首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary K–Ar and Ar–Ar whole rock and mineral ages are presented for 25 samples of metamorphic rocks from the Mid-Bosnian Schist Mts., representing one of the largest allochthonous Palaeozoic terranes incorporated within the Internal Dinarides. Four main age groups can be distinguished: 1) Variscan (343Ma), 2) post-Variscan (288–238Ma), 3) Early Cretaceous (mainly 121–92Ma), and 4) Eocene (59–35Ma) ages. Apart from this, an Oligocene (31Ma) age was obtained on Alpine vein hyalophane. The radiometric dating indicates a polyphase metamorphic evolution of the Palaeozoic formations and suggests a pre-Carboniferous age of the volcano-sedimentary protoliths, an Early Carboniferous age of Variscan metamorphism and deformation, post-Variscan volcanism, an Early Cretaceous metamorphic overprint related to out-of-sequence thrusting of the Palaeozoic complex, and an Eocene and Oligocene metamorphic overprint related to the main Alpine compressional deformation and subsequent strike-slip faulting, and uplift of the metamorphic core. Accordingly, the Mid-Bosnian Schist Mts. can be correlated in its multistage geodynamic evolution with some Palaeozoic tectonostratigraphic units from the Austroalpine domain in the Eastern Alps.Deceased  相似文献   

2.
White mica (phengite and paragonite) K–Ar ages of eclogite-facies Sanbagawa metamorphic rocks (15 eclogitic rocks and eight associated pelitic schists) from four different localities yielded ages of 84–89 Ma (Seba, central Shikoku), 78–80 Ma (Nishi-Iratsu, central Shikoku), 123 and 136 Ma (Gongen, central Shikoku), and 82–88 Ma (Kotsu/Bizan, eastern Shikoku). With the exception of a quartz-rich kyanite-bearing eclogite from Gongen, white mica ages overlap with the previously known range of phengite K–Ar ages of pelitic schists of the Sanbagawa metamorphic belt and can be distinguished from those of the Shimanto metamorphic belt. The similarity of K–Ar ages between the eclogites and surrounding pelitic schists supports a geological setting wherein the eclogites experienced intense ductile deformation with pelitic schists during exhumation. In contrast, phengite extracted from the Gongen eclogite, which is less overprinted by a ductile shear deformation during exhumation, yielded significantly older ages. Given that the Gongen eclogite is enclosed by the Higashi-Akaishi meta-peridotite body, these K–Ar ages are attributed to excess 40Ar gained during an interaction between the eclogite and host meta-peridotite with mantle-derived noble gas (very high 40Ar/36Ar ratio) at eclogite-facies depth. Fluid exchange between deep-subducted sediments and mantle material might have enhanced the gain of mantle-derived extreme 40Ar in the meta-sediment. Although dynamic recrystallization of white mica can reset the Ar isotope system, limited-argon-depletion due to lesser degrees of ductile shear deformation of the Gongen eclogite might have prevented complete release of the trapped excess argon from phengites. This observation supports a model of deformation-controlled K–Ar closure temperature.  相似文献   

3.
The Kafubu Emerald Area in Zambia is an important producer of gemstone-quality emeralds. The country rocks include carbonatization altered rock and emerald-hosting biotite chlorite schist from the Anzan emerald deposit in the Kafubu area, Zambia. The technique of LA-MC-ICP-MS is used to perform chronology measurements of the country rock and emerald-hosting rock which belong to Muva Supergroup, yielding zircon U-Pb concordia ages of 1966 ± 12 Ma in carbonatization altered rock and 1853 ± 58 Ma and 1344 ± 30 Ma in biotite chlorite schist. Meanwhile, dating of biotite chlorite schist using the biotite 40Ar–39Ar method has obtained the plateau age of t = 578.3 ± 2.6 Ma, isochron age of 577.5 ± 3.0 Ma and reverse isochron age of 577.4 ± 3.0 Ma. Thus, we have redefined the age of Muva Supergroup in the Copperbelt Province in Zambia to be older than or equal to 1966 ± 12 Ma, and found that the ore bodies in the Anzan emerald deposit underwent three phases of metamorphism at 1853 ± 58 Ma, 1344 Ma ± 30 and 578.3 ± 2.6 Ma and finally accomplished the emerald mineralization. The age of the Anzan emerald deposit is earlier than the Kagem (452.1 ± 16 Ma) and the Kamakanga emerald deposits (447 ± 8.6 Ma).  相似文献   

4.
5.
6.
《Chemical Geology》2003,193(3-4):195-214
In most orogenic belts, the age of HP metamorphism and subsequent exhumation events still remain open to debate since geochronology can yield results which appear to conflict with the closure temperature concept [Dodson, M.H., 1973. Contrib. Mineral. Petrol. 40, 259–274], and because the behaviour of daughter radiogenic isotopes under HP to UHP conditions is poorly constrained. To obtain new data on isotope migration under high-pressure conditions, two undeformed HP metagranites with partially preserved magmatic assemblages from the French Variscan belt were investigated using the 40Ar/39Ar laser probe and U–Pb ion probe methods. In both cases, 40Ar/39Ar biotite and U–Pb zircon ages are consistent and could be related to the emplacement of pre-orogenic granites, despite petrological evidence of a strong metamorphic overprint during the Variscan orogeny. Temperatures experienced by the granites during subduction and exhumation events were more than 400 °C above that normally estimated for argon retention in biotite, but failed to cause significant resetting of the mica 40Ar/39Ar chronometer. Only a weak intragrain redistribution of argon is evidenced with the laser probe up to the contact with metamorphic garnet fringing biotite. By contrast, a complete resetting of biotite ages occurs in gneisses enclosing the metagranites. These results suggest that, in these dry undeformed HP metagranites, the thermally activated diffusion was relatively ineffective and that recrystallisation is the main process which controlled isotopic exchanges of Ar and Pb. It is likely that the absence of pervasive deformation and fluid circulation has also exercised some control on the preservation of pre-metamorphic isotopic signature in the studied rocks. The possible influence of several other parameters is also discussed. This example reveals that recovering thermochronological information in high-pressure metamorphic rocks is not straightforward and that great caution must be paid in the use of ages for the reconstruction of PTt paths.  相似文献   

7.
The Central Asian Orogenic Belt (CAOB) constitutes the largest Phanerozoic accretionary orogen on Earth. It extends over 5000 km and hosting numerous metal deposits. The Chinese Altay Orogen, an important element of the CAOB, hosts abundant Devonian (ca. 410–370 Ma) deposits. The 40Ar/39Ar dating of seven mica separates from the representative samples syngenetic with orogenic-type mineralization is summarized to record a poorly studied Permian to Triassic metallogenic episode in the Chinese Altay Orogen. The Kelan and Maizi basins in the Chinese Altay Orogen, which likely represent an arc accretionary complex, contain a series of polymetallic lode deposits hosted in low-grade metamorphic volcano–sedimentary rocks. Two muscovite and five biotite separates were obtained from the ore-forming veins paragenetically associated with Au-bearing polymetallic sulfides in the Keketale Pb–Zn, Wulasigou Cu, Tiemurt Pb–Zn, Dadonggou Pb–Zn and Sarekuobu Au deposits. These separates yielded 40Ar/39Ar plateau ages ranging from 260 Ma to 205 Ma. Integration of these results with other published geological and geochronological data indicates that the Au–Cu–Pb–Zn mineralization post-dated the final CAOB assembly, with fluid movement and mineralization possibly driven by regional metamorphism and deformation. It is herein proposed for a metallogenic model that the metamorphic fluid migration following final assembly of the CAOB results into the formation of the deposits.  相似文献   

8.
Many studies have examined the Japan Sea basalts recovered during Ocean Drilling Program (ODP) Leg127/128. Of these, the 40Ar–39Ar dating undertaken is important in constraining the timing of the formation of the Japan Sea; however, the implications of their results do not appear to be fully appreciated by the geological community. In this paper, I reassess the 40Ar–39Ar age data of the basalts with reference to Nd–Sr isotopic data. The 40Ar–39Ar dating was performed on basalts somewhat enriched in large-ion lithophile elements and recovered from ODP Sites 794, 795 and the lower part of 797, yielding the plateau ages of 21.2–17.7 Ma. These basalts show the Nd–Sr isotopic signature of a moderately depleted mantle source (εNd: 0.6–6.9). In contrast, the basalts from the upper part of Site 797 have yet to be dated due to their low K content, although their Nd isotopic compositions are similar to that of MORB (εNd: 8.4–10.4). By analogy to the secular Nd–Sr isotopic trends reported for Sikhote-Alin and northeast Japan, the age of the upper basalts at Site 797 may be inferred to be younger than the lower basalts, probably around 16 Ma. The Nd–Sr isotopic compositions of the Japan Sea basalts have been interpreted in terms of eastward asthenospheric flow, as have the lavas of the Sikhote-Alin and northeastern Japan. The timing of volcanic activity in the Japan Sea region (i.e., from 21.2 to 14.86 Ma) is consistent with the timing of rotational crustal movements inferred from paleomagnetic studies of the Japanese Islands (i.e., 14.8–4.2 Ma for southwest Japan and 16.5–14.4 Ma for northeast Japan).  相似文献   

9.
The Sangan iron skarn deposit is located on the eastern edge of the Sabzevar-Doruneh Magmatic Belt, northeastern Iran. Mineralization occurs at the contact between Eocene igneous rocks and Cretaceous carbonates. The silicate-dominant prograde skarn stage consists of garnet and clinopyroxene, whereas the retrograde stage is dominated by magnetite associated with minor hematite, phlogopite, pyrite, and chalcopyrite. Phase equilibria and mineral chemistry studies reveal that the skarn formed within a temperature range of ∼375° to 580 °C and that the mineralizing fluid evolved from a hot, low oxygen fugacity, alkaline fluid during the silicate-dominant stage to a fluid of relatively lower temperature and higher oxygen fugacity at the magnetite-dominant stage. The δ18O values of magnetite and garnet vary from +3.1 to +7.5‰ and +7.7 to +11.6‰, respectively. The calculated δ18OH2O values of fluid in equilibrium with magnetite and garnet range from +9.8 to +11.1‰ and +10.1 to +14.8‰, respectively. These elevated δ18OH2O values suggest interaction of magmatic water with 18O-enriched carbonates. The high δ34S values (+10.6 to +17.0‰) of pyrite separates from the Sangan iron ore indicate that evaporites had an important role in the evolution of the hydrothermal fluid. Phlogopite separates from the massive ores yield 40Ar/39Ar plateau ages of 41.97 ± 0.2 and 42.47 ± 0.2 Ma, indicating that the skarn formation and associated iron mineralization was related to the oldest episode of magmatism in Sangan at ∼42 Ma. Eocene time marked a peak of magmatic activity and associated skarn in the post-collisional setting in northeastern Iran, whereas Oligo-Miocene magmatic activity and associated skarn in the Urumieh-Dokhtar Magmatic Belt are related to subduction. In addition, skarn mineralization in northeastern and eastern Iran is iron type, but skarn mineralization in the Urumieh-Dokhtar magmatic belt is copper – iron and copper type.  相似文献   

10.
11.
The genesis of mineralized systems across the Mountain Freegold area, in the Dawson Range Cu–Au?±?Mo Belt of the Tintina Au province was constrained using Pb and stable isotope compositions and Ar–Ar and Re–Os geochronology. Pb isotope compositions of sulfides span a wide compositional range (206Pb/204Pb, 18.669–19.861; 208Pb/204Pb, 38.400–39.238) that overlaps the compositions of the spatially associated igneous rocks, thus indicating a magmatic origin for Pb and probably the other metals. Sulfur isotopic compositions of sulfide minerals are broadly similar and their δ34S (Vienna-Canyon Diablo Troilite (V-CDT)) values range from ?1.4 to 3.6 ‰ consistent with the magmatic range, with the exception of stibnite from a Au–Sb–quartz vein, which has δ34S values between ?8.1 and ?3.1 ‰. The δ34S values of sulfates coexisting with sulfide are between 11.2 and 14.2 ‰; whereas, those from the weathering zone range from 3.7 to 4.3 ‰, indicating supergene sulfates derived from oxidation of hypogene sulfides. The δ13C (Vienna Peedee Belemnite (VPDB)) values of carbonate range from ?4.9 to 1.1 ‰ and are higher than magmatic values. The δ18O (V-SMOW) values of magmatic quartz phenocrysts and magmatic least-altered rocks vary between 6.2 and 10.1 ‰ and between 5.0 and 10.1 ‰, respectively, whereas altered magmatic rocks and hydrothermal minerals (quartz and magnetite) are relatively 18O-depleted (4.2 to 7.9 ‰ and ?6.3 to 1.5 ‰, respectively). Hydrogen isotope compositions of both least-altered and altered igneous rock samples are D-depleted (from ?133 to ?161 ‰ Vienna-Standard Mean Ocean Water (V-SMOW)), consistent with differential magma degassing and/or post-crystallization exchange between the rocks and meteoric ground water. Zircon from a chlorite-altered dike has a U–Pb crystallization age of 108.7?±?0.4 Ma; whereas, the same sample yielded a whole-rock Ar–Ar plateau age of 76.25?±?0.53 Ma. Likewise, molybdenite Re–Os model ages range from 75.8 to 78.2 Ma, indicating the mineralizing events are genetically related to Late Cretaceous volcano-plutonic intrusions in the area. The molybdenite Re–Os ages difference between the nearby Nucleus (75.9?±?0.3 to 76.2?±?0.3 Ma) and Revenue (77.9?±?0.3 to 78.2?±?0.3 Ma) mineral occurrences suggests an episodic mineralized system with two pulses of hydrothermal fluids separated by at least 2 Ma. This, in combination with geological features suggest the Nucleus deposit represents the apical and younger portion of the Revenue–Nucleus magmatic-hydrothermal system and may suggest an evolution from the porphyry to the epithermal environments.  相似文献   

12.
The Sangdong scheelite–molybdenite deposit in northeast South Korea consists of strata-bound orebodies in intercalated carbonate-rich layers in the Cambrian Myobong slate formation. Among them, the M1 layer hosts the main orebody below which lie layers of F1–F4 host footwall orebodies. Each layer was first skarnized with the formation of a wollastonite + garnet + pyroxene assemblage hosting minor disseminated scheelite. The central parts of the layers were subsequently crosscut by two series of quartz veining events hosting minor scheelite and major scheelite–molybdenite ores, respectively. The former veins associate amphibole–magnetite (amphibole) alteration, whereas the latter veins host quartz–biotite–muscovite (mica) alteration. Deep quartz veins with molybdenite mineralization are hosted in the Cambrian Jangsan quartzite formation beneath the Myobong formation. In the Sunbawi area, which is in close proximity to the Sangdong deposit, quartz veins with scheelite mineralization are hosted in Precambrian metamorphic basement. Three muscovite 39Ar–40Ar ages between 86.6 ± 0.2 and 87.2 ± 0.3 Ma were obtained from M1 and F2 orebodies from the Sangdong deposit and Sunbawi quartz veins. The Upper Cretaceous age of the orebodies is concordant with the published ages of the hidden Sangdong granite, 87.5 ± 4.5 Ma. This strongly suggests that the intrusion is causative for the Sangdong W–Mo ores and Sunbawi veins.Fluid inclusions in the quartz veins from the M1 and F2 orebodies, the deep quartz-molybdenite veins, and the Sunbawi veins are commonly liquid-rich aqueous inclusions having bubble sizes of 10–30 vol%, apparent salinities of 2–8 wt% NaCl eqv., and homogenization temperatures of 180–350 °C. The densities of the aqueous inclusions are 0.70–0.94 g/cm3. No indication of fluid phase separation was observed in the vein. To constrain the formation depth in the Sangdong deposit, fluid isochores are combined with Ti–in–quartz geothermometry, which suggests that the M1 and F2 orebodies were formed at depths of 1–3 km and 5–6 km below the paleosurface, respectively. The similarity of the Cs (cesium) concentrations and Rb/Sr ratios in the fluid inclusions of the respective orebodies indicate an origin from source magmas having similar degrees of fractionation and enrichment of incompatible elements such as W and Mo. High S concentrations in the fluids and possibly organic C in the sedimentary source likely promoted molybdenite precipitation in the Sangdong orebodies, whereas the scheelite deposition in the deep quartz–molybdenite veins hosted in the quartzite is limited by a lack of Ca and Fe in the hydrothermal fluids. The molybdenite deposition in the Sunbawi quartz–molybdenite veins hosted in the Precambrian metamorphic basement rocks was possibly limited by a lack of reducing agents such as organic C.  相似文献   

13.
The Sanshandao Au deposit is located in the famous Sanshandao metallogenic belt, Jiaodong area. To date, accumulative Au resources of 1000 t have been identified from the belt. Sanshandao is a world-class gold deposit with Au mineralization hosted in Early Cretaceous Guojialing-type granites. Thus, studies on the genesis and ore-forming element sources of the Sanshandao Au deposit are crucial. He and Ar isotopic analyses of fluid inclusions from pyrite(the carrier of Au) indicate that the fluid inclusions have 3 He/4 He=0.043–0.21 Ra with an average of 0.096 Ra and 40 Ar/36 Ar=488–664 with an average of 570.8. These values represent the initial He and Ar isotopic compositions of ore-forming fluids for trapped fluid inclusions. The comparison of H–O isotopic characteristics combined with deposit geology and wall rock alteration reveals that the ore-forming fluids of the Sanshandao Au deposit show mixed crust–mantle origin characteristics, and they mainly comprise crust-derived fluid mixed with minor mantle-derived fluid and meteoric water during the uprising process. The ore-forming elements were generally sourced from pre-Cambrian meta-basement rocks formed by Mesozoic reactivation and mixed with minor shallow crustal and mantle components.  相似文献   

14.
The Olympic Cu–Au Province, Gawler Craton, is host to the Olympic Dam and Prominent Hill iron oxide–copper–gold (IOCG) deposits. Both of these deposits and the region between the two are covered by Neoproterozoic to Cenozoic sediment, making inferences about prospectivity in this portion of the Olympic Domain reliant on geophysical interpretation and sparse drill hole information. We present new U–Pb zircon sensitive high resolution ion microprobe (SHRIMP) dates from two basement intersecting drill holes in the region between Olympic Dam and Prominent Hill that show bimodal volcanism occurred at 2555 ± 5 Ma, and was followed by intrusion of tonalite at 2529 ± 6 Ma. Laser 40Ar/39Ar dating of biotite and muscovite from the tonalite yields ages around ca 2000 Ma, consistent with slow cooling trends observed in Archean rocks elsewhere in the northern Gawler Craton. Step heating experiments on K-feldspar from the same tonalite yields an age spectrum with older ages around 1740 Ma from the highest temperature steps becoming progressively younger to a minimum of 1565 Ma in the lowest temperature heating steps; this is consistent with either Paleoproterozic cooling to final closure of K-feldspar by 1565 Ma or a reheating event at ca 1565 Ma, with the latter more likely, given the evidence for sub-solidus alteration of the K-feldspar. Sericite within hematite–sericite–chlorite altered portions of the tonalite yield a poorly defined age of ca 1.6 Ga. Taken together the 40Ar/39Ar data providing evidence for a fluid event affecting this region between Olympic Dam and Prominent Hill during the early Mesoproterozoic. Low temperature quartz–carbonate–adularia veins occur in <10 cm wide fractures within basalt in one drill hole in this region. Adularia from these veins yields 40Ar/39Ar ages that span from ca 1.3–1.1 Ga. This age range is interpreted to approximate either the timing of adularia formation during a hydrothermal event or the timing of resetting of the 40Ar/39Ar systematics within the adularia as a result of fluid flow in this sample. This is evidence for a mid-Mesoproterozoic fluid event in the Gawler Craton and necessitates a reconsideration of the long-term stability of the craton, as it appears to have been affected, at least locally, by fluid flow related to a much larger event within the Australian continent, the Musgrave Orogeny.  相似文献   

15.
The genesis of polymetallic deposits in southern Altay, NW China has been disputed between a syngenetic seafloor hydrothermal process and an epigenetic orogenic-type mineralization. The Dadonggou Pb–Zn deposit occurs as NW-trending veins in the Devonian Kangbutiebao Formation volcanic-sedimentary sequence in the Kelan basin, southern Altay. A set of integrated zircon U–Pb and biotite 40Ar/39Ar geochronological data were applied to constrain the forming ages of the ores and their country rocks. Three samples of host volcanic rocks yielded weighted mean 206Pb/238U ages of 397.1 ± 4.5 Ma, 391.7 ± 3.6 Ma and 391.1 ± 4.2 Ma, respectively, indicating that the Kangbutiebao Formation was deposited in a Devonian back-arc basin. Two biotite samples separated from the Pb–Zn-containing quartz veins yielded 40Ar/39Ar plateau ages of 205.9 ± 2.1 Ma and 204.3 ± 2.2 Ma, respectively, which represent the age of the Pb–Zn mineralization that is attributed to the closure of the Kelan back-arc basin and the Late Triassic orogeny. Combining the available geological and geochronological data, this contribution outlines the successive evolution from the development of a Devonian back-arc basin to the Late Triassic post-subduction orogeny, and proposes that the Dadonggou Pb–Zn deposit is an epigenetic orogenic-type deposit placed in the Late Triassic orogeny.  相似文献   

16.
Doklady Earth Sciences - The original and published geochronological data and the geological position of different granitoid complexes of the Main (Kolyma) Batholith Belt of Northeast Asia have...  相似文献   

17.
The recently discovered Zhuxi W–Cu ore deposit is located within the Taqian–Fuchun Ore Belt in the southeastern edge of the Yangtze Block, South China. Its inferred tungsten resources, based on new exploration data, are more than 280 Mt by 2016. At least three paragenetic stages of skarn formation and ore deposition have been recognized: prograde skarn stage; retrograde stage; and hydrothermal sulfide stage. Secondly, greisenization, marmorization and hornfels formation are also observed. Scheelite and chalcopyrite are the dominant metal minerals in the Zhuxi deposit and their formation was associated with the emplacement of granite stocks and porphyry dykes intruded into the surrounding Carboniferous carbonate sediments (Huanglong and Chuanshan formations) and the Neoproterozoic slate and phyllites. The scheelite was mostly precipitated during the retrograde stage, whereas the chalcopyrite was widely precipitated during the hydrothermal sulfide stage. A muscovite 40Ar/39Ar plateau age of about 150 Ma is interpreted as the time of tungsten mineralization and molybdenite Re–Os model ages ranging from 145.9 ± 2.0 Ma to 148.7 ± 2.2 Ma (for the subsequent hydrothermal sulfide stage of activity) as the time of the copper mineralization. Our new molybdenite Re–Os and muscovite 40Ar/39Ar dating results, along with previous zircon U–Pb age data, indicate that the hydrothermal activity from the retrograde stage to the last hydrothermal sulfide stage lasted up to 5 Myr, from 150.6 ± 1.5 to 145.9 ± 1 Ma, and is approximately coeval or slightly later than the emplacement of the associated granite porphyry and biotite granite. The new ages reported here confirm that the Zhuxi tungsten deposit represents one of the Mesozoic magmatic–hydrothermal mineralization events that took place in South China in a setting of lithospheric extension during the Late Jurassic (160–150 Ma). It is suggested that mantle material played a role in producing the Zhuxi W–Cu mineralization and associated magmatism.  相似文献   

18.
The Hengshan complex is located in the central part of SE China, which underwent rapid tectonic uplift in the Cretaceous just like many other complexes on the continent. (40)~Ar–(39)~Ar geochronological data from the Hengshan complex suggest that two episodes of crustal cooling/extension took place in this part of the continent during the Cretaceous time. The first stage of exhumation was active during ca. 136–125 Ma, with a cooling rate of 10 °C/Ma. The second stage of exhumation happened at ca. 98–93 Ma, with a cooling rate of 10 °C/Ma. Considering the folding in the Lower Cretaceous sedimentary rocks and the regional unconformity underneath the Upper Cretaceous red beds, it is believed that the Cretaceous crustal extension in SE China was interrupted by a compressional event. The reversion to extension, shortly after this middle Cretaceous compression, led to the rapid cooling/exhumation of the Hengshan complex at ca. 98–93 Ma. The Cretaceous tectonic processes in the hinterland of SE China could be controlled by interactions between the continental margin and the Paleo–pacific plate.  相似文献   

19.
The Gejiu tin-polymetallic deposits in the Western Cathaysia Block of South China comprise the world's largest primary tin district, with a total resource of approximately 300 million metric ton ores, at an average grade of 1 wt percent Sn. Tin polymetallic mineralization occurs in five deposits and has four ore types, i.e., greisen, skarn, stratabound cassiterite-sulfide (mostly oxidized) and vein type ore. In each deposit the orebodies typically occur in an extensive hydrothermal system centered on a shallow Late Cretaceous granitoid cupola. Metal zoning is well developed both vertically and horizontally over the entire district, from W + Be + Bi ± Mo ± Sn ores inside granite intrusions, to Sn + Cu-dominated ores at intrusion margins and farther out to Pb + Zn deposits in the surrounding host carbonate. This zoning pattern is similar to that of other hydrothermal deposits in other parts of the world, indicating a close genetic relationship between magmatism and mineralization. In this paper, we dated thirteen mica samples from all types of mineralization and from the five deposits in the Gejiu district. The ages range from 77.4 ± 0.6 Ma to 95.3 ± 0.7 Ma and are similar to the existing zircon U–Pb age of the granitic intrusions (77.4 ± 2.5–85.8 ± 0.6), indicating a genetic relationship between the mineralization and the intrusions. Geological characteristics, metal zoning patterns and new geochronological data all indicate that the tin-polymetallic ores in the Gejiu district are hydrothermal in origin and are genetically related to the nearby granitic intrusions. It is unlikely that the deposits are syngenetic, as has been proposed in recent years.  相似文献   

20.
ABSTRACT

The West Junggar Metallogenic Belt (WJMB) is located between the Tianshan fault system and the Ertix fault system in the western part of the Central Asian Metallogenic Domain (CAMD). The belt features widespread late Palaeozoic granitic plutons, strike-slip faults, and porphyry copper and orogenic gold deposits. We collected nine molybdenite samples from the Baogutu III–IV Cu–Mo deposit and the Suyunhe Mo–W deposit, and 12 granitoid samples from the Jiaman, Kangde, Kulumusu, Bieluagaxi, Hatu, Akbastau, Miaoergou, Baogutu, Karamay, and Hongshan plutons in the WJMB. Molybdenite Re–Os dating gives metallogenesis ages of 312.7 and 299.7 Ma for the Baogutu III–IV and Suyunhe deposits, respectively. 40Ar/39Ar thermochronology yields biotite ages ranging from 326 to 302 Ma and K-feldspar ages from 297 to 264 Ma, indicating a regional medium-temperature cooling history in the WJMB during the late Carboniferous to middle Permian. By integrating these data with previous zircon U–Pb, amphibole 40Ar/39Ar, and zircon and apatite fission-track ages, we reconstruct the whole thermal history of the WJMB, which includes late Palaeozoic intrusive magmatism, porphyry Cu and W–Mo mineralization, and late Mesozoic tectonic uplift and exhumation of the WJMB. The regional 40Ar/39Ar cooling ages are consistent with the timing of regional sinistral strike-slip faulting, thereby indicating the tectonic significance of the cooling ages. We suggest that the biotite 40Ar/39Ar ages represent the static cooling of the granitic plutons after emplacement, since the ages are consistent with the U–Pb ages of the plutons. Thereafter, the oldest K-feldspar 40Ar/39Ar age may record the initiation of sinistral strike-slip movement on the Darabut, Mayile, and Baerluke faults. The regional faulting resulted in significant uplift of the WJMB during the early and middle Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号