首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Qinling Orogen, central China, was constructed during the Mesozoic collision between the North China and Yangtze continental plates. The orogen includes four tectonic units, from north to south, the Huaxiong Block (reactivated southern margin of the North China Craton), North Qinling Accretion Belt, South Qinling Fold Belt (or block) and Songpan Fold Belt, evolved from the northernmost Paleo-Tethys Ocean separating the Gondwana and Laurentia supercontinents. Here we employ detrital zircons from the Early Cretaceous alluvial sediments within the Qinling Orogen to trace the tectonic evolution of the orogen. The U–Pb ages of the detrital zircon grains from the Early Cretaceous Donghe Group sediments in the South Qinling Fold Belt cluster around 2600–2300 Ma, 2050–1800 Ma, 1200–700 Ma, 650–400 Ma and 350–200 Ma, corresponding to the global Kenorland, Columbia, Rodinia, Gondwana and Pangaea supercontinent events, respectively. The distributions of ages and εHf(t) values of zircon grains show that the Donghe Group sediments have a complex source comprising components mainly recycled from the North Qinling Accretion Belt and the North China Craton, suggesting that the South Qinling Fold Belt was a part of the united Qinling–North China continental plate, rather than an isolated microcontinent, during the Devonian–Triassic. The youngest age peak of 350–200 Ma reflects the magmatic event related to subduction and termination of the Mian-Lue oceanic plate, followed by the collision between the Yangtze Craton and the united Qinling–North China continent that came into existence at the Triassic–Jurassic transition. The interval of 208–145 Ma between the sedimentation of the Early Cretaceous Donghe Group and the youngest age of detrital zircons was coeval with the post-subduction collision between the Yangtze and the North China continental plates in Jurassic.  相似文献   

2.
The Mesoproterozoic successions in the North China Craton (NCC) and the Qinling–Qilian–Kunlun Orogens have been revised using the new and highly reliable age data. Many Proterozoic strata in the Qinling–Qilian–Kunlun Orogens, such as the Qinling, Jinshuikou and Beidahe groups that have been ascribed to be Paleoproterozoic are actually of Mesoproterozoic Era. The most significant advances are recent geochronological studies on the Mesoproterozoic stratigraphy and magmatic events in the NCC. The boundary age between the Dahongyu Formation and the overlying Gaoyuzhuang Formation is well constrained to be ∼1600 Ma, corresponding to the boundary age between Statherian and Calymmian. The boundary between the Tieling Formation and the overlying Xiamaling Formation is best positioned at ∼1400 Ma, which is coeval with the boundary between Calymmian and Ectasian, and is about 400 Myrs older than the conventional value of 1000 Ma originally defined by the All China Commission of Stratigraphy. Hence the Jixianian System, including the Gaoyuzhuang, Yangzhuang, Wumishan, Hongshuizhuang and Tieling formations in ascending order, is comparable with the Calymmian System in the International Stratigraphic Chart. The lower boundary of the Changchengian System, the first system of the Mesoproterozoic in China Regional Stratigraphic Chart, also needs revision from the conventional 1800 Ma to ∼1650 Ma well constrained by the zircon U–Pb ages 1673 ± 10 Ma (LA-MC-ICP-MS) and 1669 ± 20 Ma (SHRIMP) of a granite-porphyry dike that was overlain unconformably by the basal conglomerate of the Changzhougou Formation, the first formation of the Changchengian System. Therefore, the earliest Mesoproterozoic sequence in the NCC represented by the Changchengian and Jixianian Systems in the Yanliao Aulacogen is identical to that of the Vindhyan Supergroup in Central Indian and the Riphean Series in Russia. On the other hand, a series of 1.8–1.6 Ga anorogenic magmatic records were well-preserved around the NCC, which marked the initial rifting of the Columbia Supercontinent in the NCC. The magmatic events can thus be subdivided into three phases with peaks at ca 1.77 Ga, ca 1.70 Ga and ca 1.63 Ga, respectively. In addition to 1.8–1.6 Ga magmatic events, some minor volcanic eruptions at ca 1.56 Ga and 1.44 Ga, and wide-spread bi-modal magmatic intrusions at 1.35–1.32 Ga have been recognized in the northern NCC, marking the continued rifting of the Columbia Supercontinent since ∼1.8 Ga.  相似文献   

3.
This paper reports U–Pb–Hf isotopes of detrital zircons from Late Triassic–Jurassic sediments in the Ordos, Ningwu, and Jiyuan basins in the western-central North China Craton (NCC), with the aim of constraining the paleogeographic evolution of the NCC during the Late Triassic–Jurassic. The early Late Triassic samples have three groups of detrital zircons (238–363 Ma, 1.5–2.1 Ga, and 2.2–2.6 Ga), while the latest Late Triassic and Jurassic samples contain four groups of detrital zircons (154–397 Ma, 414–511 Ma, 1.6–2.0 Ga, and 2.2–2.6 Ga). The Precambrian zircons in the Late Triassic–Jurassic samples were sourced from the basement rocks and pre-Late Triassic sediments in the NCC. But the initial source for the 238–363 Ma zircons in the early Late Triassic samples is the Yinshan–Yanshan Orogenic Belt (YYOB), consistent with their negative zircon εHf(t) values (−24 to −2). For the latest Late Triassic and Jurassic samples, the initial source for the 414–511 Ma zircons with εHf(t) values of −18 to +9 is the Northern Qinling Orogen (NQO), and that for the 154–397 Ma zircons with εHf(t) values of −25 to +12 is the YYOB and the southeastern Central Asian Orogenic Belt (CAOB). In combination with previous data of late Paleozoic–Early Triassic sediments in the western-central NCC and Permian–Jurassic sediments in the eastern NCC, this study reveals two shifts in detrital source from the late Paleozoic to Jurassic. In the Late Permian–Early Triassic, the western-central NCC received detritus from the YYOB, southeastern CAOB and NQO. However, in the early Late Triassic, detritus from the CAOB and NQO were sparse in basins located in the western-central NCC, especially in the Yan’an area of the Ordos Basin. We interpret such a shift of detrital source as result of the uplift of the eastern NCC in the Late Triassic. In the latest Late Triassic–Jurassic, the southeastern CAOB and the NQO restarted to be source regions for basins in the western-central NCC, as well as for basins in the eastern NCC. The second shift in detrital source suggests elevation of the orogens surrounding the NCC and subsidence of the eastern NCC in the Jurassic, arguing against the presence of a paleo-plateau in the eastern NCC at that time. It would be subsidence rather than elevation of the eastern NCC in the Jurassic, due to roll-back of the subducted paleo-Pacific plate and consequent upwelling of asthenospheric mantle.  相似文献   

4.
This paper presents a great number of detrital zircon U–Pb ages from the Middle Triassic to the Middle Jurassic sediments in the Jiyuan basin, southern North China. The results represent age spectra from 2.9 Ga to 216 Ma, with five peaks at 2.5 Ga, 1.9 Ga, 840 Ma, 440 Ma, and 270 Ma and two grains of ∼220 Ma. The ages of 2.5 Ga and 1.9 Ga are mainly derived from the Precambrian basement of the North China Block, whereas the others are typical characteristics of the Qinling orogenic belt. An important observation is that the Qinling-sourced detrital zircons become older as the strata get younger. Samples from the Middle Triassic to early Late Triassic strata are characterized by the age peak at 270 Ma, whereas the Late Late Triassic to Early Middle Jurassic samples are dominated by age peaks at 840 Ma and 440 Ma and minor grains within 800–650 Ma. Two grains of ∼220 Ma are preserved in the Late Middle Jurassic sample, which may be contributed by the Carnian deep plutons. These signatures indicate that the unroofing pattern of the Qinling orogenic belt developed by the denudation of materials from young covers to old basements and the Carnian deep plutons. Integrated with the data reported from the Hefei Basin, it is well-established that the intensity of unroofing increased from the Qinling to the Dabie orogen in the Early Jurassic, and the denudation timing of the ultra-high pressure (UHP) and high pressure (HP) rocks or Carnian plutons changed successively from the Early Jurassic in the Dabie to the Late Middle Jurassic in the Qinling orogen.  相似文献   

5.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

6.
《Gondwana Research》2014,25(1):383-400
U–Pb geochronologic and Hf isotopic results of seven sandstones collected from Late Carboniferous through Early Triassic strata of the south-central part of the North China Craton record a dramatic provenance shift near the end of the Late Carboniferous. Detrital zircons from the Late Carboniferous sandstones are dominated by the Early Paleozoic components with positive εHf(t) values, implying the existence of a significant volume of juvenile crust at this age in the source regions. Moreover, there are also three minor peaks at ca. 2.5 Ga, 1.87 Ga and 1.1–0.9 Ga. Based on our new data, in conjunction with existing zircon ages and Hf isotopic data in the North China Craton (NCC), Central China Orogenic Belt (CCOB) and Central Asian Orogenic Belt (CAOB), it can be concluded that Early Paleozoic and Neoproterozoic detritus in the south-central NCC were derived from the CCOB. Zircons with ages of 1.9–1.7 Ga were derived from the NCC. However, the oldest components can't be distinguished, possibly from either the NCC or the CCOB, or both. In contrast, detrital zircons from the Permian and Triassic sandstones are characterized by three major groups of U–Pb ages (2.6–2.4 Ga, 1.9–1.7 Ga and Late Paleozoic ages). Specially, most of the Late Paleozoic zircons show negative εHf(t) values, similar to the igneous zircons from intrusive rocks of the Inner Mongolia Paleo-Uplift (IMPU), indicating that the Late Paleozoic detritus were derived from the northern part of the NCC. This provenance shift could be approximately constrained at the end of the Late Carboniferous and probably hints that tectonic uplift firstly occurred between the CCOB and the NCC as a result of the collision between the South and North Qinling microcontinental terranes, and then switched to the domain between the CAOB and the NCC. Additionally, on the basis of Lu–Hf isotopic data, we reveal the pre-Triassic crustal growth history for the NCC. In comparison among the three crustal growth curves obtained from modern river sands, our samples, and the Proterozoic sedimentary rocks, we realize that old components are apparently underestimated by zircons from the younger sedimentary rocks and modern river sands. Hence, cautions should be taken when using this method to investigate growth history of continental crust.  相似文献   

7.
The North China Craton (NCC) provides a classic example of lithospheric destruction and refertilization. The timing and duration of magmatism and related metallogenesis associated with the destruction process are pivotal to understanding the geodynamic controls. In this study, we present zircon U–Pb and Hf data, Re–Os ages, and He, Ar, Pb and S isotope data from the Mujicun porphyry Cu–Mo deposit in the northern Taihang Mountains within the Central Orogenic Belt of the NCC. We constrain the timing of magmatism as 144.1 ± 1.2 Ma from zircon U–Pb data on the diorite porphyry that hosts Cu–Mo mineralization. Another U–Pb age of 139.7 ± 1.4 Ma was obtained from an epidote skarn that is located in the contact zone between the porphyry and its wall rocks. These data and five Re–Os molybdenite ages that range from 142.7 ± 2.0 Ma to 138.5 ± 1.9 Ma suggest that magmatism and mineralization occurred in about five million year duration from ~ 143 Ma to ~ 138 Ma. The He, Ar, Pb and, Hf data suggest that magmatism involved recycled Neoarchean lower crustal components, with input of heat and volatiles from an upwelling mantle. The Mujicun porphyry and associated mineralization provide a typical example for magmatism and metallogeny associated with lithospheric thinning in the NCC.  相似文献   

8.
We present results of combined in situ U–Pb dating of detrital zircons and zircon Hf and whole-rock Nd isotopic compositions for high-grade clastic metasedimentary rocks of the Slyudyansky Complex in eastern Siberia. This complex is located southwest of Lake Baikal and is part of an early Paleozoic metamorphic terrane in the eastern part of the Central Asian Orogenic Belt (CAOB). Our new zircon ages and Hf isotopic data as well as whole-rock Nd isotopic compositions provide important constraints on the time of deposition and provenance of early Paleozoic high-grade metasedimentary rocks as well as models of crustal growth in Central Asia. Ages of 0.49–0.90 Ga for detrital zircons from early Paleozoic high-grade clastic sediments indicate that deposition occurred in the late Neoproterozoic and early Paleozoic, between ca. 0.62–0.69 and 0.49–0.54 Ga. Hf isotopic data of 0.82–0.69 Ga zircons suggest Archean and Paleoproterozoic (ca. 2.7–2.8 and 2.2–2.3 Ga; Hfc = 2.5–3.9 Ga) sources that were affected by juvenile 0.69–0.82 Ga Neoproterozoic magmatism. An additional protolith was also identified. Its zircons yielded ages of 2.6–2.7 Ga, and showed high positive εHf(t) values of +4.1 to +8.0, and Hf model ages tHf(DM) = tHfc = 2.6–2.8 Ga, which is nearly identical to the crystallization ages. These isotopic characteristics suggest that the protolith was quite juvenile. The whole-rock Nd isotopic data indicate that at least part of the Slyudyansky Complex metasediments was derived from “non-Siberian” provenances. The crustal development in the eastern CAOB was characterized by reworking of the early Precambrian continental crust in the early Neoproterozoic and the late Neoproterozoic–early Paleozoic juvenile crust formation.  相似文献   

9.
《Gondwana Research》2013,24(4):1241-1260
An overview is presented for the formation and evolution of Precambrian continental lithosphere in South China. This is primarily based on an integrated study of zircon U–Pb ages and Lu–Hf isotopes in crustal rocks, with additional constraints from Re–Os isotopes in mantle-derived rocks. Available Re–Os isotope data on xenolith peridotites suggest that the oldest subcontinental lithospheric mantle beneath South China is primarily of Paleoproterozoic age. The zircon U–Pb ages and Lu–Hf isotope studies reveal growth and reworking of the juvenile crust at different ages. Both the Yangtze and Cathaysia terranes contain crustal materials of Archean U–Pb ages. Nevertheless, zircon U–Pb ages exhibit two peaks at 2.9–3.0 Ga and ~ 2.5 Ga in Yangtze but only one peak at ~ 2.5 Ga in Cathaysia. Both massive rocks and crustal remnants (i.e., zircon) of Archean U–Pb ages occur in Yangtze, but only crustal remnants of Archean U–Pb ages occur in Cathaysia. Zircon U–Pb and Lu–Hf isotopes in the Kongling complex of Yangtze suggest the earliest episode of crustal growth in the Paleoarchean and two episodes of crustal reworking at 3.1–3.3 Ga and 2.8–3.0 Ga. Both negative and positive εHf(t) values are associated with Archean U–Pb ages of zircon in South China, indicating both the growth of juvenile crust and the reworking of ancient crust in the Archean. Paleoproterozoic rocks in Yangtze exhibit four groups of U–Pb ages at 2.1 Ga, 1.9–2.0 Ga, ~ 1.85 Ga and ~ 1.7 Ga, respectively. They are associated not only with reworking of the ancient Archean crust in the interior of Yangtze, but also with the growth of the contemporaneous juvenile crust in the periphery of Yangtze. In contrast, Paleoproterozoic rocks in Cathaysia were primarily derived from reworking of Archean crust at 1.8–1.9 Ga. The exposure of Mesoproterozoic rocks are very limited in South China, but zircon Hf model ages suggest the growth of juvenile crust in this period due to island arc magmatism of the Grenvillian oceanic subduction. Magmatic rocks of middle Neoproterozoic U–Pb ages are widespread in South China, exhibiting two peaks at about 830–800 Ma and 780–740 Ma, respectively. Both negative and positive εHf(t) values are associated with the middle Neoproterozoic U–Pb ages of zircon, suggesting not only growth and reworking of the juvenile Mesoproterozoic crust but also reworking of the ancient Archean and Paleoproterozoic crust in the middle Neoproterozoic. The tectonic setting for this period of magmatism would be transformed from arc–continent collision to continental rifting with reference to the plate tectonic regime in South China.  相似文献   

10.
The Qinling Orogenic Belt, linking the Kunlun and Qilian Mountains to the west and continuing farther east to the Dabie Mountain, was assembled by the convergence and collision between the Greater South China and the North China blocks. The precise timing of the subduction and collision processes between these continental blocks and tectonic regime switchover is very equivocal. Zircon in-situ LA-ICP-MS U–Pb dating in this contribution indicates that the biotite monzogranite and monzogranite phases of the Dangchuan complex were crystallized at ca. 239.8 ± 2.3 Ma and 227.8 ± 1.2 Ma, respectively. The ca. 240 Ma biotite monzogranite displays εHf(t) values ranging from −2.4 to +2.9, and corresponding TDM2 of 1.72–1.94 Ga and TDM1 of 0.77–0.88 Ga. The ca. 228 Ma monzogranite exhibits εHf(t) values ranging from −4.3 to +1.9, and corresponding TDM2 of 1.73–2.08 Ga and TDM1 of 0.81–0.88 Ga. Lutetium–Hf isotopic composition indicates that the biotite monzogranite and monzogranite probably have the same parental magmas which were originated from hybrid sources of both reworking of Paleoproterozoic ancient crust and partial melting of the Neoproterozoic juvenile crust. The more negative εHf(t) values of the monzogranite suggest more contribution of the ancient crust during the source contamination, or more possible crustal assimilation during their crystallization at ca. 228 Ma than precursor biotite monzogranite. Integrated with previous research and our detailed petrography, we propose that the Dangchuan complex underwent an episodic growth documenting the tectonic regime switchover from early Paleozoic to Triassic. The ca. 439 Ma inherited zircon recorded the persistent subduction of the oceanic crust, the ca. 240 Ma biotite monzogranite emplaced during the northward subduction of the Mianlue oceanic crust beneath the South Qinling block, and the ca. 228 Ma monzogranite emplaced during the syn-collisional process in a compressional setting.  相似文献   

11.
U–Pb detrital zircon geochronology has been used to identify provenance and document sediment delivery systems during the deposition of the early Late Triassic Yanchang Formation in the south Ordos Basin. Two outcrop samples of the Yanchang Formation were collected from the southern and southwestern basin margin respectively. U–Pb detrital zircon geochronology of 158 single grains (out of 258 analyzed grains) shows that there are six distinct age populations, 250–300 Ma, 320–380 Ma, 380–420 Ma, 420–500 Ma, 1.7–2.1 Ga, and 2.3–2.6 Ga. The majority of grains with the two oldest age populations are interpreted as recycled from previous sediments. Multiple sources match the Paleozoic age populations of 380–420 and 420–500 Ma, including the Qilian–Qaidam terranes and the North Qilian orogenic belt to the west, and the Qinling orogenic belt to the south. However, the fact that both samples do not have the Neoproterozoic age populations, which are ubiquitous in these above source areas, suggests that the Late Triassic Yanchang Formation in the south Ordos Basin was not derived from the Qilian–Qaidam terranes, the North Qilian orogenic belt, and the Qinling orogenic belt. Very similar age distribution between the Proterozoic to Paleozoic sedimentary rocks and the early Late Triassic Yanchang Formation in the south Ordos Basin suggests that it was most likely recycled from previous sedimentary rocks from the North China block instead of sediments directly from two basin marginal deformation belts.  相似文献   

12.
The Qilian–Qaidam orogenic belt at the northern edge of the Tibetan Plateau has received increasing attention as it recorded a complete history from continental breakup to opening and closure of ocean basin, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. Determining a geochronological framework of the initiation and termination of the fossil Qilian Ocean subduction in the North Qilian orogenic belt plays an essential role in understanding the whole tectonic process. Dating the high-pressure metamorphic rocks in the North Qilian orogenic belt, such as blueschist and eclogite, is the key in this respect. A blueschist from the southern North Qilian orogenic belt was investigated with a combined metamorphic PT and U–Pb, Lu–Hf, and Sm–Nd multichronometric approaches. Pseudosection modeling indicates that the blueschist was metamorphosed under peak PT conditions of 1.4–1.6 GPa and 530–550 °C. Zircon U–Pb ages show no constraints on the metamorphism due to the lack of metamorphic growth of zircon. Lu–Hf and Sm–Nd ages of 466.3 ± 2.0 Ma and 462.2 ± 5.6 Ma were obtained for the blueschist, which is generally consistent with the U–Pb zircon ages of 467–489 Ma for adjacent eclogites. Lutetium and Sm zoning profiles in garnet indicate that the Lu–Hf and Sm–Nd ages are biased toward the formation of the garnet inner rim. The ages are thus interpreted to reflect the time of blueschist-facies metamorphism. Previous 40Ar/39Ar ages of phengitic muscovite from blueschist/eclogite in this area likely represent a cooling age due to the higher peak metamorphic temperature than the argon retention temperature. The differences of peak metamorphic conditions and metamorphic ages between the eclogites and adjacent blueschists indicate that this region likely comprises different tectonic slices, which had distinct PT histories and underwent high-pressure metamorphism at different times. The initial opening of the Qilian Ocean could trace back to the early Paleozoic, and the ultimate closure of the Qilian Ocean was no earlier than c. 466 Ma.  相似文献   

13.
The intermediate–mafic–ultramafic rocks in the Jianzha Complex (JZC) at the northern margin of the West Qinling Orogenic Belt have been interpreted to be a part of an ophiolite suite. In this study, we present new geochronological, petrological, geochemical and Sr–Nd–Hf isotopic data and provide a different interpretation. The JZC is composed of dunite, wehrlite, olivine clinopyroxenite, olivine gabbro, gabbro, and pyroxene diorite. The suite shows characteristics of Alaskan-type complexes, including (1) the low CaO concentrations in olivine; (2) evidence of crystal accumulation; (3) high calcic composition of clinopyroxene; and (4) negative correlation between FeOtot and Cr2O3 of spinels. Hornblende and phlogopite are ubiquitous in the wehrlites, but minor orthopyroxene is also present. Hornblende and biotite are abundant late crystallized phases in the gabbros and diorites. The two pyroxene-bearing diorite samples from JZC yield zircon U–Pb ages of 245.7 ± 1.3 Ma and 241.8 ± 1.3 Ma. The mafic and ultramafic rocks display slightly enriched LREE patterns. The wehrlites display moderate to weak negative Eu anomalies (0.74–0.94), whereas the olivine gabbros and gabbros have pronounced positive Eu anomalies. Diorites show slight LREE enrichment, with (La/Yb)N ratios ranging from 4.42 to 7.79, and moderate to weak negative Eu anomalies (Eu/Eu1 = 0.64–0.86). The mafic and ultramafic rocks from this suite are characterized by negative Nb–Ta–Zr anomalies as well as positive Pb anomalies. Diorites show pronounced negative Ba, Nb–Ta and Ti spikes, and typical Th–U, K and Pb peaks. Combined with petrographic observations and chemical variations, we suggest that the magmatism was dominantly controlled by fractional crystallization and crystal accumulation, with limited crustal contamination. The arc-affinity signature and weekly negative to moderately positive εNd(t) values (−2.3 to 1.2) suggest that these rocks may have been generated by partial melting of the juvenile sub-continental lithospheric mantle that was metasomatized previously by slab-derived fluids. The lithologies in the JZC are related in space and time and originated from a common parental magma. Geochemical modeling suggests that their primitive parental magma had a basaltic composition. The ultramafic rocks were generated through olivine accumulation, and variable degrees of fractional crystallization with minor crustal contamination produced the diorites. The data presented here suggest that the subduction in West Qinling did not cease before the early stage of the Middle Triassic (∼242 Ma), a back-arc developed in the northern part of West Qinling during this period, and the JZC formed within the incipient back-arc.  相似文献   

14.
The North China Craton (NCC) is bounded by two Paleozoic accretionary arc terranes: the North Qinling terrane to the south and the Bainaimiao terrane to the north. The timing of arc accretion to the NCC and the architecture of the Bainaimiao arc remain unclear. During the building and accretion of the arcs along its margins, the NCC experienced a long sedimentary hiatus since the Ordovician, which ended with the deposition of bauxite-bearing sediments in the Late Carboniferous. In this paper we report the U–Pb and Hf isotopes of detrital zircons from the Late Carboniferous bauxite layer and use these data to constrain the tectonic evolution of the margin of the NCC. The detrital zircons yield a minimum U–Pb age of ca. 310 Ma and a prominent age peak at ca. 450 Ma. Zircon crystals with ages of ca. 330 Ma and ca. 1900 Ma are more common in the bauxite samples from the northern part of the NCC than in those from the central part. The εHf(t) values of the ca. 450 Ma detrital zircon crystals of the bauxite samples from the NCC are similar to those of the contemporaneous detrital zircon crystals from the North Qinling arc terrane to the south, but different from those of the contemporaneous detrital zircon crystals from the Bainaimiao arc terrane to the north. The ca. 450 Ma detrital zircon crystals in the ca. 310 Ma bauxite deposits are therefore interpreted to have been derived from the North Qinling arc terrane. The source of the ca. 330 Ma detrital zircon crystals of the bauxite deposits is interpreted to be the northern margin of the NCC, where intermediate-felsic plutons formed at ca. 330 Ma are common. The results from this study support the interpretation that the Paleozoic continental arc terranes and their concomitant back-arc basins were developed along the margins of the NCC before ca. 450 Ma, and the arc complexes were subsequently accreted to the craton in the Late Carboniferous. This was then followed by the formation of a walled continental basin within the NCC.  相似文献   

15.
《Gondwana Research》2015,28(4):1392-1406
The Ider Complex of the Tarbagatai Block in northwestern Mongolia is part of a Precambrian microcontinental terrane in the Central Asian Orogen Belt and has experienced a polymetamorphic tectono-metamorphic evolution. We have investigated an enderbitic gneiss, derived from a quartz diorite and a charnockite, derived from a leucogranite, and zircon SHRIMP data reveal late Archaean protolith ages of 2520–2546 Ma for these rocks. Metamorphic overgrowth on these zircons as well as newly-formed metamorphic zircons document a high-temperature metamorphic event (T = 930–950 °C) at about 1855–1860 Ma. Nd whole-rock isotopic systematics show these and other gneisses of the Ider Complex straddling the CHUR-line in a Nd isotope evolution diagram, suggesting both crustal reworking and input of some juvenile material, with Nd model ages ranging between ca. 2.5 and 3.1 Ga. Hf-in-zircon isotopic data provide a similar pattern and also yielded Archaean Hf crustal model ages. The metamorphic zircons seem to have inherited their Hf isotopic composition from the igneous grains, suggesting a complex process of dissolution, transportation, and re-precipitation involving a fluid phase during high-grade metamorphism. The zircon age patterns do not make it possible to unambiguously assign the Tarbagatai Block to any of the cratons bordering the Central Asian Orogenic Belt, since age peaks at ca. 2520–2550 and ca. 1860 Ma are common in the Siberian, North China and Tarim cratons.  相似文献   

16.
Continents on the early earth are considered to have been built through the accretion of microterranes, oceanic arcs and plateaus. The North China Craton (NCC), envisaged in recent models as a collage of several microblocks which were amalgamated along multiple zones of ocean closure during the late Neoarchean, provide a typical case to investigate the origin and amalgamation of microcontinents through convergent margin processes. Here we report a suite of magmatic rocks developed at the periphery of one of these microblocks, the Jiaoliao Block, that forms part of the composite Eastern Block of the NCC. We integrate our new data with those from various parts of this microblock to elucidate the mechanism of continent building in the Archean. We present petrological, geochemical and zircon U–Pb geochronological and Lu-Hf isotopic data from the magmatic suite that belongs to the Yishui Complex. Geochemically, the felsic units of the suite straddle from monzonite through granodiorite to granite with dominantly metaluminous affinity, magnesian composition and arc-related features. The metagranites, TTG gneisses and charnockites are characterized by negative Nb-Ta anomalies and positive K and Pb anomalies. The diorites and gabbros display negative anomalies of Th-U, Nb-Ta and Zr-Hf and positive anomalies at Ba, Pb and Sm with negative Eu anomalies and minor positive Ce anomalies, attesting to arc-related features. In the tectonic discrimination diagrams, the rocks plot in the volcanic arc field, indicating arc-related origin in subduction setting.Zircon grains from all the rocks display core–rim texture with the cores showing magmatic crystallization and the narrow structureless rims corresponding to metamorphic overgrowth. The magmatic zircons from the metagranites show upper intercept ages or 207Pb/206Pb weighted mean ages of 2505 ± 29 Ma and 2569 ± 20 Ma to 2513 ± 27 Ma, those from the TTG gneisses show 2535 ± 17 Ma to 2546 ± 39 Ma, from charnockites display 2543 ± 20 Ma–2555 ± 15 Ma, and diorite and gabbro show 2587 ± 15 Ma and 2516 ± 13 Ma respectively. The zircon rim ages of 2472 ± 23 Ma, 2457 ± 35 Ma, 2545 ± 30 Ma and 2511 ± 35 Ma suggest the timing of metamorphism (ca. 2.55–2.45 Ga). Magmatic zircons with slightly older ages of ca. 2.73 Ga, 2.64 Ga also occur suggesting multiple magmatic pulses. The Lu-Hf isotopic data show positive εHf(t) values ranging from 0.2 to 5.7 for metagranites, with Hf model ages of 2602–2815 Ma (TDM) and 2658–3002 Ma (TDMC), whereas for TTG gneisses, the positive εHf(t) values are up to 6.5 and display dominant Mesoarchean Hf model ages with limited early Neoarchean Hf model ages. Charnockite samples show positive εHf(t) values 2.3–5.7 and display the Hf model ages ranging from 2601 Ma to 2772 Ma (TDM) and 2658 Ma to 2904 Ma (TDMC). Diorite and gabbro also show positive εHf(t) (2.3–6.9) and yield Hf model ages of 2625–2788 Ma (TDM) and 2647 Ma to 2903 Ma (TDMC). The Hf isotopic data indicate that the magmas were derived from Neoarchean-Mesoarchean juvenile sources.Integrating our data with those from the entire Jiaoliao microblock reveals vestiges of Hadean crust involved in building the Eoarchean nucleus of this microblock. Vigorous convergent margin processes ranging from Mesoarchean to late Neoarchean with multiple pules of arc magmatism associated with subduction tectonics led to further growth of continental crust, culminating in paired high temperature and high pressure metamorphism during late Neoarchean – early Paleoproterozoic transition.  相似文献   

17.
《Gondwana Research》2013,24(4):1261-1272
A combined study of Lu–Hf isotopes and U–Pb ages for detrital zircons from sedimentary rocks can provide information on the crustal evolution of sedimentary provenances, and comparisons with potential source regions can constrain interpretations of paleogeographic settings. Detailed isotopic data on detrital zircons from Neoproterozoic sedimentary rocks in the northern part of the Yangtze Block suggest that these rocks have the maximum depositional ages of ~ 750 Ma, and share a similar provenance. In their source area, units of late Archean (2.45 to 2.55 Ga) to Paleoproterozoic (1.9 to 2.0 Ga) U–Pb ages made up the basement, and were overlain or intruded by magmatic rocks of Neoproterozoic U–Pb ages (740 to 900 Ma). Hf isotopic signatures of the detrital zircons indicate that a little juvenile crust formed in the Neoarchean; reworking of old crust dominates the magmatic activity during the Archean to Paleoproterozoic, while the most significant juvenile addition to the crust occurred in the Neoproterozoic. Only the Neoproterozoic zircon U–Pb ages can be matched with known magmatism in the northern Yangtze Block, while other age peaks cannot be correlated with known provenance areas. Similar zircon U–Pb ages have been obtained previously from sediments along the southeastern and western margins of the Yangtze Block. Thus, it is suggested that an unexposed old basement is widespread beneath the Yangtze Block and was the major contributor to the Neoproterozoic sediments. This basement had a magmatic activity at ~ 2.5 Ga, similar to that in North China; but zircon Hf isotopes suggest significant differences in the overall evolutionary histories between the Yangtze and North China.  相似文献   

18.
《Gondwana Research》2014,25(3-4):1203-1222
Reactivation of cratonic basement involves a number of processes including extension, compression, and/or lithospheric delamination. The northern margin of the North China Craton (NCC), adjacent to the Inner Mongolian Orogenic Belt, was reactivated in the Late Paleozoic to Early Mesozoic. During this period, the northern margin of the NCC underwent magmatism, N–S compression, regional exhumation, and uplift, including the formation of E–W-trending thick-skinned and thin-skinned south-verging folds and south-verging ductile shear zones. zircon U–Pb SHRIMP ages for mylonite protoliths in shear zones which show ages of 310–290 Ma (mid Carboniferous–Early Permian), constraining the earliest possible age of deformation. Muscovite within carbonate and quartz–feldspar–muscovite mylonites from the Kangbao–Weichang and Fengning–Longhua shear zones defines a stretching lineation and gives 40Ar/39Ar ages of 270–250 Ma, 250–230 Ma, 230–210 Ma, and 210–190 Ma. Deformation developed progressively from north to south between the Late Paleozoic and Triassic. Exhumation of lower crustal gneisses, high-pressure granulites, and granites occurred at the cratonic margin during post-ductile shearing (~ 220–210 Ma). An undeformed Early Jurassic (190–180 Ma) conglomerate overlies the deformed rocks and provides an upper age limit for reactivation and orogenesis. Deformation was induced by convergence between the southern Mongolia and North China cratonic blocks, and the location of this convergent belt controlled later deformation in the Yanshan Tectonic Province. This province formed as older E–W-trending Archean–Proterozoic sequences were reactivated along the northern margin of the NCC. This reactivation has features typical of cratonic basement reactivation: compression, crustal thickening, remelting of the mid to lower crust, and subsequent orogenesis adjacent to the orogenic belt.  相似文献   

19.
《Gondwana Research》2014,26(4):1627-1643
The Tianshan Orogenic Belt, which is located in the southwestern part of the Central Asian Orogenic Belt (CAOB), is an important component in the reconstruction of the tectonic evolution of the CAOB. In order to examine the evolution of the Tianshan Orogenic Belt, we performed detrital zircon U–Pb dating analyses of sediments from the accretionary mélange from Chinese southwestern Tianshan in this study. A total of 542 analyzed spots on 541 zircon grains from five samples yield Paleoarchean to Devonian ages. The major age groups are 2520–2400 Ma, 1890–1600 Ma, 1168–651 Ma, and 490–390 Ma. Provenance analysis indicates that, the Precambrian detrital zircons were probably mainly derived from the paleo-Kazakhstan continent formed before the Early Silurian by amalgamation of the Kazakhstan–Yili microplate, the Chinese central Tianshan terrane and the Kyrgyz North and Middle Tianshan blocks, while detrital zircons with Paleozoic ages mainly from igneous rocks of the continental arc generated by the northward subduction of the south Tianshan paleocean. The age data correspond to four tectono-thermal events that took place in these small blocks, i.e., the continental nucleus growth during the Late Neoarchean–early Paleoproterozoic (~ 2.5 Ga), the evolution of the supercontinents Columbia (2.1–1.6 Ga) and Rodinia (1.3–0.57 Ga), and the arc magmatism related with the Phanerozoic orogeny. The Precambrian zircons show a similar age pattern as the Tarim and the Cathaysia cratons and the Eastern India–Eastern Antarctica block but differ from those of Siberia distinctly. Therefore, the Tianshan region blocks and the Kazakhstan–Yili microplate have a close affinity to the eastern paleo-Gondwana fragments, but were not derived from the Siberia craton as proposed by some previous researchers. These blocks were likely generated by rifting accompanying Rodinia break-up in late Precambrian times.The youngest ages of the detrital zircons from the subduction mélange show a maximum depositional age of ca. 390 Ma. It is coeval with the end of an earlier arc magmatic pulse (440–390 Ma) but a bit older than a younger one at 360–320 Ma and nearly 70–80 Ma older than the HP–UHP metamorphism in the subduction zone (320–310 Ma).  相似文献   

20.
This work presents an integrated study of zircon U–Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic–felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093–0.7127, low εNd(t) values ranging from −5.6 to −5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have εHf(t) values ranging from −2.7 to 2.6 and model ages of 951–1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053–0.7058, εNd(t) values of 0.2–1.6 and corresponding T2DM of 1.0–1.1 Ga. Their zircon grains have εHf(t) values ranging from 3.2 to 6.1 and model ages of 774–911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065–0.7117, εNd(t) values from −5.7 to −1.9 and Nd model ages of 1.3–1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled Nd–Hf isotopic systemics, which may be a fingerprint of a previous late Mesoproterozoic to early Neoproterozoic oceanic subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号