uniform micro‐polar boundary conditions, prescribed along the interface. It is found that the shear band is located closer to the boundary with less restriction of grain rotations. Furthermore, the predicted thickness of shear band is larger for higher rotation resistance of soil grains along the interface, larger mean grain diameter, and higher vertical pressure. Regarding the stratified soil, comprising a thin layer with slightly different initial void ratio, the shear band moves towards the layer with initially higher void ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
刘洋  李爽 《岩土力学》2018,39(6):2237-248
基于离散单元法对不同密实度理想散粒体进行了双轴剪切试验的宏微观数值模拟,通过网格剖分将Voronoi多边形表征的loop单元作为散粒介质细观力学结构的基本单元,模拟了剪切过程中不同类型loop单元数量、几何形态和力学特征的演化过程,并重点分析了临界状态时散粒介质的细观力学结构特征。模拟结果显示,初始密实度不同的试样在向临界状态发展的过程中,高阶单元与低阶单元的发展规律完全不同,不同初始密实度试样中同阶loop单元的发展规律也不相同,但同阶loop单元的数量比例、几何形态、颗粒接触力及单元内滑动率最终均达到了各自的临界状态。从细观角度分析,散体介质的临界状态是高阶和低阶loop单元在荷载作用下相互转化的结果,是所有loop单元物理力学状态的综合平均与外在表现,临界状态时不同阶数的loop单元处于一个动态平衡状态,宏观上表现为常剪应力和常体积下剪切变形的不断发展。数值模拟结果也表明,loop细观结构单元包含了丰富的信息,其数量、几何形态、受力特征及接触稳定性的发展与散粒体的强度、剪胀以及临界状态的发展密切相关,可以将其作为散粒介质细观尺度的分析单元。  相似文献   

14.
胡超  周伟  常晓林  马刚 《岩土力学》2014,35(7):2088-2094
采用细观数值模拟方法研究散粒体的锚固效应,基于随机模拟技术生成三维多面体颗粒及其在空间中的分布,在随机散粒体不连续变形模型的基础上将砾石锚固试验进行数值实现,分析加锚散粒体材料的宏观与细观力学性能,研究加锚密度及其与颗粒粒径的关系对散粒体力学性质的影响,并探讨锚杆在散粒体材料中的作用机制。分别建立不同锚杆间距和不同颗粒粒径的数值试样,数值模拟结果表明:散粒体锚固数值试验能够较好地反映不同加锚散粒体结构的变形规律与锚固效应;散粒体材料的宏观特性与其细观组构的演化密切相关;锚杆加固散粒体的作用机制为加锚散粒体内形成压缩区,挤压加固作用提高了散粒体间的接触作用力,散粒体结构的整体性得到加强并能承受一定荷载;不考虑锚杆长度的情况下,当锚杆间距小于3倍的散粒体平均粒径时,锚杆能够有效地加固散粒体形成稳定结构。  相似文献   

15.
In an effort to study the relation of fabrics to the critical states of granular aggregates, the discrete element method (DEM) is used to investigate the evolution of fabrics of virtual granular materials consisting of 2D elongated particles. Specimens with a great variety of initial fabrics in terms of void ratios, preferred particle orientations, and intensities of fabric anisotropy were fabricated and tested with direct shear and biaxial compression tests. During loading of a typical specimen, deformation naturally localizes within shear bands while the remaining of the sample stops deforming. Thus, studying the evolution of fabric requires performing continuous local fabric measurements inside these bands, a suitable task for the proposed DEM methodology. It is found that a common ultimate/critical state is eventually reached by all specimens regardless of their initial states. The ultimate/critical state is characterized by a critical void ratio e which depends on the mean stress p, while the other critical state fabric variables related to particle orientations are largely independent of p. These findings confirm the uniqueness of the critical state line in the e ? p space, and show that the critical state itself is necessarily anisotropic. Additional findings include the following: (1) shear bands are highly heterogeneous and critical states exist only in a statistical sense; (2) critical states can only be reached at very large local shear deformations, which are not always obtained by biaxial compression tests (both physical and numerical); (3) the fabric evolution processes are very complex and highly dependent on the initial fabrics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The behaviour of dry and cohesionless granular material during quasi-static cyclic shearing under a constant normal stiffness (CNS) condition is theoretically studied. A particular attention is laid to the volumetric strain change and the degradation of the shear resistance in the course of shearing. Numerical calculations are carried out for several shear cycles under boundary conditions which are relevant to investigate the shear interface behaviour. The global and local evolution of deformation, stress and density within the granular material is investigated with a finite element method on the basis of a hypoplastic constitutive model extended by micro-polar quantities: rotations, curvatures and couple stresses. A mean grain diameter is used as a characteristic length of micro-structure. The constitutive equations for stresses and couple stresses take also into account the effect of the evolution of the void ratio, pressure dependent relative density, direction of rate of deformation and rate of curvature. The numerical results are qualitatively compared with corresponding laboratory tests on direct wall shearing performed by DeJong, Randloph and White. In addition, the results for cyclic shearing of an infinite granular layer between two very rough boundaries under CNS conditions are also enclosed and discussed.  相似文献   

17.
This paper aims at extending the well‐known critical state concept, associated with quasi‐static conditions, by accounting for the role played by the strain rate when focusing on the steady, simple shear flow of a dry assembly of identical, inelastic, soft spheres. An additional state variable for the system, the granular temperature, is accounted for. The granular temperature is related to the particle velocity fluctuations and measures the agitation of the system. This state variable, as is in the context of kinetic theories of granular gases, is assumed to govern the response of the material at large strain rates and low concentrations. The stresses of the system are associated with enduring, frictional contacts among particles involved in force chains and nearly instantaneous collisions. When the first mechanism prevails, the material behaves like a solid, and constitutive models of soil mechanics hold, whereas when inelastic collisions dominate, the material flows like a granular gas, and kinetic theories apply. Considering a pressure‐imposed flow, at large values of the normal stress and small values of the shear rate, the theory predicts a nonmonotonic shear rate dependence of the stress ratio at the steady state, which is likely to govern the evolution of landslides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
19.
刘斯宏  沈超敏  毛航宇  孙屹 《岩土力学》2019,40(8):2891-2898
堆石料的强度变形特性与初始孔隙及应力状态等因素相关。建立了能够预测不同初始孔隙与初始围压影响的堆石料弹塑性本构模型。在剑桥类本构模型框架内,模型能够反映随着孔隙与围压的增大,变形特性由剪胀趋于剪缩的规律。模型采用了基于颗粒体材料细观结构变化的屈服函数和非关联流动准则,提出了能够反映堆石料正常固结线不唯一的硬化参数。为了反映状态相关性,假定堆石料存在唯一的临界状态面,探讨了考虑状态相关性需要满足的数学条件,从而对剪胀方程与硬化参数进行了修正。提出了基于粒子群优化算法的模型参数快速确定方法,将某筑坝堆石料不同初始孔隙比与围压条件下模型预测结果与三轴试验结果对比,验证了模型的合理性。  相似文献   

20.
Wang  Zi-Yi  Wang  Pei  Yin  Zhen-Yu  Wang  Rui 《Acta Geotechnica》2022,17(10):4277-4296

Particle size strongly influences the shear strength of granular materials. However, previous studies of the particle size effect have focused mainly on the macroscopic behavior of granular materials, neglecting the associated micro-mechanism. In this study, the effect of particle size on the shear strength of uncrushable granular materials in biaxial testing is investigated using the discrete element method (DEM). First, a comprehensive calibration against experimental results is conducted to obtain the DEM parameters for two types of quartz sand. Then, a series of biaxial tests are simulated on sands with parallel particle size distributions to investigate the effect of particle size on macro- and microscopic behaviors. Finally, by adopting the rolling resistance method and the clump method, irregular-shaped particles are simulated to investigate how the particle size effect will be influenced by the particle shape. Simulation results demonstrate that (1) the peak shear strength increases with particle size, whereas the residual shear strength is independent of particle size; (2) the thickness of the shear band increases with the particle size, but its ratio decreases with particle size; (3) the particle size effect can be explained by the increase of friction utilization ratio with particle size; and (4) the particle size effect is more significant in granular materials that consist of particles with higher angularity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号