首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250–500°C).Degradation products of less altered kerogens are dominated by normal C4–C15 α,ω-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of α,ω-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed.As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens.Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (DENNIS et al., 1982).  相似文献   

2.
A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomicHC ratio and the lowest atomic NC ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C16 and C18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic HC ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.  相似文献   

3.
The ratio of the abundance of the C19:1 isoprenoids 1-pristene and 2-pristene to the abundance of (nC17:1 + nC17:0) is significantly lower in pyrolysates of kerogens from highly anoxic depositional environments than in pyrolysates of kerogen if similar types and levels of catagenesis from more oxic organic facies. 13C-NMR analysis shows that the occurrence of lower relative concentrations of isoprenoid precursors also correlates with the occurrence of low proportions of oxygen-bonded carbon and high proportion of aliphatic carbon in kerogens. The ratio of 1-pristene to (n-C17:1 + nC17:0) can be correlated laterally and statigraphically within a basin. There is no clearly discernible dependence of relative isoprenoid concentration of kerogen type for oil-generative kerogens, although immature lignites have high 1-pristene/(nC17:1 + nC17:0) ratios.The 1-pristene/(nC17:1 + nC17:0) ratios in kerogens pyrolysates from the same organic facies decrease logarithmically with increasing catagenesis and can be correlated directly with measured vitrinite reflectance values. Geologic and experimental data imply that 1-pristene precursors are lost from kerogen more rapidly than the precursors of the C18 isoprenoid.The lower relative isoprenoid concentrations observed in anoxically deposited kerogens appear to be the result of the enhanced preservation of normal alkyl groups and the enhanced formation of free isophrenoids early in the sequence of kerogen alteration. These results are significant to the use of isoprenoids as geochemical marker oils, bitumens, and kerogens and to the determination of the structure and diagenesis of isoprenoid precursors.  相似文献   

4.
Alkaline potassium permanganate oxidation of a young kerogen (lacustrine) and 34 model compounds (saturated and unsaturated fatty acids, hydroxy acid, aliphatic dicarboxylic acids, aliphatic alcohols, normal hydrocarbon, β-carotene, phenolic acids, benzenecarboxylic acids, carbohydrates, amino acids and proteins) were conducted, followed by GC and GC-MS analysis of the degradation products. The stability of the degradation products of kerogen in permanganate solution and the relationship between degradation products and kerogen building blocks were determined.The results showed that aliphatic acids C12–C16 monocarboxylic acids and C6–C10 α,ω-dicarboxylic acids) were rather susceptible to oxidation compared with benzenecarboxylic acids and the former were degraded into lower molecular weight decarboxylic acids. It was concluded that oxidation at milder conditions (60° C, 1 hr) is appropriate for qualitative and quantitative characterization of the aliphatic structure of young kerogen. It was noteworthy that benzoic acid was produced in a significant amount by oxidation of amino acids (phenylalanine) and proteins, C18-isoprenoidal ketone from phytol, and C8 and C9 α,ω-dicarboxylic acids from unsaturated fatty acids, respectively; furthermore, 2,2-dimethyl succinic and 2,2-dimethyl glutaric acids were produced from β-carotene.  相似文献   

5.
Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5–116 hr) and temperatures (150°–410°C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid <1%. Whereas n-alkanes produced from lipid show a CPI > 1.0, those produced by thermal alteration of kerogen display a CPI < 1.0. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2–C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.  相似文献   

6.
Lipid fraction and cell-wall materials have been separated from three types of algae (blue green, Microcystis sp.; green, Scenedesmus sp. and diatomaceous Diatoma sp.) and their KMnO4 oxidation products (aliphatic α,ω-C2-C12 dicarboxylic acids; aliphatic normal C14–C24 monocarboxylic acids; benzoic acid and C18 isoprenoidal ketone) examined by gas chromatography and gas chromatographymass spectrometry. The results suggest that the lipid material could make a greater contribution to polymethylene chains in kerogen than the cell-wall material, when the kerogens are mainly derived from algal components.  相似文献   

7.
Significant amounts (up to 2% of organic geopolymers) of low molecular weight (LMW) dicarboxylic acids (C2–C10) have been detected during thermal alteration (270°C, 2 h) of kerogens and humic acids isolated from young or ancient lithified sediments. Their distribution is characterized by predominance of oxalic acid followed by succinic, fumaric and methylsuccinic acids. These acids are probably released by the breakdown of macromolecular structures, which have incorporated biogenic organic compounds, including diacids, during early diagenesis in sediments. Because of their reactivity, LMW diacids may play the following geochemically important roles under natural conditions: (1) the diacids dissolve carbonates and clay minerals to increase porosity and permeability, which enhances migration of oils and gas generated from catagenesis of kerogen dispersed in shale, and (2) the diacids may form organo-metal complexes, which are important for mobilization, transport and accumulation of trace metals in sedimentary basins.  相似文献   

8.
The unique KMnO4 degradation products of β-carotene, previously identified as 2,2-dimethyl succinic acid (C6) and 2,2-dimethyl glutaric acid (C7) have been found in the oxidation products of Green River shale (Eocene, 52 × 106yr) and Tasmanian Tasmanite (Permian, 220−274 × 106yr) kerogens. These two compounds were also detected in KMnO4 degradation products of young kerogens from lacustrine and marine sediments. The results indicate that kerogens incorporated carotenoids (possibly β-carotene) at the time of kerogen formation in surface sediments. Both acids are useful markers to obtain information on biological precursors contributing to the formation of fossil kerogens.  相似文献   

9.
Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200–400°C, 2–1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300°C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.  相似文献   

10.
An immature sulfur-rich marl from the Gessosso-solfifera Formation of the Vena del Gesso Basin (Messinian, Italy) has been subjected to hydrous pyrolysis (160 to 330°C) to simulate maturation under natural conditions. The kerogen of the unheated and heated samples was isolated and the hydrocarbons released by selective chemical degradation (Li/EtNH2 and HI/LiAlH4) were analysed to allow a study of the fate of sulfur- and oxygen-bound species with increasing temperature. The residues from the chemical treatments were also subjected to pyrolysis–GC to follow structural changes in the kerogens. In general, with increasing hydrous pyrolysis temperature, the amounts of sulfide- and ether-bound components in the kerogen decreased significantly. At the temperature at which the generation of expelled oil began (260°C), almost all of the bound components initially present in the unheated sample were released from the kerogen. Comparison with an earlier study of the extractable organic matter using a similar approach and the same samples provides molecular evidence that, with increasing maturation, solvent-soluble macromolecular material was initially released from the kerogen, notably as a result of thermal cleavage of weak carbon–heteroatom bonds (sulfide, ester, ether) even at temperatures as low as 220°C. This solvent-soluble macromolecular material then underwent thermal cleavage to generate hydrocarbons at higher temperatures. This early generation of bitumen may explain the presence of unusually high amounts of extractable organic matter of macromolecular nature in very immature S-rich sediments.  相似文献   

11.
A series of kerogens and kerogen precursors isolated from DSDP samples, oil shales and Recent algal mats have been examined by Curie point pyrolysis-high resolution gas chromatography and gas chromatography-mass spectrometry. This study has shown that the three main types of kerogens (marine, terrestrial and mixtures of both) can be characterized using these techniques. The marine (algal) kerogens yield principally aliphatic products and the terrestrial kerogens yield more aromatic and phenolic products with some n-alkanes and n-alkenes. The yields of n-alkanes and n-alkenes increase and phenols decrease with increasing geologic age, however, pyrolysis-GC cannot be used to characterize the influence of short term diagenesis on the kerogen structure.  相似文献   

12.
The insoluble organic matter, or kerogen, in a Recent bottom mud (<1000yr old) from Mono Lake, California, has been analyzed by vacuum pyrolysis-GC-MS and compared with the kerogen from several Precambrian rocks, including the Belingwe and Transvaal stromatolites. The Mono Lake kerogen consists mainly of cyclic and acyclic aliphatic components with lesser amounts of aromatics present. It is less aromatic and more susceptible to thermal degradation than the Precambrian kerogens, and its products show a much greater diversity especially among the unsaturated aliphatics and the heteroatomic components. The presence of these compounds, most notably 2,5-dimethylfuran, in the Mono Lake kerogen indicates a relatively rapid formation and incorporation into a young kerogen and suggests that their presence in the Precambrian kerogens, such as the Belingwe stromatolite, may be consistent with an ancient biological origin.In simulated diagenesis experiments the Recent mud was heated at 150°C for 3 months or 225°C for 8 months. The former was insufficient to affect the kerogen pyrolysis products. The latter, however, caused a large decrease in the heteroatomic components and a slight increase in the abundance of n-alkanes relative to that of the cyclic and branched alkanes. This suggests that the presence of some of these components in Precambrian rocks should be consistent with a high degree of preservation of these rocks, as appears to be the case for the Belingwe and Transvaal stromatolites.  相似文献   

13.
Stepwise pyrolysis-gas chromatography is used to examine and characterize the carbonaceous matter in sedimentary rocks. Low-temperature steps remove material normally volatile or extracted by benzene-methanol. Successively-higher temperature steps degrade the insoluble carbonaceous matter (kerogen) into smaller molecular pieces. The sequential pyrolysis steps have the advantage of breaking the kerogen at several temperatures which may be related to bond type or strength. The pyrolysis product chromatograms from each step can be compared. The molecular sizes (chain length) of kerogens fragments can be determined. The results presented here show the molecules in the range C11 to C23 because: (1) they can be compared to normal petroleum source rock extractables; and (2) these large molecules give a feeling for the molecular construction of the kerogen.Green River and Antrim shales show low-temperature material which is indigenous and not modified compared to the pyrolyzed kerogen fragments in the range C11C23. Kupferletten shows low-temperature material of a narrow molecular weight range of C15C19 which is probably derived from the kerogen. Monterey shale low-temperature material appears to be unrelated to the kerogen as represented by its pyrolysis products. The Pierre shale kerogen shows molecules over the range C11C23. Kerogen from the Romney shale has no molecules large than C8 in its pyrolysis products and no petroleum potential due to thermal and tectonic diagenesis.  相似文献   

14.
An infrared routine has been developed to estimate the aliphatic portion of kerogen carbon in sedimentary rocks. The procedure does not require isolation of the organic matter and is based on a computer-assisted determination of global band areas in the region of the aliphatic carbon-hydrogen stretching vibrations around 2900cm−1. From these integrated absorptions the amount of aliphatic carbon Cal (mg of aliphatic carbon per gram of solvent-extracted rock) is calculated by means of a calibration with model rocks. Carbonate overtones which interfere in the case of limestones are eliminated by comparison to a CaCO3 standard.The method has been applied to rocks containing kerogens of different types and maturities at TOC levels of 0.5 to 12%. The aliphatic carbon concentrations range from 0.5 to 60mg·g−1 and correlate reasonably well with the residual genetic potentials of the rocks as measured by S2 values from Rock-Eval pyrolysis. The ratio S2/Cal is found to decrease with burial depth reflecting a maturity enhanced conversion of aliphatic carbon to fixed aromatic carbon under Rock-Eval conditions.  相似文献   

15.
The paper presents data on the composition of biomarkers from bitumen extracts and the chemical structure of kerogen from Corg-rich sedimentary rocks before and after hydrothermal treatment in an autoclave at 300°C. Samples selected for this study are kukersite and Ordovician Dictyonema shale from the Baltics, Domanik oil shale from the Ukhta region, Upper Permian brown coal from the Pre-Ural foredeep, carbonaceous shale from the Oxfordian horizon of the Russian plate, and Upper Jurassic oil shales from the Sysola oil shale bearing region. The rocks contain type I, II, III, and II-S kerogens. The highest yield of extractable bitumen is achieved for Type II-S kerogen, whereas Type III kerogen produces the lowest amount of bitumen. The stages of organic matter thermal maturation achieved during the experiments correspond to a transition from PC2–3 to MC1–2. The 13C NMR data on kerogen indicate that the aromatic structures of geopolymers underwent significant changes.  相似文献   

16.
Solid state 13C NMR techniques of cross polarization with magic-angle spinning, and interrupted decoupling have been employed to examine the nature of the organic matter in eight kerogen concentrates representing five Tertiary deposits in Queensland, Australia. The NMR results show that five of the kerogens have high proportions of aliphatic carbon in their organic matter and correspond to Type I–II algal kerogens. Three of the kerogens, derived from carbonaceous shales, have a high proportion of aromatic carbon in their organic matter and correspond to Type III kerogens. The fractions of aliphatic carbon in all the kerogens, regardless of type, are shown to correlate with the conversion characteristics of the corresponding raw shales during Fischer assay. Interrupted decoupling NMR results show the presence of more oxygen-substituted carbon in the carbonaceous shales, which may account for the greater CO2 evolution and phenolic materials found in the pyrolysis products of the carbonaceous shales.  相似文献   

17.
High maturity oil and gas are usually generated after primary oil expulsion from source rocks, especially from oil prone type I/II kerogen. However, the detailed impacts of oil expulsion, or retention in source rock on further thermal degradation of kerogen at the high maturity stage remain unknown. In the present study, we collected an Ordovician Pingliang shale sample containing type II kerogen. The kerogens, which had previously generated and expelled oil and those which had not, were prepared and pyrolyzed in a closed system, to observe oil expulsion or oil retention effects on later oil and gas generation from kerogen. The results show that oil expulsion and retention strongly impacts on further oil and gas generation in terms of both the amount and composition in the high maturity stage. Gas production will be reduced by 50% when the expulsion coefficient reaches 58%, and gas from oil-expelled kerogen (less oil retained) is much drier than that from fresh kerogen. The oil expulsion also causes n-alkanes and gas compounds to have heavier carbon isotopic compositions at high maturity stages. The enrichment of 13C in n-alkanes and gas hydrocarbons are 1‰ and 4–6‰ respectively, compared to fresh kerogen. Oil expulsion may act as open system opposite to the oil retention that influences the data pattern in crossplots of δ13C2–δ13C3 versus C2/C3, δ13C2–δ13C3 versus δ13C1 and δ13C1–δ13C2 versus ln(C1/C2), which are widely used for identification of gas from kerogen cracking or oil cracking. These results suggest that the reserve estimation and gas/source correlation in deep burial basins should consider the proportion of oil retention to oil expulsion the source rocks have experienced.  相似文献   

18.
A detailed investigation of kerogen oxidation products remaining in aqueous solutions after the usual isolation of degradation products by extraction with ether or precipitation, was carried out for the first time in kerogen structural studies. Three shale samples were investigated: Green River shale (type I kerogen), Toarcian shale, Paris Basin (type II), and Mannville shale, Canada (type III). The yields of acids from aqueous solutions were noticeable: 12.98, 15.32 and 22.32%, respectively, based on initial kerogens. Qualitative and quantitative capillary GC/MS analysis showed that the ratios of different kinds of identified acids depended much on the type of precursor kerogen. Some of the acids identified in aqueous solutions have not been found earlier among the degradation products of the same kerogen samples, or were obtained in different ranges and yields. Consequently, slight modifications were suggested of the image on the nature of various types of kerogens based on examination of ether-soluble acids only. Namely, slightly higher proportions of aromatic and alkane-polycarboxylic acids in the total oxidation products of both type I and type II kerogens indicated larger participation of aromatic and alicyclic and/or heterocyclic structures in these two kerogens. On the other hand, for type III Mannville shale kerogen, a somewhat larger share of aliphatic type structures was demonstrated.  相似文献   

19.
A 33 step alkaline permanganate degradation of the kerogen from Moroccan Timahdit oil shale (M-Zone) was carried out. A very high total yield of oxidation products was obtained (95.4% based on original kerogen). Detailed GC-MS analyses of ether-soluble acids, acids isolated from aqueous solutions and soluble products of further controlled permanganate dedradation of precipitated, ether-insoluble acids, served as a basis for the quantitative estimation of the participation of various types of products and for comparison with other kerogens. The most interesting finding was the observed uniquely high yield of aromatic oxidation products from an intermediate type I–II kerogen. Taking into account the almost equally dominant aliphatic (50.2%) and aromatic (43.2%) nature of the acidic oxidation products, the existence of an aliphatic cross-linked nucleus mixed with cross-linked aromatic units in the Timahdit shale kerogen is postulated. Uniform distribution of oxidation products throughout the degradation suggested a similar reactivity of the various kerogen constituents towards alkaline permanganate.  相似文献   

20.
选取了红外光谱中2750~3000cm-1C-H振动峰面积作为反映干酪根中脂肪链含量的特征参数,并以完全饱和脂肪链的微晶石蜡为基准,建立了对干酪根中脂肪链含量进行测定的实验方法,同时讨论了实验条件、无机矿物、干酪根样品加入量等因素的影响。并通过对东营地区不同类型干酪根的低熟烃源岩样品进行的高压热模拟实验,研究了干酪根中脂肪链的百分含量与成熟度、沥青转化率及干酪根原素组成之间的关系。结果表明干酪根中脂肪链含量不仅与干酪根的类型有关,而且随成熟作用增加明显降低,其与热模拟生油量的关系和烃源岩的产烃率曲线相似,在脂肪链含量由15%降至5%时出现一个生油高峰。所以,脂肪链百分含量这一参数有可能成为烃源岩的判别及评价的一个新的重要指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号