首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Golonka   《Tectonophysics》2004,381(1-4):235
Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic–Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic–Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus–proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian–Penninic–Pieniny–Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic–Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western–central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous–Cenomanian. The latest Cretaceous–Paleogene was the time of the closure of the Ligurian–Pieniny Ocean. Adria–Alcapa terranes continued their northward movement during Eocene–Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians.During the Late Cretaceous, the Lesser Caucasus, Sanandaj–Sirjan and Makran plates were sutured to the Iranian–Afghanistan plates in the Caucasus–Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian–Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene–Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW–SE wrench faults. The remnants of Jurassic–Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.  相似文献   

2.
A series of seven reconstructions is presented to illustrate the evolution of marginal seas in the Black Sea-South Caspian segment of the margin of the Tethys Ocean from the Late Jurassic to the middle Eocene. After Middle Jurassic inversion and until the Aptian Age, no marginal (backarc) basins were formed in the region, while the Pontides-Rhodope margin developed in the passive regime. The retained relict of the Late Triassic-Early Jurassic backarc basin includes the southeastern part of the Greater Caucasus, the northern part of the South Caspian Basin, and the shallow-water Kopetdagh Basin. The basins of the southern slope of the Greater Caucasus, Balkans (Nish-Trojan Trough), and Dobrogea developed as flexural foredeeps in front of the Middle Jurassic fold systems. The next, Aptian-Turonian epoch of opening of marginal seas was related to the origination of subduction zones at the Pontides-Rhodope margin and to the incipient consumption of the Vardar Basin lithosphere with formation of the West Black Sea Basin and its western continuation in the Bulgarian Srednogorie. The backarc rifting in the Greater Caucasus resulted in transformation of the foredeep into the backarc basin. Two basins approximately 2000 km in total extent were separated by the bridge formed by the Shatsky and Andrusov rises. The last, late Paleocene-middle Eocene epoch of the formation of backarc basins was associated with the newly formed subduction zone south of the Menderes-Taurus Terrane that collided with the active margin in the early Paleocene. The Greater Caucasus Basin widened and deepened, while to its south the East Black Sea Basin, the grabens in the Kura Depression, and the Talysh Basin, all being separated by a chain of uplifts, opened. The Paleogene South Caspian Basin opened in the course of the southward motion of the Alborz volcanic arc at the late stage of closure of the Iranian inner seas.  相似文献   

3.
The paper presents results of the comparative analysis of organic matter (OM), mineralogical characteristics, and radioactivity in Oligocene clayey rocks from the Greater Caucasus and Talysh, which bound the South Caspian Depression on the southeast and northwest, respectively. It is established that Oligocene clays of the Greater Caucasus and Talysh substantially differ in terms of quantitative and qualitative parameters of OM, its maturity, integral radioactivity, and composition of radioactive elements. At the same time, the mineral composition of clays from these mountainous massifs shows a certain similarity. It is concluded that the Fore-Talysh subsidence zone and adjacent areas of the Caspian Sea are characterized by a lower oil and gas potential as compared with Oligocene rocks developed at the southeastern margin of the Greater Caucasus.__________Translated from Litologiya i Poleznye Iskopaemye, No. 4, 2005, pp. 430–439.Original Russian Text Copyright © 2005 by Feyzullayev, Kheirov, Ch. Aliyev, Abbasova, K. Aliyev.  相似文献   

4.
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic–Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N–S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.  相似文献   

5.
The Sivas Basin extends over a major crustal structure underlying the contact zone between the Tauride and Pontide belts. The Kirsehir block, a continental crustal element lying between the main belts, introduces a subordinate suture in front of the Pontides—the Inner Tauride suture. The junction of the two main sutures occurs between Hafikand Imranli. Four structural zones have been considered. The northern basement of the basin, which includes both the Kirsehir continental crust and thrust sheets of ophiolite and pelagic sediments, forms an imbricate stack with an Eocene cover. The Eocene cover shows two distinct sequences: marine neritic and continental basalts overlying the Kirsehir basement, and deltaic and basinal deposits lying to the southeast. Southward tectonic stacking of the entire pile has occurred repeatedly since Oligocene time. The Sivas Basin proper is separated from the Kirsehir basement by the Kizilirmak Basin. This new structural unit consists of nearly undeformed, middle Miocene sandstones and conglomerates and a Pliocene lacustrine limestone.

The Sivas Basin proper corresponds to a fold-and-thrust belt involving an Oligocene deltaic plain with intervening large-scale evaporitic stages and subsequent lower Miocene shallow-marine deposits. Three distinct tectonic domains are considered—(1) an eastern A domain, characterized by a hinterland of deep imbricate and rare northward thrusts; (2) a transitional B domain, corresponding to a series of lateral thrust branches propagating to the southwest; this domain later was deformed by the (3) C domain, displaying a foreland-dip type of stacking. The Caldag-Tecer-Gurlevik ridge forms a structural entity of topographic highs along the southern margin of the Sivas fold-and-thrust belt. Three Eocene-cored anticlinoria arranged along an E-W relay zone fold a passive-roof composite allochthon including ophiolitic elements together with Upper Cretaceous to Eocene limestone and conglomerate. The sole of this allochthon consists of Oligocene gypsum. The Kangal Basin, a large syncline cored by Pliocene continental deposits, corresponds to the southernmost unit. The boundary with the Caldag-Tercer-Gurlevik ridge is partially concealed by a lower Miocene continental basin, overlain by a N-vergent thrust of a lower Mesozoic limestone of the Taurus platform. If the southeastward propagation of thrusting in the Sivas thrust belt and related northward thrusts at a variety of scales is considered to represent the main thrust over the undeformed Kizilirmak basin, a comparison with modern analog structural features and analog models yields a coherent interpretation of this basin in terms of its forearc-prism evolution. At a larger scale, the Sivas Basin should be considered as a piggyback basin developed along the northward-rotated rear of the Tauride wedge and the synchronous southward thrusting of the Kirsehir-Pontide wedge. At least in early Miocene time, the Inner Tauride and Erzincan sutures corresponded to a single intracontinental thrust zone along which part of the displacement of the southern front of the Tauride has been progressively transferred.  相似文献   

6.
LATE CENOZOIC TECTONICS ALONG THE NORTHWESTERN MARGIN OF THE TARIM BASIN: INTERACTIONS BETWEEN THE TARIM BASIN AND THE SOUTHERN TIAN SHAN, WEST CHINAgrants 4 98340 50and 4 9732 0 90fromtheNSFofChina;;andproject96 913 0 7 0 1fromtheMinistryofSci enceandTechnology ,China…  相似文献   

7.
前陆沉积与变形对郯庐断裂带同造山运动的制约   总被引:28,自引:14,他引:28       下载免费PDF全文
郯庐断裂带两侧的前陆沉积及其变形现象,揭示了该断裂带同造山活动的大量信息。合肥盆地东侧的郯庐断裂带旁,侏罗系沉积时出现了沉降中心与边缘相,显示这期间郯庐断裂带所处的张八岭隆起已移位至盆地东侧。砂岩的端元组份分析与碎屑白云母的电子探针分析显示,下扬子地区弧形展布的黄马青群与象山群前陆沉积的物源区为大别——苏鲁造山带,属于原地沉积,表明造山期郯庐断裂带已经出现。大别与苏鲁造山带周边都出现了强烈的前陆褶皱冲断带。合肥盆地前侏罗系基底上印支期的逆冲断层,在郯庐断裂带旁侧明显增多,指示该断裂带曾发生过同造山活动。下扬子地区前陆构造走向向郯庐断裂带方向偏转,反映它们形成时受到了郯庐断裂带左旋走滑运动的影响。这一系列前陆沉积与变形特征,指示郯庐断裂带在华北与华南板块的碰撞造山中以陆内变换断层的型式出现。该断裂带造山期运动中,东盘为主动盘,并发生了显著的逆时针旋转。独特的徐宿弧形逆冲——推覆构造,表明造山期郯庐断裂带左行平移幅度达350km。在该断裂带早白垩世的第二次平移中,断裂带向北延伸,又发生了约200km的左行平移。  相似文献   

8.
The Bansong Group (Daedong Supergroup) in the Korean peninsula has long been considered to be an important time marker for two well-known orogenies, in that it was deposited after the Songnim orogeny (Permian–Triassic collision of the North and South China blocks) but was deformed during the Early to Middle Jurassic Daebo tectonic event. Here we present a new interpretation on the origin of the Bansong Group and associated faults on the basis of structural and geochronological data. SHRIMP (Sensitive High-Resolution Ion MicroProbe) U–Pb zircon age determination of two felsic pyroclastic rocks from the Bansong Group formed in the foreland basin of the Gongsuweon thrust in the Taebaeksan Basin yielded ages of 186.3 ± 1.5 and 187.2 ± 1.5 Ma, respectively, indicating the deposition of the Bansong Group during the late Early Jurassic. Inherited zircon component indicates ca. 1.9 Ga source material for the volcanic rocks, agreeing with known basement ages.The Bansong Group represents syntectonic sedimentation during the late Early Jurassic in a compressional regime. During the Daebo tectonic event, the northeast-trending regional folds and thrusts including the Deokpori (Gakdong) and Gongsuweon thrusts with a southeast vergence developed in the Taebaeksan Basin. This is ascribed to deformation in a continental-arc setting due to the northwesterly orthogonal convergence of the Izanagi plate on the Asiatic margin, which occurred immediately after the juxtaposition of the Taebaeksan Basin against the Okcheon Basin in the late stage of the Songnim orogeny. Thus, the Deokpori thrust is not a continental transform fault between the North and South China blocks, but an “intracontinental” thrust that developed after their juxtaposition.  相似文献   

9.
In this study, an extensive paleomagnetic sampling (70 sites) was carried out in north-eastern Iran with the aim of reconstructing the rotation history of the outer margin of the Eurasia-Arabia collision area represented by the Ala-Dagh, Binalud and Kopeh-Dagh mountain belts. We sampled the red beds units from the Lower Cretaceous Shurijeh Fm. and from the Middle-Upper Miocene Upper Red Fm (URF). Paleomagnetic results from all the sampled areas show a homogeneous amount of CW rotations measured in the above-mentioned Formations. These paleomagnetic results suggest that the oroclinal bending process that caused the curvature of Alborz mountain belt in north Iran after the Middle-Late Miocene, also extended to the Ala-Dagh, Binalud and Kopeh-Dagh mountain belts, at the north-eastern border of the Arabia-Eurasia deforming zone.Based on our paleomagnetic results and on GPS, seismological, geomorphological and structural data available in the area, a hypothesis of tectonic evolution of the northern Iran-South Caspian Basin area, from Middle-Late Miocene to Present, is here proposed. In this model, the initiation of the oroclinal bending processes in northern Iran occurred about 6–4 myr ago, related to the impinging of North Iran between the South Caspian block and the southern margin of the Turan platform, driven by the northward subduction of the South Caspian basement under the Aspheron-Balkhan Sill. As paleomagnetic results from this study show a pattern of vertical axis rotations that is inconsistent with the present-day kinematics of the northern Iranian blocks as described by seismicity and GPS data, we suggest that the tectonic processes responsible for the bending of northern Iran mountain chains are no longer active and that the westward motion of the South Caspian basin, and therefore the initiation of opposite strike-slip motion along the Ashk-Abad and Shahrud faults, occurred very recently (∼2 My ago). We therefore propose that initiation of the northward subduction of the South Caspian basin below the Apsheron-Balkhan Sill and the westward extrusion of the South Caspian block did not occur at the same time, with the former occurring between the late Miocene and the Pliocene, and the latter during the Pleistocene.  相似文献   

10.
We summarize seismogenic structures in four regions of active convergence, each at a different stage of the collision process, with particular emphases on unusual, deep-seated seismogenic zones that were recently discovered. Along the eastern Hellenic arc near Crete, an additional seismogenic zone seems to occur below the seismogenic portion of the interplate thrust zone—a configuration found in several other oblique subduction zones that terminate laterally against collision belts. The unusual earthquakes show lateral compression, probably reflecting convergence between the subducting lithosphere's flank and the collision zone nearby. Along oblique zones of recent collision, the equivalence between space and time reveals the transition from subduction to full collision. In particular, intense seismicity beneath western Taiwan indicates that along the incipient zone of arc–continent collision, major earthquakes occur along high-angle reverse faults that reach deep into the crust or even the uppermost mantle. The seismogenic structures are likely to be reactivated normal faults on the passive continental margin of southeastern China. Since high-angle faults are ineffective in accommodating horizontal motion, it is not surprising that in the developed portion of the central Taiwan orogen (<5 Ma), seismogenic faulting occurs mainly along moderate-dipping (20–30°) thrusts. This is probably the only well-documented case of concurrent earthquake faulting on two major thrust faults, with the second seismogenic zone reaching down to depths of 30 km. Furthermore, the dual thrusts are out-of-sequence, being active in the hinterland of the deformation front. Along the mature Himalayan collision zone, where collision initiated about 50 Ma ago, current data are insufficient to distinguish whether most earthquakes occurred along multiple, out-of-sequence thrusts or along a major ramp thrust. Intriguingly, a very active seismic zone, including a large (Mw=6.7) earthquake in 1988, occurs at depths near 50 km beneath the foreland. Such a configuration may indicate the onset of a crustal nappe, involving the entire cratonic crust. In all cases of collision discussed here, the basal decollement, a key feature in the critical taper model of mountain building, appears to be aseismic. It seems that right at the onset of collision, earthquakes reflect reactivation of high-angle faults. For mature collision belts, earthquake faulting on moderate-dipping thrust accommodates a significant portion of convergence—a process involving the bulk of crust and possibly the uppermost mantle.  相似文献   

11.
More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous–Oligocene strata. Most synclines are NNE–NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene–Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene–Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.  相似文献   

12.
张八岭推覆体特征及其成因机制   总被引:10,自引:0,他引:10  
张八岭推覆体位于扬子板块的前陆地带,属皖南推覆构造的一个单元,沿NNE向延伸,根据地质,钻探及地球物理等资料,可确定张八岭推覆体为-向东南推覆的复合叠置构造,其推覆距离大于16km,是中生代华北与扬子两板块陆陆碰撞造山作用的产物。  相似文献   

13.
Recent works suggest Proterozoic plate convergence along the southeastern margin of India which led to amalgamation of the high grade Eastern Ghats belt (EGB) and adjoining fold-and-thrust belts to the East Dhrawar craton. Two major thrusts namely the Vellikonda thrust at the western margin of the Nellore Schist belt (NSB) and the Maidukuru thrust at the western margin of the Nallamalai fold belt (NFB) accommodate significant upper crustal shortening, which is indicated by juxtaposition of geological terranes with distinct tectonostratigraphy, varying deformation intensity, structural styles and metamorphic grade. Kinematic analysis of structures and fabric of the fault zone rocks in these intracontinental thrust zones and the hanging wall and footwall rocks suggest spatially heterogeneous partitioning of strain into various combinations of E-W shortening, top-to-west shear on stratum parallel subhorizontal detachments or on easterly dipping thrusts, and a strike slip component. Although relatively less prominent than the other two components of the strain triangle, non-orthogonal slickenfibres associated with flexural slip folds and mylonitic foliation-stretching lineation orientation geometry within the arcuate NSB and NFB indicate left lateral strike slip subparallel to the overall N-S trend. On the whole an inclined transpression is inferred to have controlled the spatially heterogeneous development of thrust related fabric in the terrane between the Eastern Ghats belt south of the Godavari graben and the East Dharwar craton.  相似文献   

14.
造山带逆冲推覆构造研究的主要新进展   总被引:9,自引:0,他引:9  
造山带逆冲推覆构造研究是造山带研究中最为重要的课题之一。造山带外带即前陆褶皱冲断带(主要发育盖层冲断推覆体,一般遵循薄皮构造变形规则)与造山带内带(主要是基底褶皱推覆体,呈现厚皮构造变形规律)结晶逆冲推覆构造的几何学、运动学特征存在较大差异,二者形成机制也不相同,但其间仍有紧密的联系。近20年来造山带逆冲推覆构造研究的主要新进展为:①前陆褶皱冲断带逆冲断层及其相关褶皱的几何学特征分析已趋定量化,对其组合类型与演化时序有了更全面的认识,且对前陆褶皱冲断带的发展演化模式取得了新的共识,即遵循临界库仑楔模式;②平衡剖面技术在前陆褶皱冲断带的应用已从二维平衡与复原演进到三维平衡与复原,且日渐计算机化;③对造山带内带结晶基底逆冲推覆构造的主要类型(C型与F型逆冲岩席)及其特征已有较深的理解;④对前陆褶皱冲断带与结晶基底逆冲构造的相互关系及其形成演化模式有了新认识。目前造山带逆冲推覆构造研究过程中存在的主要问题为:①造山带内带结晶逆冲推覆构造的研究比较薄弱;②造山带晚期走滑构造及伸展构造的叠加与改造使得造山带内结晶逆冲推覆构造更为复杂化,致使其研究难度加大;③全面、精细的造山带深部地球物理资料较缺乏;④造山带内结晶逆冲岩席变形变质历史与超高压变质岩的形成机制及折返过程之间的关系尚未揭示清楚。在今后研究过程中应加强对上述问题的深入研究。  相似文献   

15.
A 100 km long balanced structural transect is presented for the Patagonian Andes at 50° S Latitude. The area studied is characterized by a fold belt in the eastern Andean foothills and basement-involved thrusts in a western-basement thrust zone. The basement thrust zone exposes pre-Jurassic, polydeformed sedimentary and layered metamorphic rocks emplaced over Lower Cretaceous rocks above an E-vergent thrust located at the western end of the fold belt.

The fold belt is developed in a 3 km thick deformed Cretaceous–Paleogene sedimentary cover with few basement outcrops and scarce calc-alkaline magmatism. Cover structures related to shallow décollements have a N-S to NW-SE strike, with fold wavelengths from 1100 to 370 m in the east to 20 to 40 m in the west. However, long-wavelength basement-involved structures related to deeper décollements have a dominant N-S to NE-SW trend along the eastern and western parts of the fold belt. Field evidence showing different degrees of inversion of N-S–trending normal faults suggests that the orientation of the Cenozoic compressive basement structures was inherited partially from the original geometry of Mesozoic normal faults.

The deformation propagated toward the foreland in at least two events of deformation. The effects of Paleogene (Eocene?) compressive episode are observed in the western fold belt and a Neogene (Late Miocene) compressive episode is present in the eastern fold belt. Basement-involved structures typically refold older cover structures, producing a mixed thick and thin-skinned structural style. By retrodeforming a regional balanced cross section in the fold belt, a minimum late Miocene shortening of 35 km (26%) was calculated.  相似文献   

16.
Detailed subsurface structure of the eastern Junggar Basin is investigated using a large number of high-resolution two-dimensional reflection seismic profiles and well data. Our results reveal thrust faults, some of which are with strike-slip component, and fault-related folds dominating the subsurface structure of the study area. The thrust faults mainly show a divergent pattern towards the west and convergence towards the east. We divide these thrust faults and folds into three structural systems. The north thrust system, located in the north of the study area, is characterized by top-to-the southwest imbricate thrusts initiated from late Paleozoic. The central transpression system, dominating the central study area, mainly consists of thrust faults with visible strike-slip component, active from early Mesozoic until Cretaceous. The South thrust system includes top-to-the southeast thrusts in the southern part of the study area. The existence of these structural systems indicates that the eastern Junggar Basin underwent obvious intracontinental deformation in Mesozoic, probably due to the continuous convergence between the Altay and the Tianshan orogens after the main collision-accretion processes of the Central Asian Orogenic Belt.  相似文献   

17.
We have used sandbox experiments to investigate and to illustrate the effects of topography upon the development of arcuate thrust belts. In experiments where a sand pack shortened and thickened in front of an advancing rectilinear piston, the geometry of the developing thrust wedge was highly sensitive to variations in surface topography. In the absence of erosion and sedimentation, the surface slope tended to become uniform, as predicted by the theory of critical taper. Under these conditions, the wedge propagated by sequential accretion of new thrust slices. In contrast, where erosion or sedimentation caused the topographic profile to become irregular, thrusts developed out of sequence. For example, erosion throughout a hinterland caused underlying thrusts to remain active and inhibited the development of new thrusts in the foreland. Where initial topography was irregular in plan view, accreting thrusts tended to be arcuate. They were convex towards the foreland, around an initially high area; concave towards the foreland, around an initially low area. Initial plateaux tended to behave rigidly, while arcuate thrust slices accreted to them. Thrust motions were radial with respect to each plateau. Within transfer zones to each side, fault blocks rotated about vertical axes and thrust motions were oblique-slip. At late stages of deformation, the surface slope of the thrust wedge tended towards a uniform value. Initial mountains of conical shape (representing volcanoes) also escaped deformation, except at depth, where they detached. Arcuate thrust slices accreted to front and back. Where a developing thrust wedge was subject to local incision, accreting thrust slices dipped towards surrounding areas of high topography, forming Vs across valleys.Arcuate structural patterns are to be found around the three highest plateaux on Earth (Tibet, Pamirs and Altiplano) and around the Tromen volcanic ridge in the Neuquén Basin of northern Patagonia. We infer that these areas behaved in quasi-rigid fashion, protected as they were by their high topography.  相似文献   

18.
The fold-thrust tectonics in the Northern Tarim Basin, oriented roughly parallel to the South Tianshan orogenic belt, consists of two large-scale tectonic regimes: (1) the foreland-basin, thin-skinned deformation belt; and (2) the foreland-craton, thick-skinned-dominated (i.e., basement-involved) deformation belt. Variations in the degree of deformation in these tectonic belts and style along the regional tectonic strike can be accounted for by longitudinal (progressive) transfer or transverse (abrupt) transfer. Longitudinal transfer maintains the overall displacement or shortening within the fold-thrust belts as uniform or with gradual change along the tectonic strike. This includes the tectonic transfer between en echelon master thrusts and from the individual master thrust to terminal fold (s) or distributive thrusts. Transverse transfer resulted from an abrupt change in overall displacement or shortening along the tectonic strike. Within the transverse transfer zone, various tectonics—such as strike-slip faults, strike-slip thrusts, transverse anticlines, and en echelon folds—are developed.

The development of longitudinal transfer zones can be attributed to the gradual variation of intrinsic and extrinsic deformational conditions along the tectonic strike. The initiation of transverse transfer may be related to variations in the thickness of sedimentary layers, detachment-layer distribution limits, and variation along strike of the degree and mode of the South Tianshan orogenic belt's effect on the basin, as well as the variation of the boundary conditions of the deformation, such as in the geometry of plate margins.  相似文献   

19.
Analysis of a suite of 2-D seismic reflection profiles reveals that the northwestern Sacramento Valley and eastern Coast Range foothills, northern California, are underlain by a system of blind, west-dipping thrust faults. Homoclinally east-dipping and folded Mesozoic marine forearc strata exposed along the western valley margin define the forelimbs of northeast-vergent fault-propagation folds developed in the hanging walls of the thrusts. Exhumed coherent blueschists of the accretionary complex and attenuated remnants of the ophiolitic forearc basement presently exposed in the eastern Coast Ranges are in the hanging wall of the blind thrust system, and have been displaced from their roots in the footwall. Deep, east-dipping magnetic reflectors in the footwall of the thrust system may be fragments of sheared, serpentinized and attenuated ophiolitic basement. Restoration of slip on the thrusts suggests that the Coast Range fault, which is the exposed structural contact between the coherent blueschists and attenuated ophiolite, originally dipped east and is associated with the east-dipping magnetic reflectors in the footwall. This interpretation of the reflection data is consistent with previous inferences about the deep structure in this region, and supports a two-stage model for blueschist exposure in the eastern Coast Ranges: (1) blueschist exhumation relative to the forearc basin by attenuation of the ophiolitic basement along the east-dipping Coast Range fault system in late Cretaceous; (2) blueschists, attenuated ophiolite, and forearc strata all were subsequently uplifted and folded in the hanging wall of the blind thrust system beginning in latest Cretaceous–early Tertiary. The blind thrust system probably rooted in, and was antithetic to, the east-dipping subduction zone beneath the forearc region. Active transpressional plate motion in western California is locally accommodated, in part, by reactivation of blind thrust faults that originally developed during the convergent regime.  相似文献   

20.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号