首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The Zhongdian area in Yunnan, southwestern China, located at the southern end of the Yidun volcano-magmatic arc that was formed during the Triassic westward subduction of the Gaze-Litang Ocean, hosts numerous Triassic large porphyry and skarn deposits. The arc suffered Jurassic to Cretaceous arc-continental orogenic collision and Cenozoic intracontinental strike-slip shearing. The Hongshan Cu (–Mo–Pb–Zn) deposit is potentially a large deposit and contains two ore types: 1) predominant layered skarn Cu–(Pb–Zn) ores along marble-hornfels contacts; and 2) minor crosscutting vein-type Cu–Mo mineralization. Previous research forwards a two-stage genetic model without sufficient dating evidence, supposing the skarn mineralization is related to the Triassic calc-alkalic intrusions and the vein-type mineralization related to Cretaceous quartz monzonite porphyries. Re–Os dating of molybdenite from vein-type ores and quartz monzonite porphyries and that of pyrrhotite from skarn ores are presented here to constrain the mineralization age and rebuild the genetic model. Analyses of eight molybdenite samples yield an isochron age of 79.7 ± 3.1 Ma (MSWD = 9.2) for the vein-type mineralization and a model age of 81.9 ± 1.1 Ma for the quartz monzonite porphyries. Isotope data on seven pyrrhotite samples from the skarn ores yield an isochron age of 79 ± 16 Ma z(MSWD = 8.4). The Re–Os ages for the two ore types are concordant within analytical errors, indicating that the Hongshan deposit was formed in the Late Cretaceous. Elevated Re contents in molybdenite (13.65 to 63.91 μg/g) and extremely radiogenic initial 187Os/188Os ratios in pyrrhotite (0.7673 to 0.8184; weighted average 0.796 ± 0.038), together with elevated γOs values in pyrrhotite (507 to 547; average 528) imply a significant crustal component in the ore-forming materials that was likely derived from a lower crustal reservoir. Combined with the tectonic evolution of the Zhongdian area and geochemical characteristics of corresponding intrusions, the ages of mineralization obtained in this study indicate that the Hongshan deposit was formed in a post-collision setting with a genetic relationship to the emplacement of the quartz monzonite porphyry. These results provide significant new information for the study and exploration of the Late Cretaceous metallogeny in the Zhongdian area.  相似文献   

2.
The Hongshan Cu-polymetallic deposit is located in the southern Yidun arc in southwestern China, where both subduction-related (Late Triassic) and post-collisional (Late Cretaceous) porphyry–skarn–epithermal mineralization systems have been previously recognized. In this study, two distinct magmatic events, represented by diorite porphyry and quartz monzonite porphyry, have been revealed in the Hongshan deposit, with zircon SHRIMP U–Pb ages of 214 ± 2 Ma and 73.4 ± 0.7 Ma, respectively. The 73 Ma age is comparable to the Re–Os ages of 77 to 80 Ma of ore minerals from the Hongshan deposit, indicating that the mineralization is related to the Late Cretaceous quartz monzonite porphyries rather than Late Triassic diorite porphyries. The Late Triassic diorite porphyries belong to the high-K calc-alkaline series and show arc magmatic geochemical characteristics such as enrichment in Rb, Ba, Th and U and depletion in HFSEs, indicating that they were formed during the westward subduction of the Garzê–Litang Ocean. In contrast, the Late Cretaceous quartz monzonite porphyries show shoshonitic I-type geochemical characteristics, with high SiO2, K2O, LILE, low HREE, Y and Yb contents, and high LREE/HREE and La/Yb ratios. These geochemical characteristics, together with the Sr–Nd–Pb isotopic compositions (average (87Sr/86Sr)i = 0.7085; εNd(t) =  6.0; 206Pb/204Pb = 19.064, 207Pb/204Pb = 15.738, 208Pb/204Pb = 39.733) suggest that the quartz monzonite porphyries originated from the partial melting of the ancient lower crust in response to underplating of mafic magma from subduction metasomatized mantle lithosphere, possibly triggered by regional extension in the post-collisional tectonic stage. The S isotopic compositions (δ34SV-CDT = 3.81‰ to 5.80‰) and Pb isotopic compositions (206Pb/204Pb = 18.014 to 18.809, 207Pb/204Pb = 15.550 to 15.785, and 208Pb/204Pb = 38.057 to 39.468) of ore sulfides indicate that the sulfur and metals were derived from mixed mantle and crustal sources. It is proposed that although the Late Triassic magmatic event is not directly related to mineralization, it contributed to the Late Cretaceous mineralization system through the storage of large amounts of sulfur and metals as well as water in the cumulate zone in the mantle lithosphere through subduction metasomatism. Re-melting of the mantle lithosphere including the hydrous cumulate zone and ancient lower crust during the post-collisional stage produced fertile magmas, which ascended to shallow depths to form quartz monzonite porphyries. Hydrothermal fluids released from the intrusions resulted in porphyry-type Mo–Cu ores in and near the intrusions, skarn-type Cu–Mo ores in the country rocks above the intrusions, and hydrothermal Pb–Zn ores in the periphery.  相似文献   

3.
The Xiongcun district, located in the western segment of the Gangdese porphyry copper belt (GPCB), hosts the only known Jurassic mineralization in the GPCB, Tibet, PRC. The No. I deposit in the Xiongcun district is related to the Middle Jurassic quartz diorite porphyry (167–161 Ma) and the mineralization was formed at ca. 161.5 ± 2.7 Ma. Ore-bearing Middle Jurassic quartz diorite porphyry emplaced into the Early Jurassic volcano-sedimentary rock sequences of the Xiongcun Formation. Veinlets and disseminated mineralization developed within the Middle Jurassic quartz diorite porphyry and the surrounding metamorphosed tuff, hosting a measured and indicated resource of 1.04 Mt copper, 143.31 t gold and 900.43 t silver with an average grade of 0.48% copper, 0.66 g/t gold, and 4.19 g/t silver. The mineralization can be assigned to four stages, including three main stages of hypogene mineralization and one epigenetic stage. The main alteration associated with mineralization is potassic. Seven mineralization-related hydrothermal veins have been recognized, including quartz–sulfide, biotite–sulfide, magnetite–sulfide, quartz–molybdenite–sulfide, chalcopyrite–pyrite–pyrrhotite, pyrite and polymetallic veins. The S and Pb isotopic compositions of the ore sulfides and the Re contents of the molybdenite suggest a mantle source for the ore-forming materials with minor contamination from the subducted sediments. Hydrogen and oxygen isotope compositions of quartz in the ores suggest that both magmatic and meteoric waters were involved in the ore-forming process. The ore-bearing porphyry (167–161 Ma) and ore-forming (161.5 ± 2.7 Ma) ages of the No. I deposit correspond to the time of northward subduction of Neo-Tethys oceanic slab. The geochemical data of the ore-bearing porphyry indicate that the No. I deposit formed in an intra-oceanic island arc setting and the ore-bearing porphyry originated from the partial melting of mantle with limited contribution of subducted sediments. The genesis of the ore-bearing porphyry and No. I deposit is interpreted as being related to northward intra-oceanic subduction of Neo-Tethys oceanic slab in the Middle Jurassic time (167–161 Ma).  相似文献   

4.
Early Cretaceous arc volcanic rocks, diorite intrusions and an associated large porphyry deposit occur in the Cebu Island, Central Philippines. In this paper, we studied the diorite porphyries associated with Cu-Au mineralization in the Kansi region, where Early Cretaceous arc volcanic rocks are widely distributed. Zircon U-Pb age reveals that the diorites were formed at ca. 110 Ma, close to the formation age of Lutopan diorites in the famous Atlas porphyry Cu-Au deposit (109–101 Ma), and younger than those of the arc volcanics in this region (126–118 Ma). The Kansi diorites and Lutopan diorites are both calc-alkaline high-Mg adakites with high Sr/Y ratios. Their major elements define similar variation trends in Harker diagrams, suggesting that they were probably generated from a uniform source but experienced different degree of partial melting or fractional crystallization. The Kansi diorites are characterized by LREE enrichment, HREE depletion, no Eu negative anomaly, with enrichment of Pb, Sr, Zr and Hf and depletion of Nb, Ta, and Ti. They are probably generated by the partial melting of subducted oceanic crust, followed by a certain degree of mantle interaction and crustal contamination. The highly depleted Sr-Nd-Pb-Hf isotopes of the Kansi diorites are close to the Amami Plateau basalt and tonalite, indicating the dominance of a Pacific-type MORB in the source. The Cu-Au mineralization-related Kansi diorites are characterized by high oxygen fugacities more than ΔFMQ +2, indicating quite a good potential for porphyry Cu-Au mineralization in the region. Finally, in our tectonic model, the successive generation of arc volcanic rocks and adakites in the Cebu Island are responses to the subduction and rollback of the paleo-Pacific Plate to the proto-Philippine Sea Plate (PSP) in the Early Cretaceous.  相似文献   

5.
The Tuwu–Yandong porphyry Cu belt is located in the Eastern Tianshan mountains in the eastern Central Asian Orogenic Belt. Petrochemical and geochronological data for intrusive and volcanic rocks from the Tuwu and Yandong deposits are combined with previous studies to provide constraints on their petrogenesis and tectonic affinity. New LA–ICP–MS zircon U–Pb ages of 348.3 ± 6.0 Ma, 339.3 ± 2.2 Ma, 323.6 ± 2.5 Ma and 324.1 ± 2.3 Ma have been attained from intrusive units associated with the deposits, including diorite, plagiogranite porphyry, quartz albite porphyry and quartz porphyry, respectively. The basalt and andesite, which host part of the Cu mineralization, are tholeiitic with high Al2O3, Cr, Ni and low TiO2 contents, enriched LREEs and negative HFSE (Nb, Ta, Zr, Ti) anomalies consistent with arc magmas. Diorites are characterized by low SiO2 content but high MgO, Cr and Ni contents, similar to those of high-Mg andesites. The parental magma of the basalt, andesite and diorite is interpreted to have been derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. The ore-bearing plagiogranite porphyry is characterized by high Na2O, Sr, Cr and Ni contents, low Y and Yb contents, low Na2O/K2O ratios and high Sr/Y ratios and high Mg#, suggesting an adakitic affinity. The high εNd(t) (5.02–9.16), low ISr (0.703219–0.704281) and high εHf(t) (8.55–12.99) of the plagiogranite porphyry suggest they were derived by a partial melting of the subducted oceanic crust followed by adakitic melt-mantle peridotite interaction. The quartz albite porphyry and quartz porphyry are characterized by similar Sr–Nd–Hf isotope but lower Mg# and whole-rock (La/Yb)N ratios to the plagiogranite porphyry, suggesting they were derived from juvenile lower crust, and negative Eu anomalies suggest fractionation of plagioclase. We propose that a flat subduction that started ca. 340 Ma and resulted in formation of the adakitic plagiogranite porphyry after a period of “steady” subduction, and experienced slab rollback at around 323 Ma.  相似文献   

6.
The Xiaoxinancha Au–Cu deposit is located at the eastern segment of the Tianshan–Xingmeng orogenic belt in northeast China. The deposit includes porphyry Au–Cu orebodies, veined Au–Cu orebodies and veined Mo mineralizations. All of them occur within the diorite intrusion. The Late Permian diorite, Late Triassic granodiorite, Early Cretaceous granite and granite porphyry are developed in the ore area. The studies on geological features show that the porphyry Au–Cu mineralization is related to the Late Permian diorite intrusion. New geochronologic data for the Xiaoxinancha porphyry Au–Cu deposit yield Permian crystallization zircon U–Pb age of 257 ± 3 Ma for the diorite that hosts the Au–Cu mineralization. Six molybdenite samples from quartz + molybdenite veins imposed on the porphyry Au–Cu orebodies yield an isochron age of 110.3 ± 1.5 Ma. The ages of the molybdenites coeval to zircon ages of the granite within the errors suggest that the Mo mineralization was genetically related to the Early Cretaceous granite intrusion. The formation of the diorite and the related Au–Cu mineralization were caused by the partial melting of the subduction slab during the Late Palaeozoic palaeo‐Asia Ocean tectonic stage. The Re contents and Re–Os isotopic data indicate that the crustal resource is dominated for the Mo mineralization during the Cretaceous extensional setting caused by the roll‐back of the palaeo‐Pacific plate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The Kalaxiange’er porphyry copper ore belt is situated in the eastern part of the southern Altai of the Central Asian Orogenic Belt and forms part of a broad zone of Cu porphyry mineralization in southern Mongolia, which includes the Oyu Tolgoi ore district and other copper–gold deposits. The copper ore bodies are spatially associated with porphyry intrusions of granodiorite, quartz diorite, quartz syenite, and quartz monzonite and have a polygenetic (polychromous) origin (magmatic porphyry, hydrothermal, and supergene). The mineralized porphyries are characterized by almost identical REE and trace element patterns. The Zr/Hf and Nb/Ta ratios are similar to those of normal granite produced through the evolution of mantle magma. The low initial Sr isotope ratio ISr, varying within a narrow range of values (0.703790–0.704218), corresponds to that of primitive mantle, whereas the εNd(T) value of porphyry varies from 5.8 to 8.4 and is similar to that of MORB. These data testify to the upper-mantle genesis of the parental magmas of ore-bearing porphyry, which were then contaminated with crustal material in an island-arc environment. The isotopic composition of sulfur (unimodal distribution of δ34S with peak values of − 2 to − 4‰) evidences its deep magmatic origin; the few lower negative δ34S values suggest that part of S was extracted from volcanic deposits later. The isotopic characteristics of Pb testify to its mixed crust–upper-mantle origin. According to SHRIMP U–Pb geochronological data for zircon from granite porphyry and granodiorite porphyry, mineralization at the Xiletekehalasu porphyry Cu deposit formed in two stages: (1) Hercynian “porphyry” stage (375.2 ± 8.7 Ma), expressed as the formation of porphyry with disseminated and vein–disseminated mineralization, and (2) Indosinian stage (217.9 ± 4.2 Ma), expressed as superposed hydrothermal mineralization. The Re–Os isotope data on molybdenite (376.9 ± 2.2 Ma) are the most consistent with the age of primary mineralization at the Xiletekehalasu porphyry Cu deposit, whereas the Ar–Ar isotopic age (230 ± 5 Ma) of K-feldspar–quartz vein corresponds to the stage of hydrothermal mineralization. The results show that mineralization at the Xiletekehalasu porphyry Cu deposit was a multistage process which resulted in the superposition of the Indosinian hydrothermal mineralization on the Hercynian porphyry Cu mineralization.  相似文献   

8.
The Yidun Arc was formed in response to the westward subduction of Garze–Litang Ocean (a branch of Paleotethys) in the Late Triassic, where abundant porphyry Cu–Mo deposits (221–213 Ma) developed along the regional NW–SE sinistral faults and emplaced in the southern portion of the arc. The ore-related porphyries are mostly metaluminous or slightly peraluminous, belonging to shoshonitic high-potassium calc-alkaline I-type granites, with εHf(t) values of −6.64 to +4.12. The ore-bearing magmas were probably derived from the partial melting of subduction-metasomatic-enriched mantle, with the contamination of underplated mafic materials. The Late Cretaceous (88–80 Ma) highly fractionated I-type granite belt and related porphyry Cu–Mo deposits and magmatic-hydrothermal Cu–Mo–W deposits occur along approximately N–S-trending faults in the Yidun Arc. This belt extended across the Yidun Arc and Garze–Litang suture zone to the north and across the Yangtze Craton to the south, intruding the Late Triassic porphyry belt. The ore-related porphyries are characterized by high silica and high total alkalis, with enrichment in large ion lithophile elements (LILEs; Rb, U and K) and depletion in high field strength elements (HFSE; Nb, Ta, P and Ti) and Ba. They have lower εHf(t) values varying from −9.55 to −2.75, and significant negative Eu anomalies, indicating that the ore-bearing porphyritic magmas originated from ancient middle-upper crust. Two-stage magmatism and mineralization were superimposed in the Xiangcheng-Shangri-La district. Some ore deposits comprise two episodes of magmatism and associated mineralization such as both 207 ± 3.0 Ma granodiorite and 82.1 ± 1.2 Ma monzogranite intruded in the Xiuwacu deposit, causing Cu–Mo–W polymetallic mineralization. To date, 11 Late Triassic porphyry Cu deposits (e.g. the Pulang giant deposit with 5.1 Mt Cu), and five Late Cretaceous porphyry Cu–Mo (W) deposits (e.g. Tongchanggou Mo deposit with 0.59 Mt Mo) have been evaluated in the Xiangcheng-Shangri-La district. The continuity and inheritance of multiphase magmatism and the new understanding of superimposed mineralization will help to guide future exploration.  相似文献   

9.
The Tethyan tectonic domain hosts numerous world-class mineral deposits. Among these, the Dewulu skarn copper deposit in Western Qinling, China belongs to the Paleotethys ore belt. The skarn and orebodies here occur as stratoids or lenses at the contact between the Triassic Dewulu intrusive complex and Permian marine clastic and carbonates. Alteration minerals include prograde skarns (garnet, diopside, wollastonite), plagioclase, hornblende, actinolite, tremolite, epidote, chlorite, calcite, quartz and sericite. The main ore types include early disseminated skarn-type replacement orebodies and late-stage quartz-sulfide veins. Chalcopyrite is the major ore mineral, along with pyrite, bornite and sphalerite. The Dewulu intrusive complex comprises quartz diorite, quartz diorite porphyry and dioritic mafic microgranular enclaves (MME). The MMEs are spheroidal in shape, and have igneous mineral assemblages, acicular apatites, complex oscillatory zoned plagioclase and quartz megacrysts surrounded by mafic minerals. The MMEs are metaluminous and calc-alkaline to high-K calc-alkaline, and possess relatively high Ni, Cr and MgO contents and Mg# values. They display sub-parallel patterns in trace element spider diagrams and rare earth element (REE) plots. They are also characterized by the enrichment of Rb, U and Th, depletion of Ba, Sr, Nb and Ta and negative Eu anomaly. Zircon LA-ICP-MS U–Pb dating of the dioritic MME yields an age of 247.0 ± 2.2 Ma, coeval with the host quartz diorite, quartz diorite porphyry and ore-related sericite 40Ar/39Ar plateau ages within analytical uncertainties. Oxygen fugacity estimated from trace element compositions of zircons from the dioritic MME shows FMQ ± 3.3. The zircons have negative εHf(t) values in a range of − 8.0 to − 3.3, corresponding to two-stage model ages ranging from 1.48 to 1.78 Ga. The integrated data from petrology, geochronology and bulk geochemistry suggest that the Early Triassic granitoids associated with Cu skarn mineralization at Dewulu were products of arc magmatism and involved magma mixing in an active continental margin setting. The magma was sourced through partial melting of enriched sub-continental lithospheric mantle that had been previously modified by slab-derived melt during the continuous northward subduction of the Paleotethys oceanic slab.  相似文献   

10.
Yudai is a newly discovered copper deposit associated with a porphyritic quartz diorite, in the Kalatag district of the eastern Tianshan, China. SHRIMP U-Pb dating of zircons from the diorite yielded an age of 432 ± 3 Ma. The diorite is peraluminous (ASI = 0.98–1.10), calc-alkaline to tholeiitic with high Al2O3 of 16.6–17.7 wt% and Mg# of 57.4–67.4. Trace element characteristics of the diorite show it is enriched in Ba, K and Sr, and depleted in Nb, Ta, Ti, with a positive Eu anomaly and high Sr/Y and La/Yb ratios. This diorite has positive εNd(t) values ranging from 6.2 to 8.4 with low initial 87Sr/86Sr ratios of 0.704336 to 0.704450. These geochemical and isotopic characteristics indicate that the adakite-like diorite, associated with the copper mineralization, was emplaced in an island arc setting and resulted from partial melting of subducted oceanic plate in a mantle wedge.  相似文献   

11.
The recently discovered Longtougang skarn and hydrothermal vein Cu–Zn deposit is located in the North Wuyi area, southeastern China. The intrusions in the ore district comprise several small porphyritic biotite monzonite, porphyritic monzonite, and porphyritic granite plutons and dikes. The mineralization is zoned from a lower zone of Cu-rich veins and Cu–Zn skarns to an upper zone of banded Zn–Pb mineralization in massive epidote altered rocks. The deposit is associated with skarn, potassic, epidote, greisen, siliceous, and carbonate alteration. Molybdenite from the Cu-rich veins yielded a Re–Os isochron age of 153.6 ± 3.9 Ma, which is consistent with U–Pb zircon ages of 154.0 ± 1.3 Ma for porphyritic monzonite, 154.0 ± 0.8 Ma for porphyritic biotite monzonite, and 152.0 ± 0.8 Ma for porphyritic granite. Geological observations suggest that the Cu mineralization is genetically related to the porphyritic biotite monzonite and porphyritic monzonite. All the zircons from intrusive rocks in the ore district are characterized by εHf(t) values between − 13.41 and − 4.38 and Hf model ages (TDM2) between 2054 and 1482 Ma, reflecting magmas derived mainly from a Proterozoic crustal source. Molybdenite grains from the deposit have Re values of 14.6–27.7 ppm, indicative of a mixed mantle–crust source. The porphyry–skarn abundant Cu and hydrothermal vein type Pb–Zn–Ag deposits in the North Wuyi area are related to the Late Jurassic porphyritic granites and Early Cretaceous volcanism, respectively. The Late Jurassic mineralization-related granites were derived from the crustal anatexis with some mantle input, which was triggered by asthenospheric upwelling induced by slab tearing during oblique subduction of the paleo-Pacific plate beneath the South China block, and the Early Cretaceous mineralization-related granitoids mainly from crust material formed within a series of NNE-trending basins during margin-parallel movement of the plate.  相似文献   

12.
The Fujiawu porphyry Cu–Mo deposit is one of several porphyry Cu–Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U–Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar–Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu–Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U–Pb ages and the published molybdenite Re–Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U–Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.  相似文献   

13.
The newly discovered Fuxing porphyry Cu deposit is located in the Dananhu–Tousuquan arc, adjacent to the Tuwu–Yandong Cu deposits of Eastern Tianshan, in the southern Central Asian Orogenic Belt. The Fuxing deposit is hosted by volcanic rocks (basalt and dacite) in the Early Carboniferous Qi'eshan Group and Carboniferous felsic intrusions (plagiogranite porphyry, monzogranite, and quartz diorite). New SIMS zircon U–Pb dating indicates that the plagiogranite porphyry and monzogranite emplaced at 332.1 ± 2.2 Ma and 328.4 ± 3.4 Ma, respectively. The basalts are characterized by low SiO2 contents (47.47–54.90 wt.%), a lack of Eu anomalies, strong depletion of Na, Ta, and Ti elements but positive Sr, U, and Pb anomalies, high Y (20.8–28.2 ppm) and HREE concentrations (Yb = 2.23–3.06 ppm), and relatively low (La/Yb)N (2.20–3.92) values; the dacite samples have high SiO2 contents (66.13–76.93 wt.%), clearly negative Eu anomalies, high Mg# values (36–51), and high Y (41.8–54.9 ppm) and Yb (5.76–8.98 ppm) concentrations. The basalts and dacites exhibit similar signatures as normal arc rocks, and were considered to be derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. In contrast, the plagiogranite porphyry, monzogranite, and quartz diorite show the same geochemical affinity with modern adakites, which are characterized by high SiO2 contents (67.55–79.00 wt.%), minor negative to positive Eu anomalies, strong depletion of heavy rare earth elements (Yb = 0.17–1.19 ppm) and Y (1.86–10.1 ppm), positive K, Rb, Sr, and Ba but negative Nb, Ta, Th, and Ti anomalies, and high (La/Yb)N ratios and Mg# values. Moreover, these adakitic felsic intrusions display relatively high positive zircon εHf(t) values (+ 11.4 to + 18.3), low 87Sr/86Sr (0.706080–0.711239), high 143Nd/144Nd (0.512692–0.512922) ratios, and consistent zircon δ18O values (4.41‰–5.48‰), suggesting that their parental magma were most likely derived from partial melting of the subducted oceanic crust followed by mantle peridotite interaction. Based on the whole-rock geochemical and Sr–Nd–Hf–O isotopic data, as well as detailed petrographic analyses, we further suggest that the Fuxing igneous rocks and associated porphyry Cu mineralization were generated by the northward subduction of the paleo-Tianshan oceanic plate beneath the Dananhu–Tousuquan island arc during the Early Carboniferous.  相似文献   

14.
Porphyry Cu ± Mo ± Au deposits typically formed in volcanoplutonic arcs above subduction zones. However, there is increasing evidence for the occurrence of porphyry deposits related to magmas generated after the underplating arc has ceased. Post-subduction lithospheric thickening, lithospheric extension, or mantle lithosphere delamination could trigger the remelting of subduction-modified arc lithosphere and lead to the formation of post-subduction porphyry deposits. The NNW-trending Yidun Terrane, located in the eastern Tethys, experienced subduction of Garze–Litang oceanic plate (a branch of the Paleotethys) in the Late Triassic and witnessed two mineralization events respectively associated with the ca. 215 Ma arc-related intermediate–felsic porphyries and the 88–79 Ma mildly-alkaline granitic porphyries. It is, therefore, an ideal place to investigate the genetic linkage between the subduction-related porphyry deposits and post-subduction porphyry deposits. Our new in situ zircon U–Pb dating of the two granitic intrusions (biotite granite, 213.4 ± 0.9 Ma; monzogranite porphyry, 86.0 ± 0.4 Ma) in the Xiuwacu district, the molybdenite Re–Os age (84.7 ± 0.6 Ma) of the mineralization, and previously published geochronological data, together show the spatially overlapping distribution of the multiple Mesozoic porphyry systems in the Late Triassic Yidun arc system. Furthermore, the arc-like elemental signatures and the mixed Sr–Nd–Hf isotopic signatures of the Late Cretaceous ore-related porphyries (i.e., originating from a mixed components between the ∼215 Ma juvenile arc crust and the Mesoproterozoic mafic lower crust) indicate a genetic linkage between the Late Triassic and Late Cretaceous porphyry systems. This suggests that the remelting of underplated arc-related mafic rocks formed during the subduction of the Garze–Litang Ocean could be responsible for the mixing between the mantle-derived components and the Mesoproterozoic lower crustal materials, when post-subduction transtension occurred in the Late Cretaceous. The formation of the Late Cretaceous porphyry–skarn Cu–Mo–W deposits could most likely be related to the remelting of Late Triassic residual sulfide-bearing Cu-rich cumulates in the subduction-modified lower crust that triggered by the Late Cretaceous transtension.  相似文献   

15.
滇西北中甸松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义   总被引:9,自引:1,他引:8  
位于义敦岛弧南端的中甸岛弧中广泛发育印支期斑岩及斑岩型和矽卡岩型铜矿床。松诺(或称松诺力赞)复式岩体位于东斑岩带中部,由石英闪长玢岩、黑云石英二长斑岩、闪长玢岩和含矿石英二长斑岩组成,其南部为普朗超大型斑岩铜矿床,北部为地苏嘎铜矿点。本文对含矿石英二长斑岩进行了岩相学和锆石SHRIMPU-Pb定年研究,结果表明所有锆石颗粒自形较好且均发育规则的韵律环带,Th含量为180~854μg/g,U含量为270~709μg/g,Th/U比值为0.77~1.24,为典型岩浆成因锆石。获得了含矿石英二长斑岩的侵位年龄为220.9±3.5Ma(n=9,MSWD=1.6),这与中甸岛弧洋壳俯冲造山作用的时限(210~235Ma)相吻合。  相似文献   

16.
The newly discovered Chalukou giant porphyry Mo deposit, located in the northern Great Xing’an Range, is the biggest Mo deposit in northeast China. The Chalukou Mo deposit occurs in an intermediate-acid complex and Jurassic volcano-sedimentary rocks, of which granite porphyry, quartz porphyry, and fine-grained granite are closely associated with Mo mineralization. However, the ages of the igneous rocks and Mo mineralization are poorly constrained. In this paper, we report precise in situ LA-ICP-MS zircon U–Pb dates for the monzogranite, granite porphyry, quartz porphyry, fine grained granite, rhyolite porphyry, diorite porphyry, and andesite porphyry in the Chalukou deposit, corresponding with ages of 162 ± 2 Ma, 149 ± 5 Ma, 148 ± 2 Ma, 148 ± 1 Ma, 137 ± 3 Ma, 133 ± 2 Ma, and 132 ± 2 Ma, respectively. Analyses of six molybdenite samples yielded a Re–Os isochron age of 148 ± 1 Ma. These data indicate that the sequence of the magmatic activity in the Chalukou deposit ranges from Jurassic volcano-sedimentary rocks and monzogranite, through late Jurassic granite porphyry, quartz porphyry, and fine-grained granite, to early Cretaceous rhyolite porphyry, diorite porphyry, and andesite porphyry. The Chalukou porphyry Mo deposit was formed in the late Jurassic, and occurred in a transitional tectonic setting from compression to extension caused by subduction of the Paleo-Pacific oceanic plate.  相似文献   

17.
The Khoynarood area is located in the northwest of Iran, lying at the northwestern end of the Urumieh–Dokhtar volcano-plutonic belt and being part of the Qaradagh–South Armenia domain. The main intrusive rocks outcropped in the area have compositions ranging from monzonite–quartz monzonite, through granodiorite, to diorite–hornblende diorite, accompanied by several dikes of diorite–quartz diorite and hornblende diorite compositions, which were geochemically studied in order to provide further data and evidence for the geodynamic setting of the region. The SiO2, Al2O3 and MgO contents of these rocks are about 58.32–68.12%, 14.13–18.65% and 0.68–4.27%, respectively. They are characterized by the K2O/Na2O ratio of 0.26–0.58, Fe2O3 + MnO + MgO + TiO2 content about 4.27–13.13%, low Y (8–17 ppm) and HREE (e.g., 1–2 ppm Yb) and high Sr contents (750–1330 ppm), as well as high ratios of Ba/La (13.51–50.96), (La/Yb)N (7–22), Sr/Y (57.56–166.25), Rb/La (1.13–2.96) and La/Yb (10–33.63), which may testify to the adakitic nature of these intrusions. Their chemical composition corresponds to high-silica adakites, displaying enrichments of LREEs and LILEs and preferential depletion of HFSEs, (e.g., Ti, Ta and Nb). The REE differentiation pattern and the low HREE and Y contents might be resulted from the presence of garnet and amphibole in the solid residue of the source rock, while the high Sr content and the negative anomalies of Ti, Ta and Nb may indicate the absence of plagioclase and presence of Fe and Ti oxides in it. As a general scenario, it may be concluded that the adakitic rocks in the Khoynarood were most likely resulted from detachment of the subducting Neo-Tethyan eclogitic slab after subduction cessation between Arabian and Central Iranian plates during the upper Cretaceous–early Cenozoic and partial melting of the detached slab, followed by interactions with metasomatized mantle wedge peridotite and contamination with continental crust.  相似文献   

18.
The Yandong porphyry copper deposit, located in the Eastern Tianshan Mountains, Xinjiang, China, is part of the Central Asian Orogenic Belt. The Yandong deposit is hosted by a volcanic complex in the Early Carboniferous Qi’eshan Group and a felsic intrusion. The complex consists of andesite, basalt, diorite porphyry, and porphyritic quartz diorite. The felsic intrusion is a plagiogranite porphyry emplaced within the complex. The diorite porphyry and plagiogranite porphyry yield SIMS zircon U–Pb ages of 340.0 ± 3 and 332.2 ± 2.3 Ma, respectively. Element geochemistry shows that both the complex and plagiogranite porphyry formed in the Dananhu–Tousuquan island arc, a Carboniferous magmatic arc.The diorite porphyry and plagiogranite porphyry are host porphyries, but the plagiogranite porphyry is a productive porphyry. It caused the porphyry-style Cu mineralization and associated alteration. The alteration assemblages include early potassic and propylitic assemblages. These were overprinted by a chlorite–sericite assemblage, which in turn was overprinted by a late phyllic assemblage. The phyllic alteration is associated with the highest Cu grades. The mineralization is recognized to include three stages, from early to late: stage 1, a potassic alteration associated with a chalcopyrite + pyrite assemblage; stage 2, represented by chlorite–sericite alteration with a chalcopyrite + pyrite assemblage; and stage 3, the main-ore stage that is marked by phyllic alteration with chalcopyrite + pyrite ± molybdenite and producing more than 70% of the total copper production at Yandong. Yandong may represent a common scenario for Paleozoic porphyry Cu systems in the Central Asian Orogenic Belt.  相似文献   

19.
The Lamandau region of Kalimantan Island, Indonesia is located in Sandaland, in the southern part of the Kuching tectonic belt. A series of Cenozoic epithermal gold deposits and Fe–Cu–Au deposits are located in the Kuching belt. The Lamandau Fe–Cu–Au deposit is hosted by diorite porphyry. In-situ zircon U–Pb dating of the diorite porphyry shows that it formed between 82.1 ± 1.7 Ma and 78.7 ± 2.3 Ma. Geochemical data indicate a depletion of high field strength elements (HFSE) in the diorite porphyry and related basalt is similar to that of arc-related igneous rocks. The diorite porphyry and basalt were probably derived from typical arc magmas related to continental margin subduction and thus are characterized by light rare earth element (REE) enrichment and HFSE depletion. The sub-chondritic Nb/Ta ratios for the basalt in the Lamandau region indicate that the subducted Pacific slab began partial melting at depths where amphibole was the major residual phase, with some residual rutile. The basalt was derived from a depleted mantle source. The composition of apatite and zircon in the diorite porphyry indicates that the dioritic magma was produced from the subcontinental mantle after it was metasomatized by slab-derived fluids. The magma had a high oxygen fugacity, thus and therefore it was particularly conducive to the precipitation of Cu, Au and other ore-forming elements. The composition of magnetite indicates that it was of volcanic origin. The magnetite has a low REE content, and a high Cu–Au content. The deposit may be classified as an IOCG mineral system. In summary, the ore-related diorite porphyry in the Lamandau region might have formed in an extensional environment during rollback of the subducting western Pacific plate. The convergent velocity between the Philippine Sea and Eurasian plates was at a minimum during the rollback, so that the margin of East Asian began to undergo rifting with associated magmatism.  相似文献   

20.
The Geza Andean-type arc is located in the southwestern Sanjiang tectonic belt (i.e. Jinsha, Lancang, and Nujiang River) of SW China, which is a product of the subduction of the Garzê–Litang oceanic crust beneath Zhongdian landmasses in the Late Triassic (235–204 Ma). The Geza Andean-type arc is an important belt of Cu-rich polymetallic mineralization that was recently discovered in China. Prolonged regional tectono-magmatic activity and several episodes of rich mineralization throughout the tectonic evolution of the Andean-type arc produced the super-large Pulang porphyry Cu deposits, the large Xuejiping porphyry Cu deposits, and the large Hongshan skarn-porphyry Cu polymetallic deposits. Here we report new LA-ICP-MS zircon U–Pb age of Songnuo and Qiansui intrusive rocks, and whole-rock major and trace element compositions of the Late Triassic mineralized porphyries from Geza in this region. Zircon U–Pb dating of the Qiansui quartz diorite porphyrite revealed a crystallization age of 220.3 ± 0.66 Ma, for the Songnuo quartz monzonite porphyry, a crystallization age of 204.7 ± 0.72 Ma. The Geza Andean-type arc granitic belt can be divided into three porphyry subzones based on the stage of Andean-type arc orogenic development and the distribution, composition, and geochemical characteristics of the intrusive rocks. Lithogeochemical characteristics show that the porphyry and Andean-type arc granite are of the same rock series (high-K calc-alkaline) and genetic type (I-type granite). The trace element geochemistry of these rocks is similar to that of Andean-type arc granite, which is enriched in Ba, Rb, La, Hf, chalcophile elements (Cu, Pb), and siderophile elements (Mo, Ni), and depleted in Nb, Ta, P, and Ti. In the Geza Andean-type arc, similarities in the major element, REE, and trace element compositions between porphyry and local acidic volcanic rocks suggest that they have the same or similar magmatic source rocks. The petrological characteristics of granite in the Geza Andean-type arc are similar to those of adakitic rocks, and the formation of porphyry and porphyry-related deposits resulted from magmatic hydrothermal fluids that originated in the upper mantle and lower crust. The porphyry Cu mineralization was probably produced from the accumulation and migration of ore-forming hydrothermal fluids and the resultant alteration of host rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号