首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stepwise chemical degradation involving cleavage of ester bonds (KOH/MeOH), sulfide and remaining ester bonds (Li/EtNH2), ether bonds (HI/LiAlH4) and sub-units linked to aromatic moieties (RuO4) has been carried out on the kerogens of two immature sulfur-rich marls (IV-1.4 and 1.8, TOC ca. 1.5%) from evaporitic cycle IV of the Gesosso-solfifera Formation (Messinian, Vena del Gesso, Italy). Up to 80% of the organic matter was converted to solvent-soluble material, with the greatest proportion released by Li/EtNH2. The majority by far of the extracts comprises polar macromolecular material which is thought to correspond to high molecular weight sub-units of the kerogen. Quantification of the small amounts (<1%) of the released GC-amenable components indicates that diagenetic sulfurization was more important in the case of kerogen IV-1.4 but that the extent of oxygen sequestration was similar in both cases; the distributions of biomarkers released by ether cleavage of the desulfurized residue and polar fraction showed differences which reveal heterogeneity in the building blocks making up different macromolecular fractions.  相似文献   

2.
An immature humic coal (subbituminous rank) from the Mahakam delta (Kutei basin, Kalimantan, Indonesia) was isothermally pyrolyzed in confined conditions at temperatures ranging from 250 to 400°C (10°C steps) at 700 bar pressure for 72 h. Solid, liquid and thermodesorbable phases originating from the pyrolyzates have been analyzed by different analytical techniques. Results indicate that a 10°C pyrolysis step is necessary to determine the timing and the sequence of the different transformations affecting the kerogen as well as the effluents. Four maturation/coalification stages are distinguished. Stage 1 (75–80 wt.% C) occurs when modifications mainly concern the oxygen-bearing functions of the kerogen. Stage 2 (82–85 wt.%o C) is characterized by the decrease of the aliphaticity and the primary cracking of the coal. Stage 3 (86–89 wt.% C) corresponds to the production of methane and the condensation of aromatic rings in the solid residue.  相似文献   

3.
The Menilite Shales (Oligocene) of the Polish Carpathians are the source of low-sulfur oils in the thrust belt and some high-sulfur oils in the Carpathian Foredeep. These oil occurrences indicate that the high-sulfur oils in the Foredeep were generated and expelled before major thrusting and the low-sulfur oils in the thrust belt were generated and expelled during or after major thrusting. Two distinct organic facies have been observed in the Menilite Shales. One organic facies has a high clastic sediment input and contains Type-II kerogen. The other organic facies has a lower clastic sediment input and contains Type-IIS kerogen. Representative samples of both organic facies were used to determine kinetic parameters for immiscible oil generation by isothermal hydrous pyrolysis and S2 generation by non-isothermal open-system pyrolysis. The derived kinetic parameters showed that timing of S2 generation was not as different between the Type-IIS and -II kerogen based on open-system pyrolysis as compared with immiscible oil generation based on hydrous pyrolysis. Applying these kinetic parameters to a burial history in the Skole unit showed that some expelled oil would have been generated from the organic facies with Type-IIS kerogen before major thrusting with the hydrous-pyrolysis kinetic parameters but not with the open-system pyrolysis kinetic parameters. The inability of open-system pyrolysis to determine earlier petroleum generation from Type-IIS kerogen is attributed to the large polar-rich bitumen component in S2 generation, rapid loss of sulfur free-radical initiators in the open system, and diminished radical selectivity and rate constant differences at higher temperatures. Hydrous-pyrolysis kinetic parameters are determined in the presence of water at lower temperatures in a closed system, which allows differentiation of bitumen and oil generation, interaction of free-radical initiators, greater radical selectivity, and more distinguishable rate constants as would occur during natural maturation. Kinetic parameters derived from hydrous pyrolysis show good correlations with one another (compensation effect) and kerogen organic-sulfur contents. These correlations allow for indirect determination of hydrous-pyrolysis kinetic parameters on the basis of the organic-sulfur mole fraction of an immature Type-II or -IIS kerogen.  相似文献   

4.
通过密封金管-高压釜体系对珠江口盆地番禺低隆起-白云凹陷北坡恩平组炭质泥岩的干酪根(PY),在24.1 MPa压力、20℃/hr(373.5~526℃)和2℃/h(343~489.2℃)两个升温速率条件下进行热模拟生烃实验,分析气态烃(C1 5)和液态烃(C6 14和C14+)的产率,以及沥青质和残余有机质碳同位素组成。同时与Green River页岩(GR)和Woodford泥岩(WF)的干酪根,分别代表典型的I型和II型干酪根进行对比研究。结果显示PY热演化产物中总油气量明显低于GR和WF干酪根,且气态烃(C1 5)最高产率是液态烃的1.5倍,揭示恩平组炭质泥岩主要以形成气态烃为主。在热演化过程中,有机质成熟度和母质类型是控制油气比的主要因素,气态烃和轻烃的产率比值主要受热演化成熟度的影响。干酪根残余有机质碳同位素和沥青质碳同位素在热演化过程中受有机质成熟度的影响较小,δ13C残余和δ13C沥青质可以间接反映原始母质的特征,为高演化烃源岩油气生成提供依据。  相似文献   

5.
Hydrous and anhydrous closed-system pyrolysis experiments were conducted on a sample of Mahogany oil shale (Eocene Green River Formation) containing Type-I kerogen to determine whether the role of water had the same effect on petroleum generation as reported for Type-II kerogen in the Woodford Shale. The experiments were conducted at 330 and 350 °C for 72 h to determine the effects of water during kerogen decomposition to polar-rich bitumen and subsequent bitumen decomposition to hydrocarbon-rich oil. The results showed that the role of water was more significant in bitumen decomposition to oil at 350 °C than in kerogen decomposition to bitumen at 330 °C. At 350 °C, the hydrous experiment generated 29% more total hydrocarbon product and 33% more C15+ hydrocarbons than the anhydrous experiment. This is attributed to water dissolved in the bitumen serving as a source of hydrogen to enhance thermal cracking and facilitate the expulsion of immiscible oil. In the absence of water, cross linking is enhanced in the confines of the rock, resulting in formation of pyrobitumen and molecular hydrogen. These differences are also reflected in the color and texture of the recovered rock. Despite confining liquid-water pressure being 7-9 times greater in the hydrous experiments than the confining vapor pressure in the anhydrous experiments, recovered rock from the former had a lighter color and expansion fractures parallel to the bedding fabric of the rock. The absence of these open tensile fractures in the recovered rock from the anhydrous experiments indicates that water promotes net-volume increase reactions like thermal cracking over net-volume decrease reactions like cross linking, which results in pyrobitumen. The results indicate the role of water in hydrocarbon and petroleum formation from Type-I kerogen is significant, as reported for Type-II kerogen.  相似文献   

6.
Hydrous pyrolysis experiments at 200 to 365°C were carried out on a thermally immature organic-rich limestone containing Type-IIS kerogen from the Ghareb Limestone in North Negev, Israel. This work focuses on the thermal behavior of both organic and inorganic sulfur species and the partitioning of their stable sulfur isotopes among organic and inorganic phases generated during hydrous pyrolyses. Most of the sulfur in the rock (85%) is organic sulfur. The most dominant sulfur transformation is cleavage of organic-bound sulfur to form H2S(gas). Up to 70% of this organic sulfur is released as H2S(gas) that is isotopically lighter than the sulfur in the kerogen. Organic sulfur is enriched by up to 2‰ in 34S during thermal maturation compared with the initial δ34S values. The δ34S values of the three main organic fractions (kerogen, bitumen and expelled oil) are within 1‰ of one another. No thermochemical sulfate reduction or sulfate formation was observed during the experiments. The early released sulfur reacted with available iron to form secondary pyrite and is the most 34S depleted phase, which is 21‰ lighter than the bulk organic sulfur. The large isotopic fractionation for the early formed H2S is a result of the system not being in equilibrium. As partial pressure of H2S(gas) increases, retro reactions with the organic sulfur in the closed system may cause isotope exchange and isotopic homogenization. Part of the δ34S-enriched secondary pyrite decomposes above 300°C resulting in a corresponding decrease in the δ34S of the remaining pyrite. These results are relevant to interpreting thermal maturation processes and their effect on kerogen-oil-H2S-pyrite correlations. In particular, the use of pyrite-kerogen δ34S relations in reconstructing diagenetic conditions of thermally mature rocks is questionable because formation of secondary pyrite during thermal maturation can mask the isotopic signature and quantity of the original diagenetic pyrite. The main transformations of kerogen to bitumen and bitumen to oil can be recorded by using both sulfur content and δ34S of each phase including the H2S(gas). H2S generated in association with oil should be isotopically lighter or similar to oil. It is concluded that small isotopic differentiation obtained between organic and inorganic sulfur species suggests closed-system conditions. Conversely, open-system conditions may cause significant isotopic discrimination between the oil and its source kerogen. The magnitude of this discrimination is suggested to be highly dependent on the availability of iron in a source rock resulting in secondary formation of pyrite.  相似文献   

7.
Gas generation in the deep reaches of sedimentary basins is usually considered to take place via the primary cracking of short alkyl groups from overmature kerogen or the secondary cracking of petroleum. Here, we show that recombination reactions ultimately play the dominant role in controlling the timing of late gas generation in source rocks which contain mixtures of terrigeneous and marine organic matter. These reactions, taking place at low levels of maturation, result in the formation of a thermally stable bitumen, which is the major source of methane at very high maturities. The inferences come from pyrolysis experiments performed on samples of the Draupne Formation (liptinitic Type II kerogen) and Heather Formation (mixed marine-terrigeneous Type III kerogen), both Upper Jurassic source rocks stemming from the Norwegian northern North Sea Viking Graben system. Non-isothermal closed system micro scale sealed vessel (MSSV) pyrolysis, non-isothermal open system pyrolysis and Rock Eval type pyrolysis were performed on the solvent extracted, concentrated kerogens of the two immature samples. The decrease of C6+ products in the closed system MSSV pyrolysis provided the basis for the calculation of secondary gas (C1-5) formation. Subtraction of the calculated secondary gas from the total observed gas yields a “remaining” gas. In the case of the Draupne Formation this is equivalent to primary gas cracked directly from the kerogen, as detected by a comparison with multistep open pyrolysis data. For the Heather Formation the calculated remaining gas formation profile is initially attributable to primary gas but there is a second major gas pulse at very high temperature (>550 °C at 5.0 K min−1) that is not primary. This has been explained by a recondensation process where first formed high molecular weight compounds in the closed system yield a macromolecular material that undergoes secondary cracking at elevated temperatures. The experiments provided the input for determination of kinetic parameters of the different gas generation types, which were used for extrapolations to a linear geological heating rate of 10−11 K min−1. Peak generation temperatures for the primary gas generation were found to be higher for Heather Formation (Tmax = 190 °C, equivalent to Ro appr. 1.7%) compared to Draupne Formation (Tmax = 175 °C, equivalent to appr. Ro 1.3%). Secondary gas peak generation temperatures were calculated to be 220 °C for the Heather Formation and 205 to 215 °C for the Draupne Formation, respectively, with equivalent vitrinite reflectance values (Ro) between 2.4% and 2.0%. The high temperature secondary gas formation from cracking of the recombination residue as detected for the Heather Formation is quantitatively important and is suggested to occur at very high temperatures (Tmax approx. 250 °C) for geological heating rates. The prediction of a significant charge of dry gas from the Heather Formation at very high maturity levels has important implications for petroleum exploration in the region, especially to the north of the Viking Graben where Upper Jurassic sediments are sufficiently deep buried to have experienced such a process.  相似文献   

8.
The catagenesis of organic matter (OM) was modeled by the hydrous pyrolysis of a Riphean mudstone. Microscopic observations of the processes operating during kerogen heating to 600°C were conducted in a diamond anvil cell. The results of pyrolysis in an aqueous environment were used to calculate the activation energies of kerogen cracking and derive chemical kinetic models for OM catagenesis. Isothermal experiments were carried out for 3 days at temperatures of 300, 310, …, 360, and 370°C. The maximum bitumen yield was obtained at 330°C followed by thermal cracking at higher temperatures. The aromatic and saturated hydrocarbons from rock bitumen, hydrous pyrolyzates, and kerogen flash pyrolyzates were analyzed by chromatography-mass spectrometry. We also discuss the problem of extrapolation of high-temperature pyrolysis results to geologic observations under the conditions of regional catagenesis.  相似文献   

9.
Kerogen was isolated from a marine sediment from Tanner Basin, offshore California. Samples of the kerogen were heated under an inert atmosphere at various temperatures and times. The heated and unheated kerogens were subjected to alkaline potassium permanganate oxidation followed by GC/ MS analysis of the products. The kerogens yielded primarily aliphatic C2–C14 α,ω-dicarboxylic acids and benzene mono-to-pentacarboxylic acids. Yields of aliphatic dicarboxylic acids from kerogen decreased with increasing thermal alteration. Yields of benzenecarboxylic acids increased steadily with increasing thermal alteration. The data support the concept that thermal maturation during natural burial of this type of kerogen results in the generation of aliphatic hydrocarbons from an increasingly aromatic residue.  相似文献   

10.
Compound-specific stable carbon isotope (δ ) measurements on the aliphatic hydrocarbons released from an immature Tertiary oil shale (Göynük, Turkey) via hydropyrolysis, following solvent extraction and a milder hydrogenation treatment, have further highlighted that significant compositional differences may exist between the principal aliphatic constituents of the solvent extractable (bitumen) phase and the insoluble macromolecular network (kerogen) comprising the bulk of sedimentary organic matter. Whilst inputs from diverse sources; including algae, bacteria and terrestrial higher plants, were implied from analysis of solvent-extractable alkanes, the much larger quantities of kerogen-bound n-alkyl constituents released by hydropyrolysis had a uniform isotopic signature which could be assigned to (freshwater) algae. Remarkably, the aliphatics bound to the kerogen by relatively weak covalent bonds, liberated via catalytic hydrogenation, appeared to comprise mainly allochthonous higher plant-derived n-alkanes. These results provide further compelling evidence that the molecular constituents of bitumen and, indeed, of low-yield kerogen degradation products, are not necessarily reliable indicators of kerogen biogenicity, particularly for immature Type I source rocks. The isotopic uniformity of aliphatic n-hydrocarbons released by the high-conversion hydropyrolysis step for the ultralaminae-rich Göynük oil shale, lends further support to the theory that selective preservation of highly resistant aliphatic biomacromolecules is an important mechanism in kerogen formation, at least for alginite.  相似文献   

11.
Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ?25 but ?100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ∼1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO2 gas, and a more mature (oxidized) kerogen with a lower H/C which in turn melts incongruently with further burial to produce more crude oil, CO2 gas, and a kerogen with a lower H/C and so forth.The petroleum generated in the process progresses from heavy naphthenic crude oils at low temperatures to mature petroleum at ∼150 °C. For example, the results of Computer Experiment 27 (see below) indicate that the overall incongruent melting reaction in the water-absent region of the system C-H-O at 150 °C and a depth of ∼4.3 km of an immature type-II/III kerogen with a bulk composition represented by C292H288O12(c) to produce a mature (oxidized) kerogen represented by C128H68O7(c), together with a typical crude oil with an average metastable equilibrium composition corresponding to C8.8H16.9 (C8.8H16.9(l)) and CO2 gas (CO2(g)) can be described by writing
(A)  相似文献   

12.
Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200–400°C, 2–1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300°C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.  相似文献   

13.
Hydrous pyrolysis (HP) experiments were used to investigate the petroleum composition and quality of petroleum generated from a Brazilian lacustrine source rock containing Type I kerogen with increasing thermal maturity. The tested sample was of Aptian age from the Araripe Basin (NE-Brazil). The temperatures (280–360 °C) and times (12–132 h) employed in the experiments simulated petroleum generation and expulsion (i.e., oil window) prior to secondary gas generation from the cracking of oil. Results show that similar to other oil prone source rocks, kerogen initially decomposes in part to a polar rich bitumen, which decomposes in part to hydrocarbon rich oil. These two overall reactions overlap with one another and have been recognized in oil shale retorting and natural petroleum generation. During bitumen decomposition to oil, some of the bitumen is converted to pyrobitumen, which results in an increase in the apparent kerogen (i.e., insoluble carbon) content with increasing maturation.The petroleum composition and its quality (i.e., API gravity, gas/oil ratio, C15+ fractions, alkane distribution, and sulfur content) are affected by thermal maturation within the oil window. API gravity, C15+ fractions and gas/oil ratios generated by HP are similar to those of natural petroleum considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. API gravity of the HP expelled oils shows a complex relationship with increasing thermal maturation that is most influenced by the expulsion of asphaltenes. C15+ fractions (i.e., saturates, aromatics, resins and asphaltenes) show that expelled oils and bitumen are compositionally separate organic phases with no overlap in composition. Gas/oil ratios (GOR) initially decrease from 508–131 m3/m3 during bitumen generation and remain essentially constant (81–84 m3/m3) to the end of oil generation. This constancy in GOR is different from the continuous increase through the oil window observed in anhydrous pyrolysis experiments. Alkane distributions of the HP expelled oils are similar to those of natural crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. Isoprenoid and n-alkane ratios (i.e., pristane/n-C17 and phytane/n-C18) decrease with increasing thermal maturity as observed in natural crude oils. Pristane/phytane ratios remain constant with increasing thermal maturity through the oil window, with ratios being slightly higher in the expelled oils relative to those in the bitumen. Generated hydrocarbon gases are similar to natural gases associated with crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous, with the exception of elevated ethane contents. The general overall agreement in composition of natural and hydrous pyrolysis petroleum of lacustrine source rocks observed in this study supports the utility of HP to better characterize petroleum systems and the effects of maturation and expulsion on petroleum composition and quality.  相似文献   

14.
Pyrolysis experiments were carried out on Monterey formation kerogen and bitumen and Green River formation kerogen (Type II and I, respectively), in the presence and absence of montmorillonite, illite and calcite at 200 and 300°C for 2–2000 hours. The pyrolysis products were identified and quantified and the results of the measurements on the gas and condensate range are reported here.A significant catalytic effect was observed for the pyrolysis of kerogen with montmorillonite, whereas small or no effects were observed with illite and calcite, respectively. Catalytic activity was evident by the production of up to five times higher C1–C6 hydrocarbons for kerogen with montmorillonite than for kerogen alone, and by the dominance of branched hydrocarbons in the C4–C6 range (up to 90% of the total amount at any single carbon number). This latter effect in the presence of montmorillonite is attributed to cracking via a carbonium-ion [carbocation] intermediate which forms on the acidic sites of the clay. No catalytic effect, however, was observed for generation of methane and C2 hydrocarbons which form by thermal cracking. The catalysis of montmorillonite was significantly greater during pyrolysis of bitumen than for kerogen, which may point to the importance of the early formed bitumen as an intermediate in the production of low molecular weight hydrocarbons. Catalysis by minerals was also observed for the production of carbon dioxide.These results stress the importance of the mineral matrix in determining the type and amount of gases and condensates forming from the associated organic matter under thermal stress. The literature contains examples of gas distributions in the geologic column which can be accounted for by selective mineral catalysis, mainly during early stages of organic matter maturation.  相似文献   

15.
Organic geochemical analyses of fine-grained rocks from the 9.590 km Bertha Rogers No. 1 well have been carried out: total organic carbon, Soxhlet extraction and silica gel chromatography, C15+ saturated and aromatic hydrocarbon gas chromatography and mass spectrometry, pyrolysis, kerogen analysis, X-ray diffraction and visual kerogen analysis.Rocks ranged in age from Permian to Ordovician; the well has an estimated bottom hole temperature of 225°C. Some data from this study are inconsistent with conventional theories concerning the generation and thermal destruction of hydrocarbons. For example, appreciable amounts of C15+ gas-condensate-like hydrocarbons are present in very old rocks currently at temperatures where current theory predicts that only methane and graphite should remain. Also, substantial amounts of pyrolyzable C15+ hydrocarbons remain on the kerogen in these deeply buried Paleozoic rocks. This suggests, at least in somes cases, that temperatures much higher than those predicted by current theory are required for generation and thermal destruction of hydrocarbons. The data from this well also suggest that original composition of organic matter and environment of deposition may have a much stronger influence on the organic geochemical characteristics of fine-grained sediments than has previously been ascribed to them. The results from this well, from other deep hot wells in which temperatures exceed 200°C, and from laboratory experiments, suggest that some of the basic concepts of the generation and maturation of petroleum hydrocarbons may be in error and perhaps should be reexamined.  相似文献   

16.
Solid bitumen occurs extensively in the paleo-reservoirs of marine sequences in southern China. The fluids in these paleo-reservoirs have usually experienced severe secondary alteration such as biodegradation and/or thermal maturation. The concentrations of extractable organic matter (EOM) in the resulting solid bitumens are too low to satisfy the amount required for instrumental analysis such as GC–MS and GC–IRMS. It is also difficult to get enough biomarkers and n-alkanes by dry pyrolysis or hydrous pyrolysis directly because such solid bitumens are hydrogen poor due to high maturities. Catalytic hydropyrolysis (HyPy) can release much more EOM from solid bitumen at mature to highly over-mature stages than Soxhlet extraction, dry pyrolysis and hydrous pyrolysis. However, whether the biomarkers in hydropyrolysates can be used for bitumen-source or bitumen–bitumen correlations has been questionable. In this study, a soft biodegraded solid bitumen sample of low maturity was thermally altered to various maturities in a closed system. HyPy was then employed to release bound biomarkers and n-alkanes. Our results show that the geochemical parameters for source and maturity based on biomarkers released from these thermally altered bitumen residues by HyPy are insensitive to the degree of thermal alteration. Furthermore, the maturity parameters are indicative of lower maturity than bitumen maturation products at a corresponding temperature. This suggests that biomarker source and maturity parameters, based on the products of HyPy, remain valid for bitumens which have suffered both biodegradation and severe thermal maturation. The distributions of δ13C of n-alkanes in hydropyrolysates are also insensitive to the temperature used for bitumen artificial maturation. Hence, the δ13C values of n-alkanes in hydropyrolysates may also provide useful information in bitumen–bitumen correlation for paleo-reservoir solid bitumens.  相似文献   

17.
Comparison of biological marker alkanes in the kerogen pyrolyzate and bitumen from a sediment is a useful test for the indigenous nature of sediment extracts. For the pyrolysis conditions used, the bulk of the hydrocarbons is released from the kerogen matrix between 375° and 550°C; and its steriochemistry is almost the same as that observed in the extractable bitumen in a genuine source rock. Examples are given to demonstrate that, during pyrolysis, the sterane/terpane ratio decreases and secondary terpanes are generated at the expense of primary ones.The mechanism of artificial petroleum generation by pyrolysis differs from ‘natural’ diagenesis during geological time and is reflected in the composition of certain C27-C29 steranes, as demonstrated by simulation experiments and C29-C30 moretanes and hopanes. The -sterane ratios, jointly with 17α(H)-hopane17β(H)-moretane ratios, tricyclic terpane concentrations and 17α(H)17β(H)-trisnorhopane ratios, allow the differentiation of kerogens from adjacent stratigraphies.  相似文献   

18.
This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 °C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-IIS kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.  相似文献   

19.
The yields and stable C and H isotopic composition of gaseous products from the reactions of pure n-C24 with (1) MgSO4; and (2) elemental S in sealed Au-tubes at a series of temperatures over the range 220–600 °C were monitored to better resolve the reaction mechanisms. Hydrogen sulfide formation from thermochemical sulfate reduction (TSR) of n-C24 with MgSO4 was initiated at 431 °C, coincident with the evolution of C2–C5 hydrocarbons. Whereas the yields of H2S increased progressively with pyrolysis temperature, the hydrocarbon yields decreased sharply above 490 °C due to subsequent S consumption. Ethane and propane were initially very 13C depleted, but became progressively heavier with pyrolysis temperature and were more 13C enriched than the values of a control treatment conducted on just n-C24 above 475 °C. TSR of MgSO4 also led to progressively higher concentrations of CO2 showing relatively low δ13C values, possibly due to input of isotopically light CO2 derived from gaseous hydrocarbon oxidation (e.g., more depleted CH4).  相似文献   

20.
《Applied Geochemistry》2000,15(1):79-89
Stepwise high temperature supercritical fluid extraction (HT–SFE) has been suggested as a tool to study the speciation of hydrocarbons in geological samples. Hydrocarbons extracted at the lower temperatures (e.g., 50°C) are presumed to be part of the freely extractable fraction, while those recovered at the high temperatures (e.g., 300 and 350°C) are those `trapped' within the macromolecular organic matrix and are therefore, resistant to desorption. The latter are released from the matrix after this undergoes thermally induced structural rearrangements. However, the question still remains if and to what extend, pyrolysis of the organic matrix can contribute to this fraction. This study shows, based on the characteristics of the sample matrix of two different shale samples subject to HT–SFE, that pyrolytic contributions at elevated extraction temperatures are only minor under the experimental conditions used, and that thermally induced structural changes in the macromolecular organic matrix are only partially irreversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号