首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
库车再生前陆盆地冲断构造楔特征   总被引:60,自引:4,他引:56  
库车再生前陆盆地冲断构造楔由一系列向南运动的逆冲断层和相关褶皱组成。冲断楔的北部以断层转折褶皱、断层传播褶皱、双重逆冲构造为主。断层楔的前缘发育了很好的滑脱膝折背斜,全为盲断层控制,形成隐蔽式前锋。冲断层的就位从中新世开始,自北向南迁移,前锋的构造形成在第四纪。造成逆冲断层的地壳水平缩短作用速度在中新世较慢,平均为0.355mm/a,上新世中期达0.82mm/a,而到上新世晚期和第四纪速度增大了约一个数量级,达到1.29-3mm/a。  相似文献   

3.
Detachment folds represent a major structural element in a number of fold belts. They are common in the Jura Mountains, the Zagros fold belt, the Central Appalachian fold belt, the Wyoming fold-belt, the Brooks Range, the Parry Islands fold belt, and parts of the SubAndean belt. These structures form in stratigraphic packages with high competency contrasts among units. The competent upper units exhibit parallel fold geometries, whereas the weak lower unit displays disharmonic folding and significant penetrative deformation. Two distinct geometric types, disharmonic detachment folds, and lift-off folds have been recognized. However, these structures commonly represent different stages in the progressive evolution of detachment folds. The structures first form by symmetric or asymmetric folding, with the fold wavelength controlled by the thickness of the dominant units. Volumetric constraints require sinking of units in the synclines, and movement of the ductile unit from the synclines to the anticlines. Continuing deformation results in increasing fold amplitudes and tighter geometries resulting from both limb segment rotation and hinge migration. Initially, limb rotation occurs primarily by flexural slip folding, but in the late stages of deformation, the rotation may involve significant internal deformation of units between locked hinges. The folds eventually assume tight isoclinal geometries resembling lift-off folds. Variations in the geometry of detachment fold geometry, such as fold asymmetry, significant faulting, and fold associated with multiple detachments, are related to variations in the mechanical stratigraphy and pre-existing structure.  相似文献   

4.
作为变质核杂岩构造的重要组成部分,拆离断层带内广泛发育的褶皱构造与其寄主岩石一样记录了中下地壳拆离作用过程。选取辽南变质核杂岩金州拆离断层带内褶皱构造作为研究对象,基于叶理与褶皱构造关系分析,划分了褶皱期次与阶段性;通过形态组构分析、结晶学组构分析及石英古温度计等技术方法的应用,初步分析了拆离断层内褶皱的形成机制,为辽南地区拆离作用过程提供约束。根据褶皱形成与拆离作用的时间关系,将拆离带内褶皱分为拆离前褶皱、拆离同期褶皱和拆离后褶皱;拆离作用同期的褶皱按时间早晚分为早期(a1)阶段、中期(a2)阶段、晚期(a3)阶段。不同阶段褶皱的野外形态、叶理与褶皱关系等方面的差异,以及形态组构与结晶学组构的特征,为判断和恢复褶皱的形成机制提供了佐证,揭示出拆离断层带褶皱是在纵弯压扁和顺层流变的共同作用下递进剪切变形的产物。在拆离作用过程中, a1阶段和a2阶段褶皱以纵弯、压扁褶皱作用为主,a3阶段褶皱以弯滑作用为主。褶皱作用记录了拆离断层一定温度范围内(主要集中在380~500 ℃)的变形特征,拆离作用从早期到晚期的演化整体处于相对稳定的应变状态下。对金州拆离断层带而言,在区域NW-SE向伸展过程中,还伴随着NE-SW向微弱的收缩。  相似文献   

5.
基于野外地质调查和地震资料分析,证实了孟加拉盆地东部褶皱带发育底部和中部两套滑脱层。底部滑脱层在整个褶皱带均发育,而中部滑脱层仅发育于北段—中段的陆上和陆架区,在中段的陆坡-洋盆区及南段则不发育。中部滑脱层的发育受古陆坡富泥沉积控制。北段—中段主要发育滑脱褶皱及被断层突破的滑脱褶皱,而南段主要发育泥底辟和泥火山构造。孟加拉盆地东部褶皱带滑脱层系及构造样式的差异变形特征主要受区域挤压作用、沉积作用以及地层流体超压等方面存在着差异的共同影响。  相似文献   

6.
早中生代(晚印支-早燕山期)岳阳-赤壁断褶带位于江南造山带与中扬子前陆盆地交界地带.作者对该构造带进行了地表地质调查,以此为基础探讨了构造剖面结构及构造变形动力机制.岳阳-赤壁断褶带自南而北可分为岳阳-临湘基底滑脱-逆冲带,桃花泉-肖家湾盖层滑脱褶皱带,以及赤壁-嘉鱼前陆盆地断-褶-盆构造带.岳阳-临湘基底滑脱-逆冲带自南而北依次有郭镇向斜、官山背斜、临湘倒转向斜和聂市背斜,组成隔槽式褶皱组合.褶皱轴面多向南倾,褶皱变形面为南华系盖层与冷家溪群褶皱基底间的角度不整合面和顺界面的滑脱断裂面.桃花泉-肖家湾盖层滑脱褶皱带主要发育轴面南倾倒转褶皱,褶皱波长较小,卷入地层为南华系-志留系以及上石炭统-中三叠统沉积盖层.赤壁-嘉鱼前陆盆地断-褶-盆构造带以南倾蒲圻断裂(江南断裂)为南部边界,发育T3-J2前陆盆地沉积,带内褶皱与断裂卷入地层包括沉积盖层以及T3-J2地层:南部断裂与褶皱轴面南倾.北部轴面近直立.自南西至北东,研究区内构造线走向由EW向渐变为NEE-NE向.上述构造分带及变形特征反映出自南向北的运动指向,表明岳阳-赤壁断褶带具前陆冲断带构造性质.从断裂相关褶皱理论出发,以地表构造特征为依据,厘定了岳阳-赤壁地质剖面结构并进行了变形动力机制分析,认识如下:①自南而北、自下而上的多个滑脱层及其间的南倾逆断裂或断坡(主要为江南断裂)组成近似台阶状的逆冲断裂系统,从总体上控制了构造块体的滑移、逆冲以及相应的构造格架或变形分区.②郭镇向斜为基底滑脱褶皱,官山背斜具滑脱褶皱和断裂传播褶皱双重成因,聂市背斜为断裂转折褶皱;临湘向斜为受两侧背斜控制的被动向斜,由于弯滑褶皱作用在其两翼沿不整合界面形成滑脱断裂.③岳阳-临湘基底滑脱-逆冲带隔槽式褶皱的形成主要受控于褶皱基底的滑脱和基底整体的水平压缩,其形成机制类似于肿缩式褶皱.最后讨论认为湘东北-鄂东南地区不存在大规模、长距离的逆冲推覆构造.  相似文献   

7.
At the end of the western part of Bagharan Kuh Mountain in the northeast of Iran, mountain growth has been stopped toward the west because of the stress having been consumed by the thrusting movements and region rising instead of shear movement. Chahkand fault zone is situated at the western part of this mountain; this fault zone includes several thrust sheets that caused upper cretaceous ophiolite rocks up to younger units, peridotite exposure and fault related fold developing in the surface. In transverse perpendicular to the mountain toward the north, reduction in the parameters like faults dip, amount of deformation, peridotite outcrops show faults growth sequence and thrust sheets growth from mountain to plain, thus structural vergence is toward the northeast in this fault zone. Deformation in the east part of the region caused fault propagation fold with axial trend of WNW-ESE that is compatible with trending of fault plane. In the middle part, two types of folds is observed; in the first type, folding occurred before faulting and folds was cut by back thrust activity; in the second type, faults activity caused fault related folds with N60-90W axial trend. In order to hanging wall strain balance, back thrusts have been developed in the middle and western part which caused popup and fault bend folds with N20-70E trend. Back thrusts activity formed footwall synclines, micro folds, foliations, and uplift in this part of the region. Kinematic analysis of faults show stress axis σ1 = N201.6, 7, σ2 = N292.6, 7.1, σ3 = N64.8, 79.5; stress axis obtained by fold analysis confirm that minimum stress (σ3) is close to vertical so it is compatible with fault analysis. Based on the results, deformation in this region is controlled by compressional stress regime. This stress state is consistent with the direction of convergence between the Arabian and Eurasian plates. Also study of transposition, folded veins, different movements on the fault planes and back thrusts confirm the progressive deformation is dominant in this region that it increases from the east to the west.  相似文献   

8.
The Abitibi belt is one of the largest and most extensively studied Late Archean greenstone belts. The structural geology of the Abitibi belt consists of one generation of upright to slightly overturned, doubly plunging first-order folds with half-wavelengths of 20–60 km, and E–W-striking, steeply dipping fault zones that are parallel to the fold limbs. Two of the main fault zones are continuous for hundreds of kilometers. Previous tectonic models for the Abitibi belt interpret the fault zones to have formed as extensional growth faults bounding a volcanic-sedimentary basin, which were reactivated as thrusts during subsequent crustal shortening. Other models propose that the fault zones represent tectonic sutures, implying that the Abitibi belt is a collage of exotic terranes. However, distinct geological terranes have not been geologically demonstrated. We propose a new detachment fold model for the deformational history of the southern Abitibi belt, in Ontario, that explains the formation of the fault zones during the single, well-documented folding event that deformed the entire region. The internal structure of the fault zones, documented here with emphasis on the Porcupine–Destor fault zone, consists of isoclinally folded, strongly schistose, highly metamorphosed rock, cross-cut by numerous fault segments. We interpret that the upper crust (greenstones) was folded above a proposed detachment in the lower part of the volcanic stratigraphy. The fault zones would be, in essence, highly evolved detachment anticlines. Ultramafic metavolcanic rock that crops out within the fault zones would represent material from the detachment horizon that was emplaced in the cores of the detachment anticlines. The numerous segments that make up the mapped fault zones would be linked faults that formed within the isoclinal detachment anticlines to accommodate folding of the rheologically complex greenstones. The detachment fold model is compared to the results of analogue experiments designed to investigate crustal-scale folding, using viscous and frictional materials. Detachment folds are produced in the brittle upper crustal analogue on the limbs of folds formed in the ductile middle and lower crust analogues. The experimentally produced structures scale to the structures in the study area and indicate the detachment fold model for the southern Abitibi is mechanically viable.  相似文献   

9.
孟加拉湾若开褶皱带晚新生代构造特征初步研究   总被引:2,自引:0,他引:2  
孟加拉湾若开褶皱带位于印度-缅甸山脉西部山前,由NNW—SSE向带状分布的多排背斜构成,其构造特征研究仍然十分薄弱。本文通过钻井资料和二维地震反射剖面精细构造解析,尝试分析若开褶皱带晚新生代构造特征,重点关注若开褶皱带的滑脱层发育特征及背斜几何学及运动学特征,结果表明若开褶皱带发育多个滑脱层:①底部滑脱层,位于约6.5s(双程走时)处;②中部滑脱层,层位存在变化,可能位于第四系底部或上中新统下方约2.5s处。在区域挤压作用下,若开褶皱带发育与底部滑脱层和中部滑脱层相关的滑脱褶皱,构造变形主要受控于底部滑脱层,而中部滑脱层影响了局部构造变形。生长地层记录显示若开褶皱带构造变形自东往西迁移,变形前缘形成于第四纪。基于构造分析结果提出了若开褶皱带褶皱变形的两种运动学端元模型:模型1中不发育中部滑脱层,滑脱褶皱发育于底部滑脱层之上;模型2中发育中部滑脱层,滑脱褶皱发育于中部滑脱层和底部滑脱层之上,形成上、下两套构造层。若开褶皱带背斜几何学和运动学特征受下伏滑脱层控制,背斜在走向上叠置、分叉可能暗示着背斜下伏滑脱层在走向上发生了改变。流体超压可能是影响若开褶皱带构造变形的重要控制因素。  相似文献   

10.
Fault-bend folding, fault-propagation folding, and detachment (or décollement) folding are three distinct scenarios for fold-thrust interaction in overthrust terranes. Simple kink-hinge models are used to determine the geometric associations implicit in each scenario. Bedding maintains constant thickness in the models except in the forelimb of the fold. The forelimb is allowed to thicken or thin without limit. The models address individual folds, and the calculated fold geometries are balanced structures.Each mode of fold-thrust interaction has a distinct set of geometric relationships. Final fold geometry is adequate in itself to discern many fault-bend folds. This is not the case for fault-propagation and detachment folds. These two fold forms have very similar geometric relationships. Some knowledge of the nature of the underlying thrust or décollement zone is usually needed to distinguish between them. The geometry of a fold is altered, in a predictable fashion, by transport through an upper ramp hinge and by fault-parallel shearing of the structure. The shearing results in a tighter fold, whereas transport through the ramp hinge produces a broader fold.The viability of the geometric analysis technique is demonstrated through its application to a pair of detachment folds from the Canadian Cordillera. The geometric analysis is also used to evaluate cross-sections through subsurface structures. In an example from the Turner Valley oil field, the analysis indicates how the interpretation should be altered so as to balance the cross-section. The analysis reveals hidden assumptions and specific inconsistencies in structural interpretations.  相似文献   

11.
Three fold generations have been recognized in Svecofennian rocks (±1,800 Ma) from West Uusimaa, SW Finland. The first one (F1) might be related to thrusting and imbrication tectonics at plate collision contacts. The main generation (F2) is due to a N-S horizontal crustal shortening, which created at first E-W trending upright folds in the whole region and later tightened these F2 folds in the western part of the belt, whereas conjugate shear zones and tectonic lenses of competent rock bodies developed in the eastern part. Simultaneously the metamorphic conditions rose from amphibolite- to granulite-facies in this eastern part, which is known as the West Uusimaa Complex. The amphibolite- to granulite-facies transition zone along the western boundary of the granulite-facies complex is studied in detail. A number of prograde mineral reactions are telescoped in this transition zone: the breakdown of biotite and amphibole to ortho- ±clino-pyroxene in metaigneous rocks, the appearance of garnet in cordierite-bearing metapelites and the appearance of scapolite in calcareous rocks. Distinct mineralogical changes also occur in this zone which cross cuts all major structures and rock units and are only affected by late-F3 folding (open, disharmonic folds with approximately N-S trending axial planes) and young shear zones, associated with pseudotachylite generation. The absence of any evidence of block faulting and tilting of the crust that could be associated with the granulite complex suggests that the whole region represents one crustal level. A fluid-inclusion study indicates similar pressures for the amphibolite facies and the granulite facies domains. Application of various independent geothermobarometric methods suggest a low pressure (3–5 K bar) and a temperature increase from 550–650° C to 700–825° C, associated with a decreasing water activity (0.12O<0.4) and a general increasing CO2 activity. Fluid inclusions strongly suggest an isobaric amphibolite/granulite transition. There-fore the granulite-facies complex is designated a thermal dome. Whole rock chemical data show that granulite-facies metamorphism is isochemical. Constraints for the Svecokarelian crustal evolution are discussed.  相似文献   

12.
吴航  邱楠生  常健  张纪新  王晔 《地球科学》2019,44(3):784-797
川东地区发育典型的"侏罗山式"褶皱构造带,以北东走向的齐岳山断裂为界,南东侧为隔槽式褶皱,北西侧为隔挡式褶皱.中生代川东地区经历了自南东向北西的陆内递进变形,受多套滑脱层(基底拆离面、下寒武统页岩、志留系泥页岩和三叠系膏盐)的共同控制.但是,关于川东褶皱带的形成机制及其整体和分段形成时间仍存在较大争议.应用构造物理模拟方法,再现了川东"侏罗山式"褶皱带的形成过程,并分析了先存断裂及其倾角对川东褶皱构造变形的影响.模拟结果表明,川东褶皱带是齐岳山断裂、华蓥山断裂、志留系滑脱层和基底拆离面组成的阶梯状体系在构造挤压下发生断层相关褶皱作用的结果.基底拆离面(深度约16 km)控制隔槽式褶皱的发育,志留系页岩主要控制隔挡式褶皱的形成.中生代(165~75 Ma)川东地区的构造缩短率约为32%.齐岳山断裂是隔槽式褶皱向隔挡式褶皱过渡的重要枢纽,是先存高角度断裂浅部向北西迁移后的产物.华蓥山断裂的倾角控制着隔挡式褶皱的波长,当倾角较陡时(45°)更有利于发育典型的隔挡式褶皱.   相似文献   

13.
库车坳陷克拉苏构造带的结构模型及其形成机制   总被引:10,自引:0,他引:10  
库车坳陷克拉苏构造带是一个NEE-近EW向的冲断褶皱带。由于地表条件和构造变形的复杂性导致该构造带的地震资料品质较低,造成构造解释的多解性。本文在综合分析地面露头、区域构造背景、钻井和地震资料基础上,讨论了克拉苏构造带可能的构造解释模型,认为浅层为盖层滑脱褶皱、深层为基底卷入的楔状叠瓦构造的"分层滑脱、垂向叠置"模型能合理地解释现有可靠的构造信息。浅层构造是以库姆格列木群膏盐岩层为核或以侏罗系煤系地层为核的滑脱背斜,并被逆冲断层破坏;深层是基底卷入的中-高角度区域性反转正断层,并且在反转正断层下盘发育楔状叠瓦构造。新近纪-第四纪天山隆升产生的自天山深层向库车坳陷的斜向向上的挤压作用导致先存区域性正断层的反转位移,并控制克拉苏构造带的形成和演化。  相似文献   

14.
库车褶皱冲断带前缘发育一系列滑脱褶皱,虽然卷入变形的新生代地层及底部滑脱层(古近系盐层)相同,但滑脱褶皱的构造特征及演化存在显著差异。文中结合野外地质调查结果以及钻井资料和高品质二维地震反射剖面解析,以南喀背斜和米斯坎塔克背斜为例,估算出盐层初始厚度,并讨论其对于滑脱褶皱样式及其演化过程的影响。结果表明,南喀背斜和米斯坎塔克背斜下伏盐层初始厚度不同,估算出前者厚度介于0.1~0.5 km,主要为0.1~0.3 km,而后者却大约为1.0 km。与此同时,南喀背斜和米斯坎塔克背斜均表现出分段差异变形特征。南喀背斜为低缓的滑脱褶皱,其东段隐伏地下,变形方式为褶皱作用;而西段出露地表,背斜核部发育隐伏的逆冲断层,变形方式为褶皱作用和断层作用。背斜西段平均隆升速率大于东段,导致西段隆升出露地表。米斯坎塔克背斜表现为大规模滑脱褶皱,根据变形特征的不同可以分为3段,东段背斜倾向北,盐岩在其核部及北翼下方聚集加厚;而中-西段背斜倾向南,其中中段背斜核部位置盐岩聚集加厚,两翼下伏盐岩减薄甚至形成盐焊接。而在西段背斜呈箱状,两翼下方盐岩厚度至少为1.0 km。笔者总结出库车褶皱冲断带前缘发育的7种滑脱褶皱变形样式,通过构造分析得出,研究区滑脱褶皱的变形主要受盐层厚度、构造缩短量及盐岩流动变形共同控制,其中盐层厚度起主导作用,控制了滑脱褶皱的发育位置,并影响了滑脱褶皱的变形样式。研究结果将为其他褶皱冲断带中滑脱褶皱的相关研究提供重要参考,特别是在缺少高品质地震资料,或者构造变形强烈、地震资料品质较差的地区。  相似文献   

15.
黄栗树地区位于张八岭超高压变质带东侧 ,该区变形构造可以划分为基底韧性变形带、韧脆性构造片岩带和流变褶皱带。流变褶皱构造发育于黄 (栗树 )—破 (凉亭 )断裂以东的震旦系和下古生界盖层岩系中 ,自北西向南东依次表现为翻转褶皱、平卧褶皱和倒转褶皱 ;流变褶皱与基底韧性—韧脆性变形呈渐变关系 ,并且与基底韧性—韧脆性变形具有一致的变形运动学和动力学特征 ,反映了扬子地块与华北地块碰撞造山期及折返过程的构造变形特点。  相似文献   

16.
The Lepontine dome represents a unique region in the arc of the Central and Western Alps, where complex fold structures of upper amphibolite facies grade of the deepest stage of the orogenic belt are exposed in a tectonic half-window. The NW-verging Mont Blanc, Aar und Gotthard basement folds and the Lower Penninic gneiss nappes of the Central Alps were formed by ductile detachment of the upper European crust during its Late Eocene–Early Oligocene SE-directed underthrust below the upper Penninic and Austroalpine thrusts and the Adriatic plate. Four underthrust zones are distinguished in the NW-verging stack of Alpine fold nappes and thrusts: the Canavese, Piemont, Valais and Adula zones. Up to three schistosities S1–S3, folds F1–F3 and a stretching lineation XI with top-to-NW shear indicators were developed in the F1–F3 fold nappes. Spectacular F4 transverse folds, the SW-verging Verzasca, Maggia, Ziccher, Alpe Bosa and Wandfluhhorn anticlines and synclines overprint the Alpine nappe stack. Their formation under amphibolite facies grade was related to late ductile folding of the southern nappe roots during dextral displacement of the Adriatic indenter. The transverse folding F4 was followed since 30 Ma by the pull-apart exhumation and erosion of the Lepontine dome. This occurred coevally with the formation of the dextral ductile Simplon shear zone, the S-verging backfolding F5 and the formation of the southern steep belt. Exhumation continued after 18 Ma with movement on the brittle Rhone-Simplon detachment, accompanied by the N-, NW- and W-directed Helvetic and Dauphiné thrusts. The dextral shear is dated by the 29–25 Ma crustal-derived aplite and pegmatite intrusions in the southern steep belt. The cooling by uplift and erosion of the Tertiary migmatites of the Bellinzona region occurred between 22 and 18 Ma followed by the exhumation of the Toce dome on the brittle Rhone–Simplon fault since 18 Ma.  相似文献   

17.
We use scaled physical analog (centrifuge) modeling to investigate along- and across-strike structural variations in the Salt Range and Potwar Plateau of the Himalayan foreland fold-thrust belt of Pakistan. The models, composed of interlayered plasticine and silicone putty laminae, comprise four mechanical units representing the Neoproterozoic Salt Range Formation (basal detachment), Cambrian–Eocene carapace sequence, and Rawalpindi and Siwalik Groups (Neogene molasse), on a rigid base representing the Indian craton. Pre-cut ramps simulate basement faults with various structural geometries.A pre-existing north-dipping basement normal fault under the model foreland induces a frontal ramp and a prominent fault-bend-fold culmination, simulating the Salt Range. The ramp localizes displacement on a frontal thrust that occurs out-of-sequence with respect to other foreland folds and thrusts. With a frontal basement fault terminating to the east against a right-stepping, east-dipping lateral ramp, deformation propagates further south in the east; strata to the east of the lateral ramp are telescoped in ENE-trending detachment folds, fault-propagation folds and pop-up structures above a thick basal detachment (Salt Range Formation), in contrast to translated but less-deformed strata with E–W-trending Salt-Range structures to the west. The models are consistent with Salt Range–Potwar Plateau structural style contrasts being due to basement fault geometry and variation in detachment thickness.  相似文献   

18.
川东侏罗山式褶皱构造带的物理模拟研究   总被引:4,自引:0,他引:4  
川东地区发育一系列NE走向的侏罗山式褶皱构造,按照褶皱的组合形态,自东向西发育隔槽式褶皱和隔档式褶皱,齐岳山断裂是二者的分界线。本文采取物理模拟手段对川东侏罗山式褶皱形成的控制因素进行实验研究,选取硅树脂模拟滑脱层,石英砂和微玻璃珠模拟沉积盖层,改变盖层与基底之间摩擦力、盖层的物性、滑脱层的埋藏深度等因素。模拟实验研究表明,滑脱层的深度和盖层性质是川东侏罗山式褶皱形成的主要控制因素。齐岳山断裂以东地区主要是下寒武统膏页岩充当滑脱层,滑脱层埋深较大,地表构造形态表现为隔槽式褶皱;齐岳山断裂以西地区,下二叠统泥质灰岩充当滑脱层,埋深较浅,盖层表现为隔档式褶皱。微玻璃珠是模拟侏罗山式褶皱较好的实验材料,推测川东薄皮构造带形成时候以塑形变形为主。  相似文献   

19.
Active deformation in the South Caspian region demonstrates the enormous variation in kinematics and structural style generated where a rigid basement block lies within a collision zone. Rigid basement to the South Caspian Basin moves with a westward component relative both to stable Eurasia and Iran, and is beginning to subduct at its northern and western margins. This motion is oblique to the approximately north–south Arabia–Eurasia convergence, and causes oblique shortening to the south and northeast of the South Caspian Basin: thrusting in the Alborz and Kopet Dagh is accompanied by range-parallel strike–slip faults, which are respectively left- and right-lateral. There are also arcuate fold and thrust belts in the region, for two principal reasons. Firstly, weaker regions deform and wrap around the rigid block. This occurs at the curved transition zone between the Alborz and Talysh ranges, where thrust traces are concave towards the foreland. Secondly, a curved fold and thrust belt can link a deformation zone created by movement of the basement block to one created by the regional convergence: west-to-east thrusts in the eastern Talysh represent underthrusting of the South Caspian basement, but pass via an arcuate fan of fold trains into SSW-directed thrusts in the eastern Greater Caucasus, which accommodates part of the Arabia–Eurasia convergence. Each part of the South Caspian region contains one or more detachment levels, which vary dependent on the pre-Pliocene geology. Buckle folds in the South Caspian Basin are detached from older rocks on thick mid-Tertiary mudrocks, whereas thrust sheets in the eastern Greater Caucasus detach on Mesozoic horizons. In the future, the South Caspian basement may be largely eliminated by subduction, leading to a situation similar to Archaean greenstone belts of interthrust mafic and sedimentary slices surrounded by the roots of mountain ranges constructed from continental crust.  相似文献   

20.
四川龙门山地区反转构造样式分析及其成因机制探讨   总被引:3,自引:1,他引:2  
反转构造是当今构造地质学研究的新兴热点领域,本文尝试以反转构造和断层相关褶皱理论来探讨龙门山褶皱冲断带及川西前陆盆地中的反转构造样式及其成因。著者在综合前人研究成果的基础上,通过野外地质调查,室内构造分析与建模系统研究了龙门山地区典型的反转构造样式,讨论了龙门山带的反转性质,主干断裂的成因以及反转动力学机制。研究表明,龙门山的发育机制为一斜向正反转过程,区内发育有反转断层转折褶皱、被动陆缘型反转滑脱褶皱、反转断层传播褶皱以及受古生代裂谷控制的反转构造等反转构造类型;反转时期主要为印支期,本区在印支运动之前同时属被动陆缘和裂谷的构造背景;进入印支期后,受扬子陆块、华北陆块、羌塘陆块之间相互碰撞的影响而造山。该过程在本区不同地段表现存在差异,这种差异受控于前期的构造格局以及后期不同方向挤压应力的叠加。四川前陆盆地的发育和该过程有密切的联系,盆地内部具有裂谷构造反转的证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号